
PPOCEEDINGS 
!nd. st•P••i•• • ••all 

••• .. ••r• in Ille arlll 
OCTOBER 15-17, 1982 
PHILADELPHIA, PENNSYLVANIA 

SPONSORED BY : 
IEEE COMPUTER SOCIETY and IEEE PHILADELPHIA SECTION 

IEEE CATALOG NO. 82CH1831-7 
LIBRARY OF CONGRESS NO. 

I 
1' I I•• I 

I 

l ' l I ,I I 

-- . - -

IEEE COMPUTER SOCIETY CATALOG NO. 455 

♦. THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. 

/ 

!E laE 

COMPUTER 
SOCIETY~ 
PRESS ~ • 



:dli1.,,:- ,,:t:a,e, C -c:11 tt:: · Cr e 



PPOCEEDINGS 
!■11. 111■11■si■■ ■■ s■all 

1■■11■1ers i■ Ille ~r1I 
OCTOBER 15-17, 1982 
PHILADELPHIA, PENNSYLVANIA 

SPONSORED BY: 
IEEE COMPUTER SOCIETY and IEEE PHILADELPHIA SECTION 

♦• THE INSTITUTE OF ELECTRICAL ANO ELECTRONICS ENGINEERS INC 

IEEE CATALOG NO. 82CH1831-7 

;/ 1'.✓./ . , , /_-4, -
~ .·~1 / ~ .-,, 
,· (\• 

l Vt 

C0

0MPUTER 
SOCIETY~ 
PRESS ~ . 

IEEE COMPUTER SOCIETY-CATALOG NO. 455 

Order from: IEEE Computer Society 
Post Office Box 80452 
Worldway Postal Center 
Los Angeles, CA 90080 

IEEE Service Center 
445 Hoes Lane 
Piscataway, NJ 08854 



The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover 
and title page. They reflect the authors' opinions and are published as presented and without 
change, in the interests of timely dissemination. Their inclusion in this publication does not 
necessarily constitute endorsement by the editors, IEEE Computer Society Press, or the Institute of 
Electrical and Electronics Engineers, Inc. 

Published by IEEE Computer Society Press 
1109 Spring Street 

Silver Spring, MD 20910 

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. 
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for 
private use of patrons those articles in this volume that carry a code at the bottom 
of the first page, provided the per-copy fee indicated in the code is paid through the 
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are 
permitted to photocopy isolated articles for noncommercial classroom use without 
fee. For other copying, reprint or republication permission, write to Director, Publish
ing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copy
right © 1982 by The Institute of Electrical and Electronics Engineers, Inc. 

IEEE Catalog No. 81CH1631-1 
Library of Congress No. 80-85189 
Computer Society No. 349 

Order from: IEEE Computer Society 
Post Office Box 80452 
Wortdway Postal Center 
Los Angeles, CA 90080 

IEEE Service Center 
445 Hoes Lane 
Piscataway, NJ 08854 

• The Institute of Electrical and Electronics Engineers, Inc. 

ii 



1982 

PROCEEDINGS 

OF THE 

SYMPOSIUM 

ON 

SMALL 

COMPUTERS 

IN THE 

ARTS 

OCTOBER 15-17, 1982 

PHILADELPHIA 

SPONSORED BY: 

IEEE COMPUTER SOCIETY 

IEEE PHILADELPHIA SECTION 

ORGANIZED AND PRODUCED BY: 

PERSONAL COMPUTER ARTS GROUP 

iii 



PROCEEDINGS COMMITTEE 

EDITORS....................................... Eric Podietz 
Donna Mansfield 

LAYOUT................................... Laura Gianni trapani 

SYMPOSIUM CHAIRMAN ••••...•.••...•••••.•.....••...• Dick Moberg 

iv 



H I S T O R I C A L N O T E S 

THE SYMPOSIUM ON SMALL COMPUTERS IN THE ARTS GREW OUT OF 
A COMPUTER MUSIC CONCERT HELD IN DOWNTOWN- PHILADELPHIA IN 
1978. IT WAS PLANNED AS PART OF THE PERSONAL COMPUTING '78 
SHOW HELD AT THE CIVIC CENTER. JOHN DILKS, THE FOUNDER OF THE 
SHOW, GRACIOUSLY BACKED THE IDEA AND PROVIDED A HOTEL BALLROOM 
FOR THE EVENT. AS WORD OF THE UPCOMING CONCERT SPREAD, WE 
RECEIVED CALLS FROM PEOPLE AS FAR AWAY AS THE WEST COAST 
ASKING IF THEY COULD PARTICIPATE. ONE MUSICIAN FROM NEW YORK 
ACTUALLY ARRANGED A PIECE FOR COMPUTER AND CLARINET ESPECIALLY 
FOR THIS CONCERT. THE EVENING OF THE CONCERT OVER 500 PERSONS 
SHOWED UP AND TRIED TO SQUEEZE INTO A ROOM THAT ONLY HELD 300. 
THE CONCERT WAS RECORDED, AN ALBUM WAS MADE, AND IT IS NOW 
SOLD BY CREATIVE COMPUTING. 

THE SUCCESS OF THAT CONCERT LED THE ORGANIZERS TO FORM AN 
INFORMAL GROUP TO PRODUCE SIMILAR EVENTS AND TO ACT AS A 
CLEARINGHOUSE FOR THOSE INTERESTED IN COMPUTER APPLICATIONS IN 
THE ARTS. THE 1979 PERSONAL COMPUTER MUSIC FESTIVAL, ~PONSORED 
BY THE GROUP, INCLUDED TALKS AND DEMONSTRATIONS DURING THE DAY 
IN ADDITION TO THE EVENING CONCERT. IN 1980, A SEPARATE DAY OF 
COMPUTER GRAPHICS TALKS AND DEMONSTRATIONS WAS ADDED TO MAKE 
THE PERSONAL COMPUTER ARTS FESTIVAL. ALL THESE EVENTS WERE 
HELD AT THE PERSONAL COMPUTING SHOWS IN PHILADELPHIA. 

IT HAD ALWAYS BEEN OUR DESIRE TO SOME DAY ORGANIZE A 
MAJOR MEETING SOLELY DEDICATED TO THE USE OF SMALL COMPUTERS 
IN THE ARTS. THIS DREAM BECAME A REALITY WITH THE 1981 
SYMPOSIUM, THANKS TO THE SUPPORT OF THE IEEE COMPUTER SOCIETY 
AND THE IEEE PHILADELPHIA SECTION. 

AT LAST YEAR'S SYMPOSIUM, HELD NOV 20-22, 1981, 150 
COMPUTER ARTS ENTHUSIASTS DESCENDED UPON THE HOLIDAY INN ON 
THE UNIVERSITY OF PENNYSLVANIA CAMPUS. AN INFORMAL AND VERY 
INTERACTIVE ATMOSPHERE PREVAILED MAKING THE SYMPOSIUM A GREAT 
SUCCESS WITH RESPECT TO ITS GOALS OF INCREASING THE 
PARTICIPANTS' AWARENESS OF THE USES OF SMALL COMPUTERS IN THE 
ARTS. RESPONSE TO THE SYMPOSIUM AND SUCCEEDING INTEREST LED 
TO THE PUBLICATION OF 'SCAN', A MONTHLY NEWSLETTER ON SMALL 
COMPUTERS IN THE ARTS. 

THE PERSONAL COMPUTER ARTS GROUP, AS A VOLUNTEER NOT
FOR-PROFIT-GROUP, CONTINUES TO PROMOTE THE USE OF COMPUTERS IN 
THE ARTS THROUGH ITS NEWSLETTER 'SCAN', CONCERTS, AND OTHER 
EVENTS. TO CONTACT THE GROUP, WRITE TO: PERSONAL COMPUTER ARTS 
GROUP, BOX 1954, PHILADELPHIA, PA. 19105. 

V 



P R E F A C E 

OVER THIS PAST YEAR WE HAVE SEEN THE USE OF 
COMPUTERS IN THE ARTS POPULARIZED THROUGH MOVIES, TV 
DOCUMENTARIES, AND MAJOR NEWS MAGAZINES. IT SEEMS 
THAT MORE AND MORE ARTISTS AND MUSICIANS CAN'T HELP 
QUESTIONING HOW THEY COULD USE COMPUTERS IN THEIR 
OWN WORK, WHETHER IT BE A NEW WAY OF VISUALIZING 
MUSIC OR A MEANS OF TESTING AN ANIMATION. 

NEW SOPHISTICATED INTEGRATED CIRCUITS GEARED 
FOR SPECIFIC SOUND/GRAPHICS FUNCTIONS HAVE DRIVEN 
THE COST OF A PERSONAL COMPUTER DOWN AND THEIR 
CAPABILITIES UP. MANUFACTURERS OF TRADITIONALLY SELF 
CONTAINED, DEDICATED EQUIPMENT, SUCH AS CHARACTER 
GENERATORS AND SYNTHESIZERS, HAVE BEEN DESIGNING 
INTO THEIR PRODUCTS INTERFACES TO POPULAR MICRO
COMPUTERS. SOFTWARE IS MORE AVAILABLE FOR A WIDER 
RANGE OF APPLICATIONS AND ALLOWS FOR MORE DIRECT, 
INTUITIVE USE. POWERFUL SOFTWARE DEVELOPMENT TOOLS 
ARE IN TURN PERMITTING EVEN MORE SOPHISTICATED 
APPLICATIONS TO BE DEVELOPED. THE GROWTH OF COMPUTER 
NETWORKING IS PROVIDING ARTISTS WITH NEW MEANS OF 
COMMUNICATION. 

IN GENERAL, PEOPLE ARE FINDING MORE AND MORE 
WAYS TO APPLY SMALL COMPUTERS IN THE CREATIVE ARTS. 
NEW DEVELOPMENTS IN MACHINE INTELLIGENCE, PATTERN 
RECOGNITION AND HUMAN-COMPUTER INTERFACES ALLOW FOR 
MORE INTUITIVE AND INTERACTIVE USE OF THE COMPUTER. 

THE PAPERS IN THIS YEAR'S PROCEEDINGS REFLECT 
THESE TRENDS, BOTH DEMONSTRATING AND PROPOSING HOW 
COMPUTERS CAN BE USED IN VIDEO, DANCE, WEAVING, 
MUSIC COMPOSITION AND SYNTHESIS, LASER SHOWS, 
INTERACTIVE SCULPTURE, VIDEOTEX, ANIMATION, AND 
PAINTING. 



TABLE OF CONTENTS 

HISTORICAL NOTES •• . . . . . . . . . . . . . . . . 
PREFACE ••••• 

The Microcomputer as a Musical Instrument. 
R.H. Lord 

Noise in Real Time Digital Sound Generation •••• 
A.C. Ashcraft, F.H. Covitz, and K.A. Sproul 

Sonic Set Theory: A Tonal Music Theory 
(Tools for Algorithmic Composition with 
for Chord Selection for Dessert). 

L. Spiegel 

for Computers 
an Algorithm 

V 

vi 

1 

5 

15 

Merging Event Lists in Real-Time. • • • • • • • • • • • • • • • • • • • • 23 
J.W. Mauchly 

Automatic Computer Composition of Bluegrass Tunes ••• 
M. Keith 

Graphics Software Interaction Using the Apple Computer. 
A.C. Flynn 

29 

35 

Microcomputer Drawing. • • • • • • • • • • • • • • • • • • • • • • • • • 39 
W.J. Kolomyjec 

Analytical Computer Art. • • • • • • • • • • • • • • • • • • • • • • • • 47 
J. Jacobson 

Pantomation: A System for Position Tracking •••• 
T. DeWitt and P. Edelstein 

Real Time Animation Techniques With Microcomputers. 
F. Dietrich 

An Application of a Microcomputer as an Interactive 
Art Medium. • • • • • • • • • • • • • • • • • 

G.K. Shortess 

An Artist's Computer System ••• 
W. Wright 

Videotext as Personal Expression. 
w. Richmond ands. Rubin 

Computer Painting with Rodin ••• 
M. Nahas and H. Huitric 

Computer Graphics and Woven Fabric 
L. Giannitrapani 

Computers and Choreography. 
C.M. Stadler 

Design • ••••••••••••••• 

Designing a Recursive Framework for Evolutive 
Poetry • ••••••• 

N.J. Davison 

61 

71 

75 

79 

87 

95 

105 

107 

111 

Laser Shows and the Use of Computers. • • • • • • • • • • • • • • • • • • 115 
A. Jackson 

AUTHOR INDEX. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 119 

vii 





THE MICROCOMPUTER /~S A MUSICAL INSTRUMENT 

by Richard H. Lord 

UPWARD CONCEPTS 
Bennett Rd., Durham, NH 03824 

ABSTRACT 

This paper briefly surveys types of music 
synthesizer hard ware. It then examines plug-in 
cards for the APPLE computer and explores the 
Mountain Computer music system and its potential 
as a performance instrument. Types of music 
keyboards are briefly discussed. 

INTRODUCTION 

The recent evolution of microcomputer 
technology has made many exciting ideas possible. 
The synthesis of music has benefitted 0reatly from 
these advances. Many commercial synthesizers 
now employ digital circuitry in their design. Even 
more exciting is the incorporation of the personal 
computer into the synthesizer architecture, allowing 
extensive control of every aspect of the synthesis 
mechanism. 

These new approaches permit anyone to 
experiment with the quality and timbre of the 
created sounds in very sophisticated ways, either 
for the authentic imitation of conventional 
instruments or the creation of entirely new sounds. 

OVERVIEW 

Before considering the nature of the newer 
synthesizers, let us briefly review the traditional 
approaches. This paper will not attempt a 
detailed description. of these techniques since 
many sources of this information already exist. 

The first real music synthesizers were pipe 
organs, and their history goes back a few thousand 
years. One cannot overlook the fact that the finer 
examples of pipe organ design provide the 
musician witl\ a marvelous palette of tone color 
which was not easily immitated by the electronic 
counterparts that began to appear in the 1950's. 
The electronic organs did introduce some basic 
concepts of electronic sound production which 
provide the fundamentals of modern instruments. 
Most early electronic organs provided a waveform 
signal for each pitch the instrument could sound. 
These waveforms were usually square or sawtooth 
forms containing a rich family of harmonics. The 
keyboard switched these outputs on or off and the 
resulting output was filtered to create string or 
flute sounds. The technique of starting with lots 

82CH1831-7/82/0000/0001$00.75 © 1982 IEEE 

of harmonics and filtering the output to get a 
desired timbre is called subtractive synthesis. 
This method appears in classical instruments as 
well as electronic ones. The reed families, in 
particular, generate a raw, raspy buzz which is 
modified by filtration. 

As electronic organs became more 
sophisticated, the harsh keyboard switches were 
replaced with simple envelope generators which 
softened attack and created sustain after the key 
was released. A need to control this envelope 
more precisely, and the desire to modify pitch and 
fi.lter parameters as well, created the market for 
the analog synthesizer. Of course, the economics 
of creating a full analog synthesizer for each key of 
an organ was ( and still is ) prohibitive, so early 
synthesizers did not play very many notes at one 
time. Complex multi-track recording techniques 
were used to painstakingly assemble full 
orchestrations such as the work of Carlos or 
Tomita. These instruments were frequently 
provided with patch panels so that more exotic 
sounds could be created by interconnecting the 
oscillators, filters and envelope generators in 
unusual combinations. 

Meanwhile, another form of synthesis was 
beginning to gain a foothold. Way back in the 
1700's, mathematicians had discovered that complex 
sounds could be broken down into a series of 
si nu soi do) waves. Ad ding these sine waves back 
together would create the original waveform. The 
Hammond organ made use of a limited form of this 
additive synthesis. Attempts to imitate ( and thus 
understand ) complex instruments such- as the 
trumpet, showed that a series of sine waves could 
indeed reproduce these sounds. The trick was 
that each sine wave had its own envelope, and 
some of these changed pitch during the attack or 
decay. This looked suspiciously like the earlier 
problem of providing many channels of analog 
synthesizers, except now each note would require 
many channels. This clearly limited this technique 
to academic music research labs, where complex 
machines could be built. 

As all this was happening, digital computers 
started to become fast, efficient and available. 
Some researchers recognized that both additive 
and subtractive synthesis could be performed 
mathematically by a digital computer. These 
calculations were too complex to be used for direct 
creation of sound, but an output file could be 
created which could then be converted directly to 
analog signals. All the complexities of multiple 



notes of multiple sine waves·could all be added 
together into a single digital data stream. This is 
the ultimate technique for producing the most 
subtle control of the final output. However, it 
requires storage of at least a .million bytes of 
information for each minute of audio output. It 
also takes a great deal of computer time to create 
this fife, so that live performance or interactive 
control is impossible. The lack of interaction 
tends to limit the usefulness of this method for 
exploring new sounds. 

MICROCOMPUTER SYNTHESIS 

Recent advances in large-scale circuit 
integration have allowed both computers and 
specialized controllers to be developed. 
Manufacturers of electronic musical instruments 
have begun to recognize this potential and start 
incorporating these devices into their designs. 

The PROPHET 5 analog synthesizer by 
Sequential Circuits is an example of the adaptation 
of an analog synthesizer. A Z-80 microcomputer 
and battery-powered memory allow I 20 complete 
presets to be stored in this machine permanently 
( or replaced with 120 more, stored on tape ). 
The microcomputer sets up the envelope and filter 
patches and sets up all the analog parameters, as 
well as scanning the keyboard and providing 
control voltages. Five complete channels are 
supplied, and the microcomputer selects five of the 
keys held down. The synthesizer itself, is entirely 
analog with conventional voltage-controlled 
oscillators, filters, amplifiers and envelope 
generators. In this product, the microcomputer is 
not really involved in the production of the sound. 

An entirely different approach is employed by 
instruments such as the CASIOTONE 202. Here, 
custom integrated circuits generate the sound by 
direct digital synthesis. The manufacturer carefully 
created 59 different presets that can be selected 
by the performer. No mixing or modification of 
these voices is possible, but the variety and quality 
of the presets is very suitable for a performing 
instrument. In this synthesizer, two channels are 
provided to supply the transient and steady-state 
aspects of the instrument sound. Each channel 
has a special IC which scans the keyboard, selects 
the eight most recently played keys, and provides 
complete additive waveform synthesis and 
envelope generation for these eight notes, summing 
the result and sending the digital output to a 14-
bit digital-to-analog converter ( DAC ). Each 
channel then is passed through a simple analog 
fi I ter and then mixed to form the final output. 
The manufacturer has not released much 
information on these custom IC's, but they appear 
to be doing some very powerful computation. 

Suprisingly few high-quality synthesizers have 
appeared for personal computers. There are 8-bit 
DAC's available for most computers. Experimenters 
like Hal Chamberlin have gotten surprising amounts 
of music from these, but the dynamic range and 
frequency response of this method are very limited 
and the microcomputer is very busy creating 
samples for the DAC and has no time to scan 
keyboards. 

2 

The APPLE computer has fared better than the 
others, with two rather interesting types of 
synthesizer cards available. The ALF synthesizers 
are programmable pitch generators with amplitude 
controls. Two different cards are available. One 
pro vi des 9 channels with 16 amplitude levels and 
the other produces 3 channels with a more precise 
256 amplitude levels. Pitch is selected by 
dividing the system clock by a programmable 
number. The only waveform possible is a square 
wave. This can be given different characteristics 
by changing the envelope, but not much variety is 
possible. This synthesizer does provide a 
convenient note editing system that makes it 
rather pleasant for conventional composing, where 
the desire is to quickly hear examples of 
counterpoii:,t or harmony. The entry system is by 
far the simplest to use. ft allows repeats and 
transposed repeats and can create many 
interesting effects. It is rather like programming a 
player piano though, since no keyboard input or 
tonal variation is provided. 

The second synthesizer card for the APPLE is 
the Mountain Computer 16-channel digital music 
system. This is actually two cards that fit in 
adjacent slots of the computer. The system is a 
true digital additive synthesizer that allows 
musical instruments to be precisely defined. Each 
of the 16 channels can· have its own waveform and 
envelope profile. In addition, pitch and amplitude 
can be ·given a complex attack profile. A single 
instrument could use all 16 oscillators, though 
usually two are assigned to each voice. The 
system pro vi des 30,000 samples per second for 
each oscillator so that the sound quality is quite 
high. Compositions can be entered and edited 
separately from instrument definitions and new 
orchestrations can be tried easily. 

The software delivered with this synthesizer 
does not allow input from a music. keyboard. Two 
manufacturers supply keyboards and software to 
work with the Mountain Computer system. Both of 
these systems allow the user to define preset 
instruments to be played from the keyboard. 
Sequences of notes can be recorded and played 
back. The keyboard can be played in a different 
voice while the recorded notes are played. Both 
systems allow the selection of different tunings 
than the equal-tempered scale. The Passport 
Designs system allows FM effects in the 
instrument definitions. The Alpha-Syntauri system 
is available with a velocity-sensing keyboard that 
can be linked to various parameters. Both systems 
p I ay up to eight notes at once and assign two 
oscillators to each note w.ith simple ADSR 
envelopes for each oscillator. 

PROBLEMS 

While this synthesizer and its software can 
provide much enjoyment and useful 
experimentation, the present systems fall slightly 
short of the mark. The size of the scores that can 
be edited by the Mountain Computer software is 
quite limited. Parts can be compiled and merged, 
but even then, there are few complex scores that 
can run more than a few minutes. It is not 
presently possible to automatically bring in a new 



movement from disk. In fact, the Mountain 
Computer software ( written in a language called 
XPL ) frequently pauses during simple editing 
operations so that new pieces of the program can 
be swapped into the APPLE's memory. 

Instrument definition can also be a problem. 
As mentioned earlier, the three different software 
systems have somewhat different instrument 
specifications. Also, the output filter of the 
Mountain Computer card does not provide a very 
satisfactory frequency response curve, limiting the· 
quality of the instrument definitions. It is also 
very difficult to generate ran dam noise as a 
component of the sound. It is simple to generate 
a random wavetable which is periodically repeated, 
but the ear has incredible ability in its power to 
sense periodicity. The result is a harsh buzz, not 
white noise. 

The frequency response and noise generation 
problems can be solved with hardware. A card 
can be added to provide better output circuitry 
and to generate rand6m numbers when ad dressed 
in ROM ad dress space. Ideally, this card could 
also perform keyboard scanning and provide a 
digitally programmable analog filter for special 
effects that cannot readily be created with digital 
synthesis. Larger composition files could be 
possible if someone were willing to code the 
software more efficiently. 

IN CONCERT 

The possibilities of digital synthesis for a 
performance instrument are very exciting. Existing 
software permits a performer to generate exotic 
instruments and call them into action with the 
touch of a single key. Bass line accompaniements 
can be recorded and easily called in. 

Much work needs to be done on the design of 
keyboards. At present, velocity input ( from the 
timing between switch closures ) is the only 
parameter available on the Alpha-Syntauri. Some 
commercial synthesizers are making use of key 
pressure as well. So far, nothing approaches the 
control of a piano. The subtlety of tone that a 
violinist can impart to the string is very much over 
the horizon. The pipe organist must be content 
with on/off control, but pianists universally 
complain of the insensitivity of synthesizer 
keyboards. If each key could sense velocity, 
position, and force in each of two directions and 
these parameters could be linked into the 
instrument definitions, many possibilities might 
exist. If authentic "feel" were part of the 
requirement, it is even possible to provide force 
feedback through solenoids mounted under each key 
and modulated by a keyboard micro-computer. 

SOME CONCLUDING THOUGHTS 

There appear to be at least three directions of 
experimentation sugggested by the available 
microcomputer synthesis systems. For those 
interested in composition, these programs allow 
scores to be entered and edited with some of the 
flexibility of a word processor. The results can be 
orchestrated and heard immediately. Runs of 64-
th notes beyond the dexterity of the most 

3 

accomplished mus1c1ans can be played on this 
system. If your interests are centered on the 
analysis and imitation of musical instruments, 
these systems allow you to construct complex 
instrument definitions and hear them as you 
modify them. These instruments can be saved on 
disk and called up at will. The performing 
musician can create many new effects and con 
record accompaniement to enhance the 
performance. 

The Mountain Computer synthesizer cords hove 
far more capability than has been exploited by the 
present software. Sixteen oscillators may be a 
limitation for performance with exotic instruments, 
but much can be done with this hard ware and 
many more powerful digital synthesizers are likely 
to become available. While performance 
instruments may still be in their infancy, anyone 
interested in the design of keyboards, digital 
hardware or software in connection with these new 
instruments should find many stimulating 
possibilities available. 





NOISE IN REAL TIME DIGITAL SOUND GENERATION 

A.C. Ashcraft, F.H. Covitz and K.A. Sproul 

A B S T R A C T 

This paper discusses the most 
im~ortant software sources of digital 
noise in sounds generated by the cyclic 
table look up, Digital to Analog Converter 
(DAC) method of sound synthesis. These 
sources are: 1) Quantization, 2) Trun
cation, and 3) Interpolation. The rela
tive importances of these sources are 
discussed as they are affected by system 
parameters such as the number of bits 
available to represent amplitudes in the 
waveform tables, the number of bits which 
can be converted by the DAC, the number of 
entries in the waveform tables, whether or 
not interpolation is possible, and the 
accuracy of the interpolation if it is 
possible. In this paper we propose a 
partly hardware, partly software technique 
for doing linear interpolation in real 
time synthesis. We describe the residual 
digital noise of this technique, as well 
as the minimization of this noise by 
trade-offs between quantization noise, 
interpolation noise, memory usage and 
sampling frequency. 

SOUND SYNTHESIS 

The digital sound synthesis procedure 
which is the basis for the following 
discussion is the cyclic table look-up/DAC 
method. Our first implementation was with 
a 6502 machine language program which 
pre-computes sets of 256 byte waveform 
tables by additive Fourier synthesis. It 
then uses these tables for real time 
generation of waveform amplitudes by 
cyclic table look-up. A double precision 
frequency increment is added to a double 
precision table pointer for each voice in 
order to maintain pitch accuracy, however 
only the integer part of the table pointer 
is used to look up the waveform amplitudes 
(ie, no interpolation). An 8-bit DAC, a 
low pass filter, and an audio amplifier 
are the only sound generation hardware 
required. This program plays four part 
instrumental music with a sampling 
frequency of a.a khz. The program and its 
evolution have been described in detail in 
references 1-3. 

An improved implementation is de-

82CH1831-7/82/0000/0005$00.75 © 1982 IEEE 
5 

scribed in the present article. It 
consists of a 68000 machine language 
program which runs on the MTU-130 computer 
equipped with MTU's 256k memory board 
containing a Motorola 68000 16-bit 
microprocessor. The added hardware for 
sound synthesis consists of two 12-bit 
multiplying DAC's, two 8-bit DAC's and a 
low pass filter. This new system will 
also play four part instrumental music in 
real time, however, it has a sampling 
frequency of 22 khz and does linear 
interpolation, resulting in a greatly 
improved high frequency response and 
signal to noise ratio compared with our 
earlier implementation. 

DIGITAL NOISE 

1) Quantization 

The most fundamental software source 
of noise in digital sound synthesis is due 
to quantization. This noise reiults from 
the representation of a continuous analog 
variable, sue~ as a waveform amplitude, by 
a binary integer having a precision 
limited by the number of bits. Quan
tization noise is quite serious in real 
time sound synthesis using the cyclic 
table look-up procedure because time and 
memory constraints generally make multiple 
precision operations out of the question. 
Until recently, all microcomputers in 
general use had an 8-bit data bus.· This 
has limited single precision operations to 
an accuracy of +-1/2 part in 256. The 
signal to noise ratio expected from this 
inaccuracy is 512:1. Expressed in dB this 
is: 

s/n = 20*log(512) = 54.2 dB 

In general, the signal to noise ratio 
due to quantization is given by the 
formula: 

s/n = 20*(n+l)*log(2) 

Or approximately: 

s/n = 6n+6 

where n is the number of bits used to rep
resent the number. 



2) Truncation 

The noise figures arrived at in the 
foregoing discussion are misleading if one 
goes no further with the analysis. Even 
if individual values in the waveform 
tables are accurate to the specified 
number of bits, and the DAC used has 
sufficient precision to reproduce these 
values as analog signals, the final result 
will be inaccurate if the fractional part 
of the table pointer is ignored. This 
error, called truncation error, results 
because successive entries in the tables 
can easily differ by more than one unit, 
particularly if higher partials are 
present. If one ignores the fractional 
part of the pointer and takes the lower of 
the two table entries on either side of 
the true pointer location, an erroneous 
waveform amplitude can result which 
differs from the true value by many times 
the quantization error. 

Consider the rather brief 8-bit sine 
wave in table I and its graphical 
representation in figure 1. This table 
consists of sixteen equally spaced values 
scaled to cover the full amplitude range 
of 0 to 255. The amplitude returned from 
this table as a result of ignoring the 
fractional part of a table pointer having 
the value of 0.4 is 128 {as if the pointer 
had been 0.0), rather than the correct 
value of 148. This is the maximum error 
which can result from the use of this 
table. If the pointer had been 4.4, a 
value of 255 would have been returned 
rather than the correct value of 253. 

Table I 

Pointer Amplitude Po inter Amplitude 
0 128 8 128 
1 177 9 79 
2 218 10 38 
3 245 11 11 
4 255 12 1 
5 245 13 11 
6 218 14 38 
7 177 15 79 

The calculated RMS signal to noise 
ratio {s/n) resulting from truncation of 
the fractional part of the pointer is 19 
dB for this size sine wave table, a far 
cry from the 54 dB expected from 
quantization at the 8-bit level. If the 
table had contained a more realistic 
number of entries, say 256, the s/n would 
have been 43 dB. A sine table with 1024 
entries results in an s/n due to 
truncation of 55 dB, which when combined 
with 8-bit quantization results in an 
overall s/n of 48.5 dB. Table II shows 
that each quadrupling of the table size 
results in an improvement of the s/n due 
to truncation by about 12 dB. 

6 

Number of 
Table Entries 

16 
64 

256 
lk 
4k 

16k 
infinite 

Table II 

Truncation 
s/n, dB 

19. 2 
31.1 
43.0 
55.1 
67.2 
79.1 

infinite 

Overall 
s/n, dB 

19.1 
30.5 
40.9 
48.6 
52.5 
53.7 
54.2 

However, the overall effect, including 
quantization noise, approaches one of 
rapidly diminishing returns for increased 
use of memory for waveform tables larger 
than lk. These RMS s/n calculations were 
done using a BASIC program published by H. 
Chamberlin on p. 394 of reference [4]. 
The program is also capable of RMS s/n 
calculations on arbitrary waveforms 
calculated by Fourier synthesis. In the 
reference, results are given for a sine 
wave as well as a complex wave containing 
2nd, 3rd, 5th, 8th, 11th, 14th, and 17th 
partials of equal intensity. For this 
report, we have used four representative 
waveform types to cover a wider range of 
timbre effects: 

Type 1: 
m 

A= I: Sin {nx) 
n=l 

Type 2: 
m 

A= L 1/n Sin {nx) 
n=l 

Type 3: 
(m+l)/2( 1 ) 

A= L --Sin { [2n-l]x) 
n=l 2n-1 

Type 4: 

{m+l)/2( 1 )2 
A= L --

n=l 2n-1 
Sin([2n-l]x) 

where n is the partial number and mis the 
maximum partial number. Figure 2 shows 
the appearance of a few waveforms from 
each type. 

The type-1 waveforms are the richest 
in timbre and the hardest to generate ac
curately if one ignores the fractional 
part of the wave table pointer. The 
type-4 waveforms have the softest timbre 
and are the easiest to approximate. 
Type-3 waveforms approach the square wave 
as n becomes large and type-2 waveforms 
approach the sawtooth waveform. The 
type-2 waveforms are probably the most 
typical of those needed to create musical 
instrument sounds, and are used exten
sively in the discussion and examples to 
follow. 



Figure 3 shows how truncation noise 
varies with the table size and timbre of 
the waveform. The results for the type-2 
waveform are fairly accurately fit by the 
equation: 

s/n = 19. 9 log (size) -7 log (m) -4. 7 (dB) 

The s/n frequency response of the type-4 
waveforms is almost flat, and that of the 
type-1 waveforms rolls off more rapidly 
than that of the type-2 and -3 waveforms, 
between 3 and 5 dB/octave. The type-3 
waveform response (not shown) is very 
similar to that of the type-2, about 2 
dB/octave roll-off. 

Figure 4 shows the combined effects 
of 8-bit quantization and truncation hoise 
for the type-2 type waveforms as a 
function of table size and maximum partial 
number in the Fourier series. We are 
faced with diminishing returns for 
building larger and larger waveform 
tables. Note that the 256 byte example 
represents the performance of the program 
of reference [3]. 

3) Interpolation 

The only way out of this difficulty 
is to face up to the necessity of 
interpolation between successive entries 
in the waveform tables, making use of the 
fractional part of the waveform table 
pointer. For the sake of computational 
simplicity, let us consider linear 
interpolation. 

If amplitudes Al and A2 are 
successive table entries in a waveform 
table, and the table pointer is between 
them, ie, the integer part points to Al 
and thefractional part of the pointer, F, 
is not zero, then the linearly 
interpolated amplitude A is: 

A =Al+ F(A2-Al) 

Implicit in this formula are two table 
look-up operations (with an index 
increment between them) to get Al and A2, 
a subtraction, a multiplication, and 
finally an addition rather than the single 
table look-up required for the truncation 
procedure used in the computer program of 
reference [3]. The subtraction may be 
avoided if a separate table of delta A 
values (D) is precomputed and stored in 
memory for access by the same index used 
for Al: 

D A2 - Al ,precomputed 

A Al + F• D 

This operation still requires two table 
look-up operations, a multipication and an 
addition. Let us assume for the moment, 
however, that the computations can be 

7 

accomplished quickly enough for real 
music synthesis. What is the gain in 
as a result of linear interpolation? 

time 
s/n 

The RMS noise calculation program in 
ref. [4] was modified to return waveform 
amplitude values obtained by simple linear 
interpolation rather than truncation. The 
results obtained for a type-2 waveform set 
are shown in figure 5. 8-bit quantization 
noise corresponding to a s/n of 54.2 dB 
has been added to the calculated values to 
make easy comparison with figure 4 
possible. Note that if linear 
interpolation in a table of only 256 
entries is used, the results are as fully 
accurate as if a table of 16k entries had 
been used with truncation. Similar 
results quantized for a 12-bit amplitude 
are also shown. The results of linear 
interpolation in waveform tables of 
reasonable size are obviously good enough 
for 12-bit audio purposes. Quadratic and 
higher forms of interpolation are not 
necessary. 

SOFTWARE INTERPOLATION 

1) 6502 Software 

If a 6502 microprocessor is used, the 
additional indexed table look up can be 
combined with the addition and requires 
only 5 psec. However the multiplication 
in a machine code algorithm could take as 
more than 100 µsec, and worse yet, the 
time would be variable, depending upon the 
bit pattern of the factors. For a four 
voice system the sample time will 
therefore increase from the reasonably 
effective 114 psec of the program of ref. 
[ 3] (which has a Nyquist frequency of 4. 4 
kHz) up to a ponderous 500 µsec or so. 
This would result in a decidedly lo-fi 
Nyquist frequency of 1 kHz even if the 
variable loop time were fixed using a FIFO 
buffer to give a stable sampling rate. 
The high frequency response could be 
partially restored by going to a single 
voice system, but this is not musically 
interesting enough to support the effort 
it would entail. 

For delayed playback systems, neither 
the. variability nor the reduced speed are 
of consequence, and just this approach was 
used for the demonstration given by H. 
Chamberlin at the IEEE sponsored 1981 
Symposium on Small Computers in the Arts 
[5]. A 6502 machine language program 
running in a 1 mHz Rockwell AIM was used 
to calculate 12-bit samples at a rate of 
about 500/sec on the average. At this 
rate, time was available for not only 
interpolation between table entries, but 
also interpolation between waveforms, and 
other effects such as reverberation. The 
samples were stored on floppy discs as 
they were generated for later playback 



with a very fast disc operating system, a 
FIFO, and low pass filter at a sample rate 
of 25 kHz. 

Although the performance of the above 
system was excellent, the challenge still 
remained: could the improved s/n which 
results from interpolation be realized in 
a real time music synthesis system in a 
small computer? A member of the new 
generation of 16-bit microprocessors may 
provide the increase in computing power 
necessary: the Motorola 68000. 

2) 68000 Software 

The 68000 is fast. Consider a 
typical software operation such as "look 
up a value from a table, and store it to a 
port". It looks like this in 6502 
assembler code: 

LOA (Pointer),Y 

STA Port 

"Pointer" is low byte 
of 16 bit zero page 
pointer, Y = 0 
Absolute address of 
output port is used 

and takes 9 microseconds in an ordinary 1 
mHz 6502. The same operation in 68000 
assembler code takes only one instruction: 

MOVE.W (A0), (Al) "Pointer" is stored 
in register A0, 
"Port" in Al 

This instruction takes 1.5 microseconds in 
an "ordinary" 8 mHz 68000. Note also that 
the 68000 MOVE.W instruction moves a 
16-bit word from a table of 16-bit values 
to the port, not an 8-bit byte (as was the 
case for the 6502). A MOVE.L instruction 
would have moved a 32-bit long word from 
the table to a 32-bit port in 2.5 
microseconds. In addition to this 
speed-up of ordinary operations, the 68000 
has a multiply instruction which takes a 
maximum of 8.5 microseconds to multiply 
two 16-bit numbers and generate a 32-bit 
product, and a divide instruction which 
takes 17 microseconds. Unfortunately, the 
exact timing of these instructions is a 
function of the bit pattern in their 
operands. 

The following code fragment is an 
example of what might be written in 68000 
assembler language to implement linear 
interpolation in a sound generation 
program. The program assumes the existence 
of 256 entry tables of 32 bit long-words, 
each entry having the waveform amplitude 
in the high order word and the difference 
to the next entry amplitude in the low 
order word. INCR is a frequency increment 
which is added to the permanent voice 
pointer in Dl. The integer part of the 
waveform pointer eventually ends up in A0. 
D0 and D7 are used as scratch pad 
registers, and A0 is used as an indirect 

8 

address register for the table look-up. 
Both the amplitude and the difference to 
the next entry are moved to D0 by this 
operation. After the fractional part of 
the pointer (bits 10-18) is moved into D7, 
it can be multiplied by the difference 
contained in the low order word of D0, and 
finally added to the amplitude for storage 
to the 12-bit DAC. The cycles given are 
8-mHz clock cycles. Each voice requires a 
maximum of 198/8 or 24.75 psec. per sam
ple. 

ADDI.L 
ANDI.L 
MOVE.L 
ANDI.L 
SWAP 
MOVE.L 
MOVE.L 
MOVE. L 
ASR.L 
ANDI.L 
MULS 
ADD.L 
MOVE.L 

UNCR, Dl 
fFBFFFFFF,D1 
D1, D0 
t03FC000F,D0 
D0 
D0, A0 
DISP(A0),D0 
D1, D7 
12, D7 
t0000FF00,D7 
D0, D7 
D0, D7 
D7, (Al) 

;Advance pointer 16 
;Mask off bit 26 16 
;Put in Scratch-pad 4 
;Mask off fract. 16 
;Swap words in D0 4 
;Put pointer in A0 4 
;Ampl.,slope in D0 16 
;Frac. in D7 4 
;Shift to lo-word 12 
;Mask off lo-byte 16 
;Multiply <70 
;Get corr. Ampl. 8 
;STORE TO PORT 12 

Total cycles/voice=<198 

A 4-voice program using the above 
fragment would have a Nyquist frequency of 
5kHz, not much higher than the 6502 
program of ref.[3]. However a more 
serious flaw is the lack of predictability 
of the cycle time caused by the MULS 
instruction. Such a program could only be 
used in a delayed playback system or in a 
system equipped with a First In First Out 
(FIFO) buffer having enough capacity to 
smooth out the timing irregularities of 
the program. 

HARDWARE INTERPOLATION 

1) Software Considerations 

Since additional hardware seems to be 
inevitable, what about the possibility of 
doing the interpolation itself in 
hardware? In the 68000 program of the 
preceding section, all of the quantities 
needed for interpolation appeared in 
registers or in a memory move. operation. 
The fractional part of the table pointer 
was in data register 00, and both the 
waveform amplitude and the difference were 
retrieved together with the "MOVE.L 
DISP(A0), D0" instruction. Suppose that 
the MOVE.L instruction were directed to 
store the 32-bit long word directly out to 
a port rather than to 00, and that the 
fractional part of the pointer were 
similarly moved out to another port. 
Latch hardware could insure simultaneous 
delivery of all the information to a group 
of multiplying DAC's and op-amps designed 
to perform the interpolation math. The 
68000 program fragment accomplishing this 



is considerably simpler than the earlier 
one, and much faster. In this progr am, 
each voice would require only 10 ~sec. per 
sample with an 8 mHz 68000. A four voice 
play loop based upon this fragment would 
have a sampling frequency of 24.39 kHz: 

ADDI.L 
ANDI.L 
MOVE.L 
MOVE. L 
ANDI.L 
SWAP 
MOVE.L 
MOVE. L 

fINCR, Dl ;Advance pointer 16 
D7, Dl ;Mask off bit 18 8 
D1, (A2) ;Frac. to PortA 12 
D1, D0 ;Pointer in Scratch 4 
D6, D0 ;Mask off Frac. 8 
D0 ; Swap words in D0 4 
D0, A0 ;Put Pointer in A0 4 
DISP(A0),(Al};Amp,Slope to PortB 24 

;Total cycles/voice=80 

2) Interpolation in the Presence of 
Several Sources of Quantization Noise 

Before considering the hardware 
requirements for interpolation in detail, 
let us first consider the s/n ratio 
consequences of analog interpolation based 
upon signals each of which contain 
quantization noise. Both the amplitudes 
in the waveform tables and their 
associated differences are limited in 
precision to 16 bits by the 68000 and 
probably to 12 bits by considerations of 
cost and practicality. Similarly, the 
fractional part of the waveform pointer 
has a limited precision, possibly as low 
as 8-bits. If the program used earlier 
for analysis of s/n due to the 
inaccuracies of linear interpolation were 
modified to round off all values to their 
expected accuracy, the RMS s/n could be 
directly determined. The BASIC program 
listed in the appendix was designed to do 
this. Note that 100 trials were used in 
most of the results reported here rather 
than 1000 trials as recommended in ref 
[4]. A comparison of selected results 
based on 1000 trials showed that 100 was 
adequate. See Figure 6. 

The program allows easy study of the 
trade-offs which must be made between 
table size and the number of bits 
allocated to the parameters which are to 
be brought together in the DAC circuitry. 
In the figures the table size and number 
of bits allocated to the parameters are 
given in the form S/a/d/f, where "S" is 
the number of entries in the waveform 
tables, "a" is the number of bits in the 
amplitude, "d" bits in the difference, and 
"f" bits in the fractional part. Thus 
256/12/12/8 means a 256 entry table of 
12-bit amplitudes and differences, with an 
8-bit fractional part. 

Note that if the sum of a and d is 
16, then the table can be made up of 
composite 16-bit words, taking only half 
the space for given number of entries, and 
the MOVE.L DISP(Al),(A0) can be changed to 

9 

a MOVE.W instruction, saving 1 µsec. per 
voice. If d < a, the program assumes that 
the least significant bit (LSB} of each 
number has the same significance level. 
When differences between two successive 
table entries exceeds the range of a 
number having b bits, the table value of 
the difference is limited at the value 2 
raised to the power d-1. This introduces 
noise, but only for waveforms containing 
harmon~s above a certain point. The 
alternative procedure (scaling the 
difference values so that they could cover 
the full range of amplitude differences, 
even though with less precision}, results 
in the quantization noise of the 
difference values dominating the overall 
s/n. The latter procedure results in more 
noise over the whole sound spectrum and is 
thus less desirable. 

Let us investigate this space saving 
possibility first. Figure 7 shows a 
graphical comparison of the s/n 
performance of three members of the 
256/n/16-n/8 family. The 256/8/8/8 has 
the best overall performance, although for 
waveforms containing only the 1st, 2nd and 
3rd partials, the 256/10/6/8 system is 
better, limited only by the 10 bit 
quantization. The 256/12/4/8 system is 
useless, even worse than the 
256/8-truncation case. It fails because 
of the insufficient range of a 4 bit 
number (+-8} to represent successive 
differences in a 12 bit table of waveform 
amplitudes. 

Figures 8 and 9 show the corre
sponding members of the 512 and 1024 entry 
families. 10-Bit performance can be 
obtained from the 512/10/6/8 system up to 
the 9th partial in type-2 waveforms 
(sawtooth). The 1024/10/6/8 system is 
even better, showing almost flat s/n 
response out to the 17th partial for the 
sawtooth waveform. Neither the 512/12/4/8 
nor the 1024/12/4/8 systems are useful. 
12-Bit performance is unattainable until 
table size is much bigger, at least 8k. 

If we abandon the hope of using 
16-bit tables, we find that 10-bit 
performance is easy to achieve with small 
numbers of table entries, and that 12-bit 
performance is possible. Figure 10 shows 
the results of our analysis of the 
n/12/12/12 cases where n = 256, 512, 1024, 
and 2048. For clarity's sake only the 
results for the type 2 (sawtooth} 
waveforms are shown. Also shown for 
comparison purposes are the 256/8/8/8 and 
the 256/8-truncation cases. Note that the 
256/12/12/12 system does better than 
10-bit quantization out to the 7th 
partial. The s/n rolls off at about 8 
dB/octave above that. The 512 entry case 
does as well out to the 20th partial, and 
the frequency response of the 1024 entry 
case is practically flat, approaching 



12-bit quantization out to 
partial 

the 20th 

The 256/12/12/12 case is a very 
attractive one to consider for an improved 
digital sound generation system based on a 
68000 processor on the MTU 256k memory 
board: 

a) It is conservative of memory Each 
waveformrequ1res 1024 bytes of .inemory. 
If 32 waveforms were allocated to each 
instrument for dynamic timbre effects, 
256k allows 7 complete instruments with 
32k left over for program and song data 
files. The 512 entry system would 
significantly restrict the range of 
instrumental effects which could be 
achieved while only resulting in a modest 
incremental improvement in s/n. 

b) It represents a significant improve
ment in performance The 15 to 30 dB 
improvement 1n s/n and the threefold 
improvement in Nyquist frequency is a very 
significant improvement in musical 
capability compared with our earlier 
efforts [3]. 

A few additional runs on the s/n 
program showed that 8 bits of information 
was sufficient for the fractional part. 
The 256/12/12/8 system is cheaper to 
implement, needing one less 12 bit DAC, 
and the performance shown in figure 11 is 
more than adequate. This is the system we 
decided to try. 

3) Interpolation DAC Circuit Design 

The circuit is designed around a set 
of memory mapped latches feeding data to 
12-bit multiplying DAC's (AD7541) for the 
waveform amplitudes and table difference 
values (Al and D), and 8-bit multiplying 
DAC's (AD7523) for the fractional part of 
the waveform pointer and overall gain 
control (F and G). Operational amplifiers 
are used to convert the 12-bit DAC outputs 
to bipolar voltages and to convert the 
8-bit DAC outputs to unipolar voltages for 
the fractional part of the waveform 
pointer and the gain control. One of the 
12-bit DAC's forms the product of the 
fractional part and the table difference, 
using the analog voltage derived from the 
8-bit fractional part DAC as its 
reference. The reference voltage of the 
8-bit fractional part DAC in turn is 
supplied by the unipolar analog output of 
the 8-bit gain DAC, which also supplies 
the reference to the 12-bit amplitude DAC. 
Another op.amp. sums the analog voltages 
corresponding to the waveform amplitude 
and the product of the fractional part and 
the table difference, giving the 
interpolated amplitude. The voltage 
emerging from the summing amplifier 
depends upon the digital outputs Al, D, F, 

IO 

and G from the 68000 program in the 
following way: 

V= -. S [(Al-2048), G 

2048•256 

• 
(D-2048)• F•G l 

• Vr 
2048•256•256 

Except for the minus sign between the 
terms, the above formula has the correct 
form for interpolation. If, when the 
waveform tables are computed, one calcu
lates the value stored in the low order 16 
bits of each 32-bit table entry by 
subtracting the next higher table 
amplitude from the current one (let D' = 
A~-A2 rather than A2-Al), the resulting 
difference, D'= -D, will give correct 
interpolation using the above formula. 

The circuit diagram for the 
interpolation DAC is shown in figure 12. 
The output of the final summing amplifier 
is fed into a sharp low pass filter having 
a flat response out to 9.5 kHz. This 
filter is described on p 377 of reference 
[ 4 l • 

BIBLIOGRAPHY 

[1]. H.Chamberlin, "A Sampling of 
Techniques for Computer Performance of 
Music", BYTE Magazine, Sept.,1977 

[2]. H.Chamberlin, "Advanced Real-Time 
Music Synthesis Techniques", BYTE 
Magazine, April, 1980 

[3]. F.H.Covitz and A.C.Ashcraft, 
"Analysis and Generation of Complex Sounds 
Using Small Computers", p. 33, Proceedings 
of the IEEE Symposium on Small Computers 
in the Arts, Nov. 20-22, 1981. 

[4]. H.Chamberlin, "Musical Applications 
of Microprocessors", Hayden Book Co. inc., 
Rochelle Park, N.J., 1980. 

[SJ. H.Chamberlin, "Delayed Playback Music 
Synthesis Using Small Computers", p. 27, 
Proceedings of the IEEE Symposium on Small 
Computers in the Arts, Nov. 20-22, 1981. 

APPENDIX 

BASIC Program for Calculation of Signal 
to Noise Ratio In the Presence of 
Multiple Sources of Quantization Error 

10 REM INTERPOLATION ERROR 
20 DIM J(4),ll(4) 
25 DIM DC4,21) 
30 REM WAVE TYPE DEFINITIONS 
32 LET J(1>=1 
33 LET ll(1)=0 
34 LET J(2)=1 
35 LET ll<2>=1 
36 LET J(3)=2 



37 LET Q(3)=1 
38 LET J(4)=2 
39 LET Q(4)=2 
110 REM tTRIALS 
112 LET F:=100 
120 REM tENTRIES IN TABLE =·N 
122 FOR B=8 TO 12 
124 LET N=2-B 
130 REM BITS TO DAC =DAC 
132 FOR Dl =8 TO 12 STEP 2 
134 LET Xl=r <Dl-1 > 
140 REM BITS TO SLOPE =D2 
141 LET D2=16-D1 
142 LET X2=2-<D2-1) 
143 REM BITS TO FRACT, PART = D3 
144 LET D3=8 
150 PRINT N;'/';D1;•1•;D2;•1•;D3 
155 LEf D3=D3-8 
700 LET P1=2*3,14159 
800 LET P2=,314159 
1005 REM SELECT WAVE-TYPE 
1006 FOR W=l TO 4 
1010 LET Jl=J(W) 
1011 LET Ql,.,Q(IJ) 
1012 LET W1$=W$(1J> 
1020 FOR H1=1 TO 21 STEP 4 
1028 REM FIND MAXIMUM VALUE OF WAVEFORM 
1030 LET S1=0 
1033 LET Nl=,5 
1034 LET N2=2/N 
1035 FOR T=O TO Nl STEP N2 
1040 GOSUB :!000 
1042 LET S=ABS<S> 
1050 IF S<=Sl THEN 1055 
1051 LET Sl=S 
1055 NEXT T 
1060 F=Xl/Sl 
1110 REM Ml=MEAN OF IDEAL 
1120 LET tH=O 
1121 LET M2=0 
1122 LET Tl=O 
1130 FOR I=l TOR 
1140 LET T1=T1+P2 
1150 IF Tl<l THEN 1160 
1155 LET T1=T1-1 
1160 LET T=T1 
1161 GOSUB 2000 
11 70 I FT S=S*F 
1180 LET Ml=Ml+S 
1190 LET Sl=S 
1191 REM Sl IS IDEAL AMPLITUDE 
1195 REM LINEARLY INTERPOLATED AMPLITUDE 
1200 GOSUB 3000 
1210 LET M2=M2+(Sl-S) 
1220 NEXT I 
1300 LET Ml=Ml/1000 
1310 LET M2=M2/1000 
1400 REM Vl CS SIGNAL POWER, V2 IS NOISE 
1410 LET Vl=O 
1411 LET V2=0 
1412 LET Tl=O 
1420 FOR l=l TOR 
1430 LET T1=Tl+P2 
1440 IF Tl<l THEN 1450 
1445 LET Tl=Tl-1 
1450 LET T=Tl 
1460 GOSUB 2000 
1461 LET S=S*F 

ll 

1470 LET Vl=Vl+(S-Ml>*<S-Ml) 
1480 LET Sl=S 
1481 GOSUB 3000 
1510 LET V2=V2+((Sl-S>-M2)-2 
1520 NEXT I 
1600 LET D(IJ,H1)=4,3429*(LOG(Vl>-LOG(V21) 
1605 LET DIW,H1>=INT(10*D<IJ,H1>+,51/10 
1800 NEXT Hl 
1810 NEXT IJ 
1812 FOR IJ=l TO 4 
1813 PRINT w;; 
1814 FOR Hl=l TO 21 STEP 4 
1815 PRINT D(W,HlJ; 
1816 NEXT Hl 
1817 PRINT 
1818 NEXT IJ 
1820 NEXT Dl 
1830 NEXT B 
1999STOP 
2000 REM COMPLEX WAVEFORM GfNERATOR 
2050 LET A=P1*T 
2060 LET S=O 
2100 FOR H=l TO Hl STEP Jl 
2110 LET S=St(l/H)-Gl*SIN<H*A) 
2120 NEXT H 
2200 RETURN 
~000 LET T=<INT<N*Tl)/N) 
3010 LET T2=INT<N*Tlt1)/N 
3020 LET T3=INT(,5tD3*CT1-T>/(T2-T>>ID3 
3040 GOSUB 2000 
3050 LET S2=INT<,5+S*F> 
3060 LET T=T2 
3070 GOSUB 2000 
3075 LET S=INT<,5+S*F> 
3080 LET D9=S-S2 
3090 IF D9<-X2 THEN3115 
3100 IF D9<X2 THEN 3120 
3110 LET D9=X2 
3112 GO TO 3120 
3115 LET D9=-X2 
3120 LET S=S2+T3*D9 
3130 RE.TURN 
3140 GOSUB 2000 
9999 END 

Some Results for the S/n/16-n/8 Cases 
for S=256 
and for n=B,10 and 12 

256 / 8 / 8 / 8 
1 52,1 46,2 44 41,4 38,5 36,4 
2 52,l 50,7 47,5 48,9 49,3 47,1 
3 52,1 53,3 ~2.2 
4 52,l Sl,3 52,3 
256 / 10 / 6 / 8 
1 63,2 40,1 28,7 
2 63,2 49,3 36,2 
3 63,2 51,5 39,3 
4 63,2. '66,2 64,7 
256 / 12 I 4 / 8 

53,5 50,8 
53 5~~.7 

50,9 
52,6 

23,1 19,4 17,4 
32 29,7 28,1 
35,6 33,5 32,1 
63,4 63,8 63,5 

l 39 27,1 22,5 18,7 16 14,3 
2 39 31,9 29 27,3 26 25,1 
3 39 33,9 31,8 30,6 29,7 29 
4 39 38 37.9 37,9 38 38 



l 
Q) 

"O 
::, 
!:: 
Q. 
E 
<( 

i::i 

I 
C!l 
"O 

0 

"' a: 

" "' 
0 
z 

~ 

~ 
C 
CJ) 

Cl) 

256 

160 

128 

96 

64 

32 

0 
0 

..... True Value 

4 8 12 

Entry No.__... 

I 
: 

16 

Figure 1) 8-Bit Sine Wave Table 
of 16 Entries 

4 o g 6 : i I : I '..J , I ~4 
- --

60 

50 

40 

30 

20 

2 4 8 16 

Maximum Partial Number-

Figure 3) Effect of Table Size on 
Truncation Noise 

!, 
:! 

ri 0., 

: :/ ;;i ~ 
} 
i,•i ,; r--, ~ ' 
, .. ,. I \ ·~ .... , •::-,,.~. •'' ,•, .... _.,,.,,,.,.,:! 
Ii uv-,i\:::)'vvryev~ ' 1,;;,.~ 

. I 'T 
\ ~: 

\ /:: 
'' 
'. I'' I ,, ' ,, ,, '· ...., '• ,, 
'• 

~i 

Figure 2a) Type-1 Waveforms, m=3,20 

f, .. ,wV'..," (~,\{:: ;· :, // . ., ., ··<-:.Y'· .. -· ; ·1 > ' : : . ' 
; : 
i I ' 
,l/ 
;I 

I 

t\ . Ii . , . ' . 
: .· 
: ~ I : : I : 

: ' ✓,...--..\, /, .. : 1 
i I _.. ~ •°': I• : • 

', I ,~ .. ··.f·· .,r,..,.. ,... 'l' ! : ::' \J \ l ::' :.· ' '--'.. . 

Figure 2c) Type-3 Waveforms, m=3,19 

::.v-~\ 
,: ;_.-1·_.._ \ 
; ....... ,\ 
' , I 
! I '.\ '/ ·, 

i ~~---·1 '• ... \ .: \1, a . i ' 
1-- -- ~-\ .• , ? 

\.::_:::...,_\ I i ', I: '·• I . 
\.. I i 

\\ / : -~ ' . ' . 
' ' \ \·\• . : 

, \ ,.r:,-'\: 
'- . ·;_; 

~ 

Figure 2b) Type-2 Waveforms, m=3,20 

~ ;·' \, 
/ \ 

·)~ I• 

i ' ~ . 

\~ 
··-·· 

Figure 2d) Type-4 Waveforms, m=3,19 



l--- _ T ___ I_ -C.:dua\~~~~i;~) : I, J r1. -· 
-----i,'.-~ --;-----------'-,16k- ;-·r 

50 -+---- ' k I 
! 

(D 

-a 4o'F.,,,.,--:--:--k:;::1:'~~-t 
0 

"' 0: 

~ 30r7~F";t==tS~l=;tl11t 
0 
z 

"' C: 

"' 
C/) 

2 4 

' : ' . ' 

: I 
8 16 

Maximum Partial Number

Figure 4) Combined Effects if 8-Bit 
Quantization and Truncation 

(D 
'O 

~ 
<J) 

60 

~ 40 
j:: 
0 
0 

30 - -• ' I ---•--•-----------+-~- , ______ ' -
I : • 

' ' . : - ------, , -+--~~- . 

30 40 50 60 

1000 Trial sin, dB -

Figure 6) 100 Trials vs 1000 Trials 
for RMS s/nCalculations 

60 

ca 
'O 

0 50 

"' 0: 

" "' 
0 40 
z 

2 
.; 

30 C: 

"' 2 4 8 
C/) 

16 

Maximum Partial Number~ 

Figure 8) Performance of the 
512/n/16-n/8 Cases of 
Multiple Quantization 

13 

70 

. ; , j . 1k : 

I : I , 
' :ti - ,·---

' 
' ' i 

60 6 - ! ____ ' 

(D 
'O 

I 
I 

0 50 s__~I-~ -"' ;; 
0: . 

;; 

" <J) 

0 40 
z 

2 
.; 

30 C: 
C) 

C/) 
• I • • 

20 
It~~-~~~~ : :_~: ! 

u-a~t1z·at1or~- I - ·- I 

---Tr~ncatlon :. l 
I ' 

2 4 8 16 

Maximum Partial Number

Figure 5) Residual Noise from Linear 
Interpolation Combined with 
8 and 12-Bit Quantization 

2 4 8 16 

Maximum Partial Number---.. 

Figure 7) Performance of the 
256/n/16-n/8 Cases of 
Multiple Quantization 



70 

GO 

ro 
" 
0 GO 
:;; 
a: 

" "' 
0 40 
z 

2 

"'WS,'' : T ' i j c, ~o~-~.1 
1 i li ~ 30 C: 

"' 
---- -i-- ,-1· 

(I) ;c·r i 
20 

2 4 8 16 

Maximum Partial Number___.. 

Figure 9) Performance of the 
1024/n/16-n/8 Cases of 
Multiple Quantization 

70 

60 

ro 
-0 

0 50 

"' a: 

" "' 
0 40 
z 

2 
' 

"' 30 --------·L·--
C: 

"' 
(I) 

20 

2 4 

I j 

8 

1 
1 •. 

... 1.:: 

I 

16 

Maximum Partial Number~ 

Figure 11) Performance of the 
256/12/12/8 Case of 
Multiple Quantization 

14 

60 

~ 30 

"' 
(I) 

2 

I __ J_ 
I 

... 1 ... 

I I I 

.. , ' [ 
-~ ~ ' ' ; --

' I 
' ... - . . . 

' 
4 8 16 

Maximum Partial Number-

Figure 10) Performance of the 
S/12/12/12 Cases of 
M'tlltiple Quantization 

r 
-D 
l,, 

Figure 12) Interpolation DAC 
Circuit Desiqn Schematic 



SONIC SET THEORY; A TONAL MUSIC THEORY FOR COMPUTERS 
----------------------------------------------------

Tools for Alsorith111ic C0111Position 

With an Alsorith111 for Chord Selection for Dessert 
------------------------------------------------

bs Laurie SPiesel 
175 Duane St,, NYC, rlY 10C13 

Ausust, 1982 

For 11,illenia, hu11ans have wanted to be able to liste,; 
to the music of numbers, Psthasoras, with his •music 
of the SPheres", and KeP ler, in his • harmons of the 
Planets" idea are the two intellectual adventurers 
who have most insPired us to this ideal, With 
computers, we can at last listen to n'umber as 111usic, 
create music as number made audible, But desPite 
these lons sousht and newls arrived pleasures, we 
also want to use the tools of math and losic to 
create music meaninsfui in the same wass that 
traditional music has been, We wish to do so in 
order to expand the realm of music in an evolutionars 
111anner, to malie the Pleasure of it's creation easier 
and accessable to more peoPle, and to studs and 
better comprehend its effect on us, to heishten our 
self-awareness and self-understandins, 

Alsorith111ic music 

We can separate alsoriihn,ic music into four main 
tendencies, The first of these is the sonic 
embodiment of extra-musicalls derived relationships 
(mathematical, visual, or Phssical), KePler's idea, 
and translations into sound of iut.hematical series 
(Prime numbers modulo 12, etc,) furnish sood examPles 
of this first-r,entioned trend, 

The second tendencs consists of attempts to extend 
the boudaries of what we Know as music, to extend thi 
areas of the imasination and its Products which we 
are able to experience in cow,mon, This can be 
e>:emP li fied bs Xenakis's stochastic techniGues, 

The third is the descriPtion and composition bs rule 
of structures derived from the studs of traditional 
music, such as Hiller's ILIAC suite, Such work would 
include simulation Pro!lrams which 111isht do such 
thinss as create melodies asainst siven chords, or 
conversels, or senerate music in a particular slsle 
fro111 nothins but rules, One soal here is the 
develoPment of easier, more economical wass of 
describins larsfe nur,bers of musical events, 

The fourth trend in alsorithmic composition would be 
the musical analos of artificial intellesence 
research, Musical "AI" misht tr11 to senerate all the 
musical possibilities for a siven situation and then 
"filter" out (bs losical constraints) eversthins that 
won't "worli" musicalh1, S\lstems of such rules and 

82CH1831-7/82/0000/0015$00.75 © 1982 IEEE 
15 

con~tr~ints would evolve, !lraduall11, as embodiments 
of our self-understandins, and misht tie in closels 
with research in cosnition, percePtion, information 
theors, communications or !lame theor!o, I distin!luish 
these ~omewhat overlaPPed third and fourth tendencies 
cfiiefls on the basis of their seals, the former 
Predominantls desirins to create repertoire and to 
understand music as we have known it in the past, and 
the latter Predo111inantls wishins to add to our 
self-linowledse and capabilities, 

A Co11Puter Husic Theo,•,. 

ttusic is subtle and mssterious in its wass of workins 
on us, but - UP to a Point as set to be aPProached -
i Vs workinss can be comPrehended and described, 
Different Periods have had different music theories 
and conceptual tools, intended to be useful to 
composers in creatins wor~s, and to Plasers and 
listeners in interpreitins them, SPecies 
counterpoint, solfessio, Rameau.,s theories on harmons 
and fisured bass are aon!I the most si!lni ficant of 
such tools for European r,usic, As comPuters lead us 
into new realms of creative worK in music, Providin!I 
us with new cor,Positional, elaborative, analsiical, 
and descriF·tive tools for music, we mas be able to 
benefit from a new model or theors ;,;f .nusic which 
relates better to the concepts we u~e in worKins with 
these new tools than do the music iheories of the 
Past, 

It is the Purpose of this paper to besin to furnish 
such concePtual tools, to at least scratch the 
surface of a variant of music theors ( tonal to start) 
which will fit more easil11 into the concept•al 
vocabular11 of pro!lraamins than those alreads in use, 
This besinnins theoretical revision contains little 
that is new, It consists, instead, of a wa!:I of 
orsanizin!I what we alreads understand so that it will 
becoae, hoPefulls, a bit easier to describe musical 
relationships in co«,Puter terms, The two concePts 
which it introduces to music are set theor11 and the 
idea levels of indirection, (The idea of hierarchs 
alread!:I exists in traditional music theors, 
Particular ls in the dou.ain of the,) 



Musical Freouencs Patternins is Unste,wise 

The was that freouencs is 1eaninsful in music is not 
well rePresented bs a liner sche1e of orsaniz.ation. 
You can co1Pose soundPieces within the eGUo• teaPered 
scale bs treatins it like a uniforlli, ordered, and 
unweishted set of intesers 1 to 12, but the 
structures of such works will not fit easils to the 
was the ear lliakes sense of music. Music seneralls 
llioves in units which consist of uneoual nu•bers of 
scale stePs • . J:t.:~oves iP.l.ons recosnizable ,att.erns bs 
co11on tones, coHon harr,onic content of tones, and 
bs intervals which occur within established patt.erns 
(such as chords), In addition, so•e scale aeabers 
(for exaaPle, tonic and do•inant) occur with auch 
hi•her freauencs than do others, 

In our culture, doainant Patterns consist.ins of 
uneoual intervals include tonal scales, triadic and 
other chords, and !,he ,at.terns of 111ove11ent of the 
roots of chords (which tend to be in fifths or 
thirds}. An arb1trars aat.heaaticalls derived nulliber 
seauence in base 12 aas be interest.ins to the aind, 
but. it. will be unli~els t.o be a hishls controllable 
was t.o rouse the e1ot.ions throush the aaniPulat.ion of 
ex,ect.ation in t.iu, orbs haraons or aelods, 
Eaual-st.eP auant.ization within the octave is not. how 
our 1usic is set up. 

Host 1111sic 1eaninsful to us is tonal in its 
Pat.t.ernins, not chroaatic (usins all 12 tones within 
the eaual t.e1pered octave>. The closest haraonicls 
related chords to C aaJor are not C-sharP or B aaJor, 
but. A ainor and G aaJor, Harmonic content. (internal 
freauencs ratios), not the proxiaits of freauencies, 
is what counts, 

The auestion Posed is this: How can we better deal 
with ausic's coaPlex non-unifora non-scalar 
Pat.ternins with co1Puter/1athe•atical losic1 Bs 
"better• I mean both the abandon1ent of 111ethods which 
are ineffectual in·a coaPuter lansuase context, and 
the ado,tion or 0Pti1ization of aethods and conce,ts 
which Perait us to lliake full ausical use of the 
co1Puter's uniaue capabilities. 

Sets and Subsets in Musical Freauencs 

Tonal Pit.ch collect.ions, such as chords, scales, or 
aodes, can be viewed as telliPlates which can be laid 
over the eaual telliPered scale. Such templates as we 
are about to look at for the tonal/1odal collection 
could be tried (found or invented) for ans scale 
( 11icrotonll, etc.>, or ans srouP or cluster of 
Pitches, However, for purposes of siaP licits and 
clarits, we' 11 restrict the aPPlication of this idea 
in this article to the conventional uses of the 
conventional eaual te11Pered scale. 

A te•Plate can also be resarded as a was of 
referencins a subset, of includins and excludins set 
rae111bers bs 11irtue of their relationship with each 
other rather than on the basis of I.heir sPecific 
characteristics. Tonal ausic can therefore be 

16 

considered in terms of sets and subsets, 1taPs and 
sub11aPs, or te1tPlates on teaPlates (seouencial lasers 
of pit.ch fill.ers ), 

On the first level, that of the 1ost inclusive or 
seneral set, we Posit continuous freauencs. Discrete 
Pitch collections can be viewed as subsets of 
continuous freauencs, As we select s1aller subsets, 
we coae to the eaual teaPered scale. The next. 11ost 
aeaninsful and seneral subsets include scales and 
11odes (aajor, harmonic or melodic 11inor, dorian, 
PhrsSian, lsdian, aixolsdian, aolian, Pentatonic, and 
other 1ore exotic modes), If we're dealins with 
1odal music, we 111isht so to I.he tetrachord as the 
next. 11ost r.~neralls 1eaninsful subset., For tonal 
music, we !lo to the triad. 

Triads_ are eass t.eiaPlates which can be dealt. with 
even without a aore seneral tonal t.ea,late. There 
are 4 kinds, which are easily stored as arrass of 
offsets fro• the tonic of a chord. Once wou know the 
root (or tonic) of the triad, you add these offsets, 
wh~ch are counted in t.er1ts of our standard 11ini111al 
unit, the seaitone. A aaJor triad's 2 UPPer notes 
are at offsets of 4 and 7 seaHones fro1 the tonic, 
1inor at 3 and 7, diainished at 3 and 6, and 
ausa!nted at ♦ and 8, Ans of these addends Plus a 
1ultiPle of 12 (to offset the pat.tern to other 
octaves) will sive sou a note that is in the triad. 

Here's a si1Ple exaaPle of how this idea can be used: 

REIi ArPessiate chords 
REIi ainor then 1taJor on each 
REIi steP of a risins bassline. 
REIi Works musicalls by kee,ins 
REH common tones across bass 1ove11ent. 

Diaension Et.scale( 12 * number of oct.aves) 
REH fill with Eaual Tempered scale values 
REIi for sendins to Particular hardware 

Di1ension HaJor( ♦}, Minor( ♦), Bass( 13) 

REIi create risins bnsl ine 
REIi < or sou could colliPose one) 
For I = 0 to 12 
Bass( I l = I 
Next. I 

Hiner( 0 l=O 
Hinor( 1 )=3 
Minor( 2 >=7 
llinor( 3 >=12 

llaJor( 0 >=O 
llaJor( 1 >=4 
HaJor( 2 )=7 
llaJor( 3 >=12 

REN for each scale desrett 
For B = 0 to 12 

REN arf>essiate minor chord 
For I = 0 to 3 
Note = Etscalei liass(B) + Minor( I)) 

REM Plas note here 
Nexl. I 



REN arpessiate aajor chord 
For I = 0 to 3 
Note= Et.scale(Bass(B) t NaJor(l)) 
REN Plas note here 
Next I 

REN 11ove to next bass note 
Next. B 

End 

Triads aren't sufficient for tonalitv, thoush, 
Chords aove bs two main aet.h6ds, The first t1:1Pe of 
chordal aove1ent. is to another chord whose root. or 
•tonic" is a fifth awav fro• the current. one, To 
create this kind of root. aoveaent, we aisht 
substitute so1e kinds of aoveaent. t.hroush the 
followins arras, consist.ins of a cvcle of fifths for 
our risins baseline in the above exBmPle: 

Dia Cvcle5( 12 > 
REN fill it. wit.h 
REN072'14116 1 8 3 10 5 
REN C G D A E B Fl Cl GI Dt At F 

The second aost useful t.vPe of chord aoveaent. is bv 
coaaon I.ones, such as t.o a parallel or relat.ive 
ainor, In bot.h these cases, 2 not.es of a t.riad 
reaain coaaon while the third one chanses, C aaJor 
is "Parallel" t.o C ainor, the C and G beins coaaon to 
both while onls the E and E-flat differ, C aajor and 
A ainor are •relative• aaJor and ainor chords, the C 
and E beins co1111on to bol.h, Parallel chords are 
easils interchansed bv definins the11 as dsads a 
Perf1ct fifth apart, and l.htn alsorith1icls fillins 
in the aajor or ainor third of the chord, 

Relative ■ajor and 111inor chords can easils be dealt 
with bv usins an arrav which consists of I.he union of 
the aaJor and ainor traids (A,C,E,G> and siaPls usins 
a start.ins index of 1 for .aJor and O tor ainor when 
readins 3 consecutive offsets fro• this arras, (The 
arras would not have the note naaes in it, but would 
contain offsets fro• the tonic in seaitones, which 
would be usable in ans Ke~ and for ans chord in the 
Kev, Ust thea bs addins the• to sour tonic's offset 
into the e,t., scale arras,> Another was of dealins 
wit.h relative aajor and minor chords is-bs usins 
dsads, sets consist.ins of 2 not.es a third aPart, and 
t.akins the union of 2 intersect.ins dsad sets as a 
triad, but because there are 2 t.sPes of "thirds" this 
is not Practical until we have the followins tonal 
set to index into, 

Tonality as a Great Si111Plifier 

The above alreads srows 111ore co11plex than is 
desirable, One realls wants the si11Plest, 111ost 
seneral, and most internally consistent. sche111e of 
orsanization Possible, so as to think as li Lt.le as 
Possible about "bookkeepin!I" and as 111uch as possible 
about 1111sic, Therefore, to aost, siaPlY do tonal 
111usic, we'll start with the tonal Pit.ch collection 
it.self as our basic workin!I set, rather than the 
12-t.one scale, 

17 

The tonal set can be viewed as a subset of, or 
teaPlat.e for, the 12-tone eaual teaPered Pitch 
collection, It's internal intervals (offsets between 
adjacent aeabers of the eaual t.e■Pered superset > are 
2,2,1 ,2,2,2,( 1 ), The interval of each tonal Pit.ch as 
an offs.I. fror, the tonic of the ke~ are 
0,2,4,5,7,'1,11(, 12 ), These are stored in an arra1:r 
which will be used t.o index into the 12-1.one superset 
arril!h 

This reduces our basic work ins set. of Pitches to 7, 
( The word •octave• suddenlll has aeanins asain, > 
Pitch aaniPulat.ion nu11ericallv bs octaves is done 
aodulo 8, and it becoaes possible to deal with 
Pitches as an ordered set of conti!illous inte!lers 
without. havins to abandon a widel11 accessable,ausical 
vocabular11t 

To su111 UP ( and so a bit further>, here is a list of 
freauenc11 set.s, each befo!! a s.:~el. of the set 
iaaediatels above it,; 

1, Continuous freauencs: theoretical, actual, or 
analos: 

0 (-------------------------------------) 

2, Audible frnuenc11, discrete but Perceived as 
cont.inuous as it aPProaches or 111at.ches the resolution 
of our ~ars' discrete freauencY sensins ■echanisas: 

> 30 Hz(---------------------------->< 20 Khz 

3, Quantized eaual te111Pered scales: (Repeat all 
Pat.terns fro• here on dow.n over addi l.ional octaves bv 
addins or subtr,ctins 111ultiPles of 12 > 

SPacins: 

( ! 

Conv1nt.ional note naaes: 

( c ct d di e f ft !I st a at b > 

Interval fro• last nol,e in seaitones: 

(1111111111 1) 

Interval fro• tonic in seai tones: 

C O 1 2 3 4 5 6 7 8 9 10 11 > 



4, Tonal subset of the eaual temPered set: 

As Pi!tl.ern or ter.P late for above: 

- ! - ! - ! - ! - ! ) 

Conveniioni!l note ni!111es: 

( c - d - e f - s - a - b} 

Iniervi!l from last note in sep,ilones: 

( 1 2 2 1 2 2 2) 

Offset from tonic in seait,ones: 

( 0 2 4 S 7 9 11 > 

Condensed version of above as it. would aPpear 
in an arra!:l of scale desree intervals: 

Note naes 
Interval from last member 
Offset fror, tonic 

(cdefsab) 
( 0 2 2 1 2 .2 2 1 
(02457911) 
(0 1 2 3 4 5 6 > Index within scale 

The co11DOn Gresor ian modes can be senerated from the 
above subsets of the eaual tempered scale b!:l rot.at.ins 
the startin!l index.within the tonal set modulo 12, or 
bs creatins a lonser arra!:l which repeats the above 
offset cscle addins successive multif>les of 12 for 
successive octaves: 

tlajor 
Doriin 
Phr!:l!lian 
L!:idian 
tl!:lxoh1dian 
Aeolian 
Locrian 

Cc-d-ef-s-a-bc-d-ef-s-a-bl 
( !-!-! !-!-!-! ! ) 

( !-!!-!-!-! !-! ) 
( !-!-!-!!-!-!) 
(!-!-!-!!-!-!!) 

(!-!-!!-!-!!-!) 
(!-!!-!-!!-!-!) 

( ! !-!-! !-!-!-!) 

Putt.ins this in other terms usable with arrays! 

Mode 

tlajor 
Dorian 
PhrY!lian 
Lydian 
tl!:lxolYdian 
Aeolian 
Locrian 

Interval 

2 2 1 2 2 2 1 
2122212 
1222122 
2 2 2 1 2 2 1 
2 2 1 2 2 1 2 
2122122 
1 2 2 1 2 2 2 

Offset. 

or O 2 4 5 7 9 11 12 
0 2 3 5 7 9 10 12 
0 1357810 12 
0 2 4 6 7 9 11 12 
0 2 4 5 7 9 10 12 
0 2 3 5 7 8 10 12 
0 1 3 5 6 8 10 12 

5, Triadic subsets of the toni?l s.et (From hai-11 down 
use 1,odulo 8 arithmetic,)! 

As pattern or t.e111f>late for the major scale: 

Tonal set 
Naes 
.Intervals 
Offsets 

(c def s ab cl 
(c - e - s - - cl 
(0 - 2 - 2 - - 3) 
(0 - 2 - 4 - - 7) 

18 

Chord aualits is autout.icls tonally correct. 
when chords are described as rotations 
within this ordered subset or arras: 

c d e f s a b 
( ! - ! - ! - - ) C ( I i maJor 
(- ! - ! - ) D (ii) minor 
(- - ! - ! - ) E <iii> minor 
( ! ! - ! ) F (IV> HJor 
(- ! - - ! - ) G (V l ma..ior 
( ! - ! - - ! ) A (vi) minor 
(- ! - ! - - ! ) B i vii> diminished 

or to nKe the nUern 11ore visible: 
cdef!labcdefsabc 
012345601234560 

! • 't ! t. ! I 11aJor 
!.!.! •• ! ii 111inor 
'.!.! •• ! iii 11inor 
!,!,! •• ! IV 11aJor 

! • ' • ~ •• ~ V 111ajor 
' • ~ t ' •• ' 

iv minor 
! • ~ t ! •• ! vii di11inished 

At this ,oint, when we mal\e triads, we no lonser have 
to l(eeP tracli what. Kind of chord aualil.ies they have 
(llll!Jor, 11inor, diminished), or of the differins 
nu11bers of semitones in the internal intervals of 
these different tonal chords, All triads consist of 
offsets of 0, 2, and 4 added to any nu11ber within the 
tonal Pitch set. <Oto 7), that nuaber indicatin!I the 
root of the chord, The triadic pattern moved as a 
teaPlate throush the ordered tonal set aut.oaaticalls 
results in a triad of the ProPer chord aualit!:l when 
the tonal array in Hs turn is used as· a ter.Plate for 
indexin!I into the eaual ter.f>ered scale arrBY, 

This concel'tUii1l or!lanization Hkes it. auch easier to 
co111f>ute musical material bY al!lorit.hm without. 
abandonins the harmonic vocabulars in which 
non-co11Puier 11usic has 11ost. effectively reached us, 

The above in less abstract. and more useful for11: 

More co■f>uierishlY put,, this Sei Theory of Musical 
Pitch includes these t!:lf>es of sets (Continua, 
Conti!IUa, Collections, Chords ( includin!I Clusters>, 
and Cycles>: 

tl, Continuu1t - Freauenc!:l! Not aPPlicable to 
COllPUters, 

t2, Conti!luum - Audible freauencY, Limited b!:l 
hardware for sound senerat.ion, bY wordsize, and bs 
the Phssioloss of hearin!I, ( I Propose t.he terr, 
"cont.i!luu1" for sets of discrete conti!luous 
ele111ents l! 

t3, Conti!luu111 - Quantized scale: An arras 
coniainin!I values io ouiPut to oscillator hardware, 
These can be eaualls auaniized ( iHPered, 11icroional, 
or 11acrotonal scales), or 111uch 11ore bizarre, 



t4, Collect.ion - Tonal set.: An arras of indices 
into the eaual temPered scale in t3 above as follows: 
0,2,4,5,7,9,11,,, 

15, Chord - Triadic subset: Arras of indices into 
14 above <•aJor = 0,2,4,7,,,), 

Other ausicalls useful arrays which can be expressed 
as subsets of the tonal collection: 

t6, Collection - Pentatonic: (0,1,2,4,5) ( = 
C,D,E,G,Al, This collect.ion is a subset. of I.he riaJor 
scale which excludes I.he two sin!lle-ser.it.one 
intervals and the t.ritone ( an interval of 6 
semi-I.ones, or 3 tones>, leavins onls intervals of a 
wholet.one or larser, 

17, Chord - Fourth chords (0'1,2,4,5) <= C,D,G,A>, 
which are wraP-arounds of the cvcle of fifths, <I 
use the ter111 •wreP-around" in froa·coa~uter SraPhics 
t.o indicate a foldins in modulo soae finite ranse, in 
this cne the octave, ) 

18, Cscle - of fift.hs, The subset. of the full cYcle 
of fift.hs which falls within a sinSle kes sisnat.ure, 
without. addin!I sharps or flats, is (as offsets 
wrapped around into one octave: 3,0,5,2,6) <= 
F,C,G,D,A,E,B), is also useful, (These can be added 
to the index into the eGual te111Pered scale arras, for 
aodulat.ion t.o related kess in tonal Pieces, l 

t9, CYcles·- EGual divisions of the octave: 

ii, Bll 1/12 = eGual t.e1Pered scale, 
b, Bll 1/6 = whole tone scale, 
c, Bll 1/4 = dirtinished seventh chord, 
d, Bll 1/3 = ausment.ed chord, 
e, Bll 1/2 = the t.ritone (and octave), 

110, Cvcle - Al t.erna1,e 11iaJ0r and ••nor thirds: 

c e !I b d ft a cl e SI b di ft , , , 

111, Cvcle - Dovetailed 11inor seventh chords 
(courtess of Ron Everett. in Toronto), These consist. 
of a repeat.ins cvcle of a 111aJor third followed bY two 
ainor thirds: 

c e !I b-flat. d fa-flat c e-flat. !I-flat. ••• 

t12, CoaPosed - .Those I' 11 leave to all of our 
iaaSinations, 

Levels of Indirect.ion in Musical Prosression 
---------------------------
The above is all Sood useful stuff for al!l0rit.h111ic 
cor,Posit.ion; but. concepf.ual aech1nis111s for 
referencin!I and asse111blins scaler, triadic, and other 
Pat.terns are still insufficient for I.he co1Posit.ion 
of tonal Pro!lressions, For t.he creation of chord 
Prosressions, I have found il useful t.o conceive ot 
the• as series of levels of indirect.ion (reaovall 
frpa a dest.inat.ion chord ( seneralh1 the tonic l, 
These can also be co.nceived of as nested loops, 
concentric circles, or in a tree confisurat.ion, 

As a tree-like st.ruc:t.ure, all branches connect at 
nodes where select.ion is done, such I.hat we aove in, 
laser by laser toward I.he sinsle central tree trunk, 
The difference bet.ween the stand1rd binars tree model 
and whit I describe here is twofold, 

First., the PUrPose of this tree is not. findin• 
soaet.hins which has been st.ored, not. for searchin!I, 
Its Purpose is t.o provide a aeans of st.ructurins 
Paths of aovement., Nusic is Process, prosression, 
(Arrival in 111usic 111av threaten t.o st.op the ausic, 
Note how Bach elides cadences, so that a chord which 
is heard as a st.rans arrival, or endin!I, is set. uP t.o 
be siaultaneousls heard as the besinnins of a new 
Phrase, l 

Second, the direction of moveaent is opposite to that. 
of a tree search, Instead of st.art.ins at a central 
known Place and select.ins where to branch t.o nent., we 
1as find ourselves Just answhere uP in I.he branches, 
in the st.ruct.ure of Possibilities of a siven 10111ent, 
and we know we alwass want to move one level down 
toward I.he trunk, We don't care what branch we're 
currently in, but must. know how 1ans levels out. we 
are fro• I.he trunk so we know by what 1eans to select 
where to So in the next level down, We wish to do 
this in so111_e aestheticls effective 11,anner, soaehow 
not. too obvious or exPect.ed, not. consistent or 
Predict.able, but. not. too skocliinS, awkwilrd, or 
unpredictable either, There aust. be underlsins 
feelinss of a sense of direct.ion and I.hat. where we've 
arrived, t.housh une~Pect.ed, 11kes sense, 

19 

As an example, here is an alsorit.ha for a si1Ple 
chord seauenc:e senerat.or based on I.he idea of levels 
of indirection fro• a chord of har1onic resolution, 
usins freauencs subsets (expressed as arravs of 
indices int.o other arrass, as Fer the above>: 



Tree of Levels of Indirection fro11 Tonic chord: 
-------------------------------

Arrass used include the eauel te11Pered scale 
("et.scale">, our·7 tonal intervelic offsets from the 
tonic ("tonalits" J, and the 3 offsets to the tonic 
which define a chord ("triad'), 

4 - Leaves: 

iii chord (can so to other Places besides the 2 
chords on the next level down, but let's start 
si11Pls), 

REN Plas erPe!lsiated triad 
tonic: = 3 
for i = 0 to 3 
note= etscele(t.onalits<tonic + triadii))) 
next i 

REN-select next chord bs wei!lhted probebilits 
REN ( or use other itean s J 
which= randoa 110d 25 
if which < 9 then tonic = 1 
else tonic = 6 

3 - Twills: 

I chord or vi chord (can so to either chord on 
next level down), 

( Re,nt 2 sl.ePs above, wit.h current values, J 

2 - Branches: 

IV or ii chords (can !lo to either chord on next 
level down l, 

( Rfl'eat 2 stePs above, with current vitlues, J 

1 - Bou!lhs: 

V or vii chords ( can !lo to either chord on next 
level down>, 

(Renat 2 steps above, with current values, J 

0 - Trunk: 

I ( tonic: l or vi ( tonic of relative 11inor kes J 

REN kHP soin!l even thou!lh we sot here, 
level = r1ndo111 11Od 5 
!loto level 

In c1se it isn't utterls and co11Pletels obvious, the 
1bove is sil,ls a sht.ement of lo!lic, ind will have 
to be coded for wh1tever 11achine, lansua!le, and 
oscillator hardware you us use, < I have a 1ore 
extensive version of this al!lori th• runnin!I on liY 
APPle II and Hountain Hardware oscillator boards, as 
Part of 1Y PASCAL co11Posins ssst.111, "ANO" ( A Musical 
Ofhrin!ll, Rather thin includin!I a Printout., thoush, 
I thou!lht it would be clearer to state this idea in 
sener1l fora, so that it r.as be better understood, 
1ore widely tried out, Plased with, and adaPted to 
different 1usic sYsteas, > 

20 

Thou!lh the 2 Possible chords on each level of this 
tree have roots a third aPart, I chose not to 
describe them as sin!lle arrass containin!l the union 
of the 2 triads, to select. the111 bs chosin!il a startin!il 
index of either O or 1 into each union arras (vi-I, 
ii-IV, V-vii) because that would have limited the 
variabilits and seneralits oft.he al!ilorithm, 

The aest.hetics of this alsorith111, like 111anv others 
which are ,ossible, its Personalizabiltis and the 
nature of its expression, lie in the choice of which 
chords (clusters, 11odes, etc, J mas be 111oved between, 
and in what order, and in the desi!ln of the aet.hod of 
decision 11akin!l (in this case the si1Ple weishtin!il of 
the ,robabilitiesl, I su!il!ilest start.ins, if vou do 
decide to t.r·.r runnin!l it, with the chords I have 
selected, and with 50-50 Probabilities on all levels, 
before trYins to var!:! it, ( To make sure this 
Pro!lression al!ilorith111 realls worked 111usiclv, I wanted 
to first test. it within a haraonic stsle derived from 
J,S, Bach, which accounts fort.he chords used and 
their POsitions, l 

As it st.ands above, vari1bles available t.o PlaY with 
include ,robabilities, I.he nu1ber of levels used, and 
the chords or tone clust.ers, 11odes or scales which 
ire entered in the arrass, A1on!I the variilblH not. 
deall. with in the above are t.ea,=,o, t.i11ore, st.ereo 
local.ion, densi tv ( nuaber of siaultaneous voices l, 
ran!le in octaves, and envelope Paraaeters, 
El1borative processes which could be B<lded include 
the introduction of ot.her shaPes of ar,essios, the 
sener1tion of 1,elodic lines fro11 the chords, instead 
of 1r,e!il!lios, bs use of leaps and Passin!il tones, or 
the substitution of p;t,1,erns <trills, tremelos, and 
other orna1ents, or of 11101.ives or aelodies) for 
notes, 

Generalizin!l t.o Other Nusical Di11ensions 

The structure aP,lied above t.o chord pro!lression can 
be used as a 1110del for software which can !ilenerat.e 
routin!ls throu!ilh other areas of our freauencs 111a, as 
well, This c1n be done within any sin!lle level (for 
exaaPle, 1111on!l scales instead of aaon!I chords), or t.o 
structure 11ove11ent fro• one level of our set 1ap (one 
area of our sonic subset theors} to another, that is 
to be used to redefine the actual workin!I Preaises of 

our 1usical realits durin!il I Piece, 

The sa1e Principles of orsanization can also be 
applied to other diaensions of r,usic:, Rhsth1 
furnishes a !K>Od exaaPle, as it c1n easils be viewed 
as hierarchical (as I branchin!il tree), The 
architecture of ti1e can be hierarchicallv ducribed, 
fro• 32 to 16 aeasure units, to 8 bar Phrases, and on 
down to beat to beat rhst.h■s, Pro!ilressions of 
har11ons and rhsl.h11 111er~e in the concept, of "harr,onic 
rhvth■" (the nu■ber of beats between re!lularls s,aced 
chord ch1n!lesl, which can also be 111aniPulated 
al!lorithtiicls, Rhsth1ic meter can be viewed ,s a 
branchin!I tree, in which nch beat-level c.rn be 
subdivided in a variets of selectable wass, (A 
auarter note can be divided into 2 ei!lhth notes, a 3 
ei!lhtnot.e t.riPlet, 4 sixteenth notes, etc,), 



What, Whs, and Whither Alsorith111ic Husic? 

Alsorithas 1as be viewed as seneral coaPositional 
Processes, as are canon and fusue, or as unioue 
1usical COIPositions, or as falling soaePlace between 
those 2 extre11es. DePendins on their desree of 
interactivits (whether variables are read in fro1 
~nobs, switches, kesboards, or other devices durins a 
Prosra1 run, or whether thes are senerated or stored 
within the software>, such alsorith111s 1as be Placed 
anywhere alons the axis between "intellisent 
instru11ents• and •auto11ated co111>osi tion, • 

Alsorithas 1as becoae a do11inant 1usical fora in the 
future for a nu1ber of reasons, They can be hiShlY 
user interactive via realt.i ■e access to variables 
(anywhere fro• audio same to virtuoso's instru1entl, 
They are naturals for the Powerful musical 
instru1ents of the future which will Penit aaxi111l 
ausical expression with 111in inl input, by the use of 
an increasinsls s1all, select, and aestheticlv 
Powerful srouP of Vilriables, They will be ilttractive 
t.o use by virtue of their overco1ins the aechanical 
liaitations of traditional instru1ents whereby the 
ratio of the nu1ber of notes PlaYed by the Person to 
the nuaber of notes PlaYed b"' the instrument is 
rarel"' better than one-to-one, Nusical Pattern 
seneration, 1aniPulation, and editins Prosra1s will 
sreatls facilitate co1Position, as well as havins 
wide aPPlication in music education, 

Alsorith1ic 1usic ■as turn out to be 1ost. desirable 
(so 1uch so that econ011ics 1as ensure its 
ProHfer.ttion as a new r,usical co111on Practise) 
because alsorith1s involvins relat.ivels s1all nuebers 
of relatively Powerful variables are extre1elY 
econo1ical in ter1s of the a1ount. of st.orase sPace 
necess1rs to describe a Piece of 1usic, In other 
words, the noun t. of s t.ored ( or t.eleco■-unicat.ed > 
data necessary "Per thousand" of 1usical notes PlaYed 
is s1all, Because a s1all nuaber of variables can 
control I.he nat.ure of a musical fabric, there is also 
a sreat potential for musical response to other 
technolo!iicalls interfacable Pheno1eaa, such as 
teaPoril visual co1Positions, 

The superset of hish level variables can include 
slobal ausical dimensions such as ranses, t,ypes of 
interPOlation or tr;msition (aost, easihl done bs 
select.ins one of a sroup of• preco■Posed tables>, 
rates (of acceleration, crescendo, or harmonic 
chanse), It ■as also include the select.ion or 
condit.ion1l use of such 1usical transformations as I 
described in 111s article of last sear for this sHe 
SY1Posiu1 and Publication, The al!1orith11ic select.ion 
and variation of musical decision 1a~ins Processes 
the1selves is an obvious and interest.ins recursion, 
Other i1Portant para1eters, Processes, and Principles 
will be derived fro■ theories of Perce,tion, 
coSnition, sues, information, and co11unication, and 
•a~ include density, level of »contrast,• a1ons sonic 
co1,onents, pecentase of redundencs, desree of 
continuity, t,spe of orsanizational structure, and 
others, 

21 

Alsorith■ ic co1,osit1on is a concept, a,,11cable to 
other arts besides music, one exa1,1e bein!i the •same 
of life• in co■Puter sraPhics, Alsorith111ic 
interfaces of audible and visual 1usics will become 
increasinsls ■eaninsful as variables become aore 
Powerful and more cosnitivelY oriented (above the 
level of ans sinSle sensors 1odalits), 

The ultimate alsorithmic artworks 1ay hope t.o 
describe, bY rules based on understandin!i, all the 
characteristics of stiauli which are aost meaninsful 
to our consciousness, externalls e1bodsinS the mirror 
reflection of the structure of that consciousness and 
its mechanisms of findins such aeanins, Alsorithms 
1aY eventualls simulate the transformations which 
sound and imase underso in our i11Sinations, which 
have been so difficult to capture bY conventional 
methods of 1usical and artistic ex,ression, 

The basic tools above are only a aost si ■Plistic 
besinnins, desisned to facilitate broader 
,artici,ation in all that waits to be explored, 

- Laurie SPiesel 
NYC, Aus, 1982 

lllte.ri,,l(~ ~.tS(rl110ti to I~ ~1t'rttin\ ~01rt.: 

~t[t]V JO'AJJ! dil I 
• ,1 11w m, hNP sm 1 

~ ijJ lil~ JJ? Sil J if 1 

mt 1j iJJdddJ !fil,W mP 1 

• 11BJ\.r!I1c rqrI aI11 
~ tF 11 IJ)gp llir 1•0 c1tnfl 

q 11HI r1rI1 ,_, a 





MERGING EVENT LISTS 
IN REAL-TIME 

J. William Mauchly 
Personal Computer Arts Group 

Box 1954 Philadelphia, Pa. 19105 

This paper describes the data structures 
and the processing algorithms for a 
program to perform real-time control of 
a music synthesis system. The program 
can combine multiple lists of notes or 
other timed events while servicing a 
performer's input device. 

The computer has opened up new modes of 
interaction between musician and musical 
instrument. Besides the tonal palette 
that digital synthesis offers, time 
itself is a dimension we can control in 
fresh ways. Many computer-based music 
systems now offer the ability to record 
and playback musical passages that are 
performed on a keyboard.~ musical score 
can be created from such a performance, 
and edited or manipulated in various 
ways. 

When approaching the task of creating 
software that will perform functions 
like these, the choice of data 
structures is important. Two useful 
structures will be discussed here: 
linked lists and ring buffers. Linked 
lists can represent musical units like 
envelopes, melodies, and chords. However 
the job of processing lists can be 
time-consuming when several lists must 
be simultaneously traversed in 
real-time. The ring buffer is a data 
structure which simplifies output 
processing and eliminates sorting 
parallel event lists. 

A TYPICAL MICROCOMPUTER MUSIC SYSTEM 

A microcomputer can control a variety of 
music-generating devices. Many of the 
software concepts are the same whether 
the sound comes from a player piano or a 
digital synthesizer. The synthesizer 
could be an analog voltage-controlled 
type which is linked to the computer 
with some digital-to analog converters. 
It could be a digital waveform generator 
like the Mountain Computer MusicSystem 
or the Casheab S-100 Synthesizer. 

82CH1831-7/82/0000/0023$00.75 © 1982 IEEE 
23 

Let's assume for now that the 
music-generating device has some sort of 
hardware ramp generator or envelope 
generator. We need to tell it when notes 
start and stop, and of course the 
pitches, envelopes, and waveforms to 
use. (On some systems it is necessary 
for the computer to supply every 
amplitude change for the oscillators). 

A typical software system will need to 
simultaneously play back a recorded 
performance and allow a performer to 
play along on a music keyboard; often 
some graphics are also live on the 
screen. The job of monitoring the 
keyboard, reading a score, and 
controlling some sort of synthesizer is 
handled by a microcomputer running a 
very quick program. 

Usually many other features are desired 
which can be treated as seperate 
functions. A recorded performance can 
be converted to a graphic score and 
edited. The software can also provid~ 
facilities for the control of the 
synthesizer "patches", which are 
specific to each type of sound
generating hardware. We will only 
be discussing the real-time performance 
program which must do "note-processing" 
on-the-fly. 

Lets look at the tasks which must be 
accomplished simultaneously: 

l)Determine what new keys have been 
pressed or released on the keyboard. 

2)Find all notes in the active scores 
which should sound. 

3)Translate keys or notes into synthesis 
parameter information: pitches, 
amplitudes, waveforms, and envelopes. 

4)Send to the synthesizer the selected 
parameters at the exact time they are 
required. 

S)In ~ddition we may ask the computer to 
monitor the alpha-numeric keyboard 
and analog input devices, and to 
update a display screen. 



To understand this complex task we must 
first consider the types of data we will 
be dealing with. 

REPRESENTING MUSICAL STRUCTURES 

NOTES 

The fallacy that all music is composed 
of elemental units called notes has 
pervaded computer music. Early 
compo~ers had to create a punch card for 
every note in a piece. It was the 
smallest and largest entity for building 
a score. Other ways of representing 
music have grown out of a desire for the 
structure of the music to be reflected 
in the score. For example, bar lines 
mark off measures in conventional 
notation. They aid in conceptualizing 
the music. A long list of notes becomes 
a phrase; a series of phrases can be 
repeated inside a passage, etc. 
Meanwhile, a single note has been broken 
into pieces: attack, decay, and so on. 
All these descriptions of musical events 
are efforts to express analytically what 
our ear knows intuitively. 

MUSICAL SENSE 

Good music carries emotional content or 
meaning, but also must make "sense" in 
an abstract way. The sense is in terms 
of organization or structure. As we 
listen, we look for patterns. The 
patterns which we recognize help us to 
predict what wiil happen next. It is 
the balance of the expected and the 
unexpected which keeps us interested or 
involved in listening. We are matching 
patterns, looking for repetitions in 
pitch, rhythm, and all kinds of shapes 
described by the music. The patterns 
may be very long or very very short. The 
complexity of this mental feat is 
staggering. Fortunately, a listener 
needn't understand the process to 
perform it; we do it quite naturally. 

What we would like, and what we will 
never have, is a way of representing 
music which reveals its structure 
completely. That is a goal which we 
can individually strive for; there is no 
one way to solve the problem. 

There are some basic data structures 
which can serve as a foudation for a 
very flexible music system. They can 
support higher level musical 
abstractions for those interested in 
exploring them. 

24 

INPUT EVENTS 

A music keyboard is the typical input 
device. We would like the keyboard to 
be preprocessed, either in software or 
hardware, so that we only receive data 
when some key goes up or down. (That is, 
we don't have to interrogate every key 
to find out if it moved.) We will 
receive asynchronous key movements and 
perhaps some velocity value. So we can 
expect packets of data: the key's 
identification number, whether it was 
just pressed or just released, and 
perhaps a scaler value f"or its velocity. 
No time information is present; when a 
packet appears, it has just occurred. 

We can generalize the motion of a key as 
an "event". An event is a discrete 
motion occurring at some descrete time. 
When a key goes down, that is an event; 
when that key is lifted again, that is a 
seperate event. If there are analog 
inputs from footpedals or joysticks, 
they may be expressed as events also. 
Every event has three parts: the thing 
that moved, its new position, and the 
time that it occurred. For a keypress 
on a musical keyboard the position may 
be only a binary (up,down) value or it 
may contain some velocity or position 
information. As input data comes in 
from our performer, we will associate 
the present "time-of-day" to it, 
creating a series or sequence of events. 

OUTPUT EVENTS 

The real work that is critical to the 
music system is to feed the right 
parameters to the synthesizer at the 
right time. 

At the lowest level we are just sending 
out numbers to some peripheral device. 
This is just like a poke from BASIC; we 
supply an address and a piece of data to 
put there. The address will be the 
identification number of some parameter 
we wish to supply ( not necessarily the 
physical address in memory) and the data 
is the value we wish to change it to. 
The output too, then, can be seen as a 
series of events. 

EVENT STRINGS 

When a series of events are recorded, 
there are a number of ways to store the 
information, The time of an event can 
either be referenced to some absolute 
flstart time" of the sequence, or it may 
represent the time since the preceding 



.3 -
tc:ey 11= 

POSITION 

1IM£ 

. 

AN E:.VENT 

- IIJUr-\eEft. OF 
EV&i-lTS. 

}E-T I 

1 EVEN-t' 2... 

~ 
STR\NC:J 

event. Both ways have advantages. How 
the events are strung together is more 
important. For simplicity and economy 
of space, seqential storage of events 
seems appropriate. 

A simple EVENT STRING has two parts. 
The event-count and the actual events. 
The events are stored sequentially in 
memory. When a performance is recorded, 
an event string can be created quite 
efficiently. 

EVENT STRING 

1) Number of events 
2) event #1 

event #2 
event #3 

Event strings can serve as a basic 
building block for all kinds of musical 
structures, like chords, melodies, drum 
rhythms, etc. As we start trying to edit 
event strings we notice their 
deficiencies. To insert a single event 
we must rewrite all the data following 
the edit point. If we wish to repeat a 
passage we need twice as much memory 
space. It's the same old problem 
programmers have had with text 
processing and disk storage. The answer 
is just as old: linked lists . 

A linked list uses pointers to connect 
the elements in the list. A pointer is 
really a nice name for a memory address. 
Every element in a linked list has a 
special variable associated with it 
which points to (holds the address of) 
the next element in the list. The 
elements are chained together, each 
pointing to the next. the last element 
in the list has a "nil" pointer (a zero 
where the pointer should be). 

We would like to link together event 
strings into a new structure; we'll call 
it a sequence. (The ambitious should 
allow for lists of lists of lists). 
A sequence is a linked list, ~here each 
element in the list has two parts. 

AN ENENl" I I ( S'E.0.UENC.E. LlWKe:J) 

25 



SEQUENCE ELEMENT 

1) pointer to next element 
2) pointer to an event string 

A detailed discussion of linked lists 
and list processing can be found in most 
texts on data structures. They seem to 
be very useful for expressing musical 
structures of many sorts. 

SCORES 

One other activity we should consider is 
the interpretation of scores, Perhaps 
the cleanest way of dealing with 
conventional scores is to pre-process 
them into a sequence of events. It is 
akin to compiling a program; the 
processing can be very sophisticated 
because we are not trying to do it 
"on-the-fly" while the program is 
running. That leaves the compiler all 
the time in the world to read graphic 
scores, interpret chord symbols, 
generate random elements and all those 
nice things we dream about. 

But a score can be any number of things, 
depending on its purpose. Generally, it 
is a description of a musical 
performance in some language. But it can 
also be a description of a musical 
PROCESS. If we want the computer to 
take a performer's input and use it in 
some particular way, that is a kind of 
score. In computer terms, we need an 
interpreter, not a compiler. 

REAL-TIME PROGRAMMING 

Now we can see more clearly the type of 
job that needs to be done. Inputs are 
coming in real-time. We have to expand 
them into commands which the synthesizer 
will understand. We need to record the 
exact time of the input, and dump out 
from other lists other events at 
specific times. In addition special 
programs of our own devise ("interactive 
scores") are somehow running at the same 
time. 

The only practical way to accomplish 
these concurrent tasks to to try to 
average the work over time. When a 
finger comes down on a key, there can be 
no perceptable delay before the sound 
emerges from the other end of the 
system. That task becomes a high 
priority. Anything else that has to 
occur at that moment must be ready to 
go; we should try to get as much stuff 
done ahead-of-time as possible. 

26 

Ge Ne·Rt(t' e 
sv~rn\e~,s 
9/\~~~ 

~ ou-cPu-r 
E'1EIJ.,-

I T\~\~C:r 

~ f>~t.t4&'T~~ 

"'Tb ~~'es\ 'Z E~ 

Interrupt driven input and output 
provides just the "think-ahead" time we 
need. 

First, an element common to all music 
systems must be defined: the "tick." 
The clock in a computer music system is 
an absolute time-base against which all 
events are scheduled. For our purposes 
we will assume that the clock "ticks" at 
the smallest resolvable time increment 
desired. For example, the Mountain 
Computer MusicSytem for the Apple II 
produces an 8 millisecond interrupt. 
(125 times a second). When an interrupt 
occurs, the computer starts executing an 
interrupt service routine. This program 
looks at the scheduled events; if one is 
scheduled for the present time, it is 



enacted. Thus the closest that two 
events can occur in time is 8 
milliseconds apart. The tempo of the 
music can then be defined in terms of 
ticks, or the ticks can be counted in 
software to produce a slower, 
dynamically variable time unit. If all 
notes are defined in terms of a 64th 
note, for example, then varying the 
number of ticks per 64th note will vary 
the tempo. 

In the simplest case, the whole program 
is executed once every tick. If it has 
work to do, it will do it; if not, it 
will wait until the next tick. 
Unfortunately, music often contains 
great flurries of activity. A program 
must be very quick indeed if it is to 
keep up with the performer. We can 
seperate the work into those things 
that are time-critical {input and 
output) and the thinas which we average 
out a little, as long as they get done. 
We will divide the task into three 
jobs, and find people to fill them: 

1) follow any event lists and/ 
or scores being played back 

2) translate input events 
into output events 

3) get data in and out on-time 

THE EXECUTIVE 

The EXECUTIVE will be the guy 
that decides what has to be done. He's 
the main program thats running all the 
time. He can follow up complicated 
scores and linked lists; and show 
quarterly reports on you monitor screen. 

He also controls all the lists and 
tables that usually hang around inside a 

synthesizer, like what waveforms or 
tunings are to be used. The executive 
can get interrupted by other more urgent 
programs. As input, he takes the 
prerecorded sequences and scores. He 
looks through them, and comes up with a 
bunch of notes (input events) that are 
to occur within the next second or two. 
He sends them to the secretary to 
expedite. 

THE SECRETARY 

The secretary has the most work to do. 
She takes input events, either from the 
performer or from the executive, and 
turns them into output events. That 
involves taking a key number, and 
determining what "voice" it will take. 
That tells her what tables to look at to 
get pitch, octave, envelope, waveform, 
loudness, and any other relevent 
parameters. Depending on the 
architecture of the synthesizer, some of 
this information may have schedules 
associated will it. (use this number, 
wait 2 seconds, use that number). She 
has the job of writing all such OUTPUT 
EVENTS into an "datebook" of things to 
happen in the future. 

THE STOCKBOY 

The STOCKBOY makes sure everything gets 
shipped out right on schedule. He may 
have a lot to do so we will try to make 
it simple for him. When awakened, (a 
"tick" occurs) he checks the clock to 
see what time it is. Then he looks in 
his date book to see what he has to do. 
It's 9:00; its time to send some new 
numbers to the synthesizer. He looks 
them up and sends them out. Now he can 
go back to sleep until the next 

SEc.R.•'TflA..Y \.l!'MIFS L\~T5 ~ 
1,YPOlN-n.\~NTS' 

~ ~ 
... 

" 

-,- HE'" .' Now' 
t:)ffTeBoot::.., 

27 

~eoy 
PER..POR#f\.S 
100,\-V'S 

EVEN"t"$ 



interruption. Usually his date book is 
almost empty; occassionally he has so 
much to do that another clock tick comes 
before he's done. That's why he has to 
be fast. There's no time to go 
searching through lists for things that 
might happen today. 

THE DATEBOOK 

That leave one more structure to be 
cleared up. There are two ways to keep 
track of timing. The first is the alarm 
clock method. Suppose that an event 
sequence is being played back, and the 
next event is to occur 122 clock ticks 
from now. We set up a software counter 
in memory, and initialize it to 122. 
This counter/timer must be decremented 
once each tick. That means extra work 
for the interrupt service routine (the 
stockboy) and gets him involved in 
executive affairs which are really none 
of his business. 

The second approach is the datebook. 
The datebook is simply a buffer for the 
things which are to be output in the 
near future. Two people use it: the 
stockboy is reading it at a very regular 
rate; the secretary is writing in it in 
an eratic, non-sequential fashion. Each 
place in the datebook represents one 
tick of the clock. Instead of holding 
the actual data, each entry is a pointer 
to a linked list (remember them?) of 
output events. 

The stockboy keeps track of what time it 
is, in other words, which entry in the 
datebook is "now". If the entry at 
"now" is a nil pointer, then evidently 
nothing needs to be done. On the other 
hand, he could find a pointer to an 
output event or a whole list of output 
events. All he has to do is shovel them 
out to the synthesizer. 

The secretary's job is also simple 
thanks to the ring-buffer. As a pointer 
each entry in the datebook is a fixed 
size. (One word of memory, for example.) 
That means that any time in the future 
can easily be located in the datebook by 
its address. When she needs to schedule 
an event to occur in the future, whether 
its a new note sent by the executive or 
a continuation of some "voice" 
definition, she can insert it quite 
easily. She just uses the date of "now" 
and counts ahead so-many ticks. Without 
doing any searching to compare it with 
other scheduled events, she can insert 
the new event at the head of the list 
attached to that position in the buffer. 

28 

We can implement a datebook with an 
infinite storage capacity by letting it 
wrap around on itself. That turns it 
into a circular type of calender or, to 
computer programmers, a ring-buffer. 
This is nothing more than an array which 
is addressed MOD some number. 

The ring-buffer, too, is not a new 
concept. Like linked lists, it can make 
a program run more efficiently. Most 
importantly, it loosens the constraints 
on the music software by allowing the 
Secretary to "look ahead". 

Obviously, this is just a rough sketch 
of some elements of a music system in 
terms of data objects and ~low. 
I have tried to show how knowledge of 
data structures can affect the structure 
and the performance of a music software 
system. 

As more musicians delve into the job of 
creating enviroments for music 
composition, they should realize that 
many of their problems have already been 
solved. One of the interesting things 
about music is how its structure 
reflects so much of the world around us. 



Automatic Coq,uter Con.,oaltlon of Bluegrass Tunes 

Michael Keith 
D46 Abbington Drive 

Hightstown, NJ 08520 

Introduction 

This paper describes a program written in 
BASIC for the Apple I1 microcomputer that 
composes traditional bluegrass tunes, 
intended for playing by 5-string banjo and 
ensemble. Because of its instrumental 
orientation, I call the program BANJO, for 
"Bluegrass Algorithm for Note Juxtaposition 
& Organization." (besides, what's a program 
without a good acronym?). Briefly, the 
program combines a harmonic analysis of 
many existing bluegrass tunes with a fairly 
realistic note-generating algorithm. The 
output of the program is displayed in music 
tablature with chord markings. I will discuss 
some general philosophy of computer 
composition as well as the specific algorithm 
used in this program. Many pieces have 
been composed using the program; one 
example will be presented. 

Background 

The problem of composing music with a 
computer is not an easy one. Basically, as in 
other artificial-intelligence-type problems, 
the task is one of finding rules, hopefully 
relatively simple ones, that govern the 
structure of the program's output. In the 
case of music, both the melodic structure 
( the sequence of notes forming the main 
melody) and the harmonic structure (chord 
progressions) are important. Some types of 
music for which computer composition rules 
have been devised include uvo-part 
counterpoint [1], canons [2], and certain 
types of jazz [3]. Being a banjo player 
myself, bluegrass naturally suggested itself 
as another possibility. 

The composing philosophy followed in this 
program relies heavily on automating chord 
progressions. I believe harmonic rules are 

82CH1831-7/82/0000/0029$00.75 © 1982 IEEE 
29 

very important in producing acceptable 
music, on the grounds that as a musician I 
usually "think" in terms of chord 
progressions while playing (improvisation 
often is governed exclusively by harmonic 
progressions). 

Automating chord progressions is simplified 
considerably by the following combinatorial 
fact of the 12-tone music scale: If we 
exclude chords containing adjacent semi
tones ("clashes"), then there are exactly 30 
essentially different chords. "Essentially 
different" here means that every chord 
possible can be reduced by transposition or 
removing octaves to one of these 30 chords, 
which I call fundamental chords. More 
details on this can be found in [ 4]. Each of 
these 30 chords corresponds to a chord type 
(major, minor, augmented, ninth, etc). 

It is easy, then, to analyze a selection of 
musical pieces of a certain type and make a 
list of the frequency of occurrence of 
chords. Each time we encounter a chord, we 
note its tonic ( 1 of 12 values) and its type ( 1 
of 30 values). This is the basic idea of the 
analysis program - a bunch of of bluegrass 
tunes are fed in and out comes a harmonic 
analysis. However, in addition to a 
frequency count, a much more important 
statistic which is calculated is the transition 
probability for each chord. The transition 
probability (A,B) is the probability that, 
given that the current chord is A, the next 
chord in the piece will be B. 

It turns out that, in bluegrass, 99% of all 
chords are either major or minor. Thus, 
there are only two chord types to consider 
and 12 tonics, for a total of 24 chords. If we 
arrange these 24 chords conceptually along 
the X and Y axes of a graph, then the Z 
coordinate will graphically show us the 



P(A.B) 

Second Chord (B) 

1'gure 1: Sa.mpl,e chord transition probability grafJh., generated. 
1%1J.toma.tically by analyzing a number of bluegrass tunes. TM analysis is 
stored on cti.sk for later use by the composition program. 

transition probability distribution. Figure 1 
is such a graph for one particular analysis. 

The first part of the composition algorithm, 
then, is to compute the chord progressions. 
This is done by simply using the analysis 
information in reverse (~ith a random 
number generator used to choose between 
the transition alternatives at each step). 
For simplicity, chords are only changed at 
measure boundaries. The particular analysis 
used in a composition is one of the 
parameters that can be specified by the 
user at run-time; thus, pieces of different 
harmonic structure can be easily generated. 

Melody Algorithm 

Once a chord progression has been "laid 
down" by the previous algorithm, the last 
step in producing a tune is to compose the 
melody. In order to understand the melody 
algorithm used in this program, some basics 
of bluegrass melody, and banjo playing in 
particular, must be understood. 

The 5-string banjo, being a stringed 
instrument, was originally played by 
strumming and picking a few melody notes 
here and there. A major revolution in 
playing style occurred when Earl Scruggs 
popularized the "3-finger" style of playing in 

30 

the 1950's. This method involves no 
strumming at all, but consists of picking 
individual strings with three fingers of the 
right hand. The particular style used by 
Scruggs involves interspersing melody notes 
with "rolls" - arpeggios of notes in the 
current chord. Since the 5-string banjo uses 
an open G major tuning, and most songs are 
in G major, many of the rolls occur on open 
strings, which adds to the fullness of the 
sound of the instrument. Melody notes are 
distinguished from the background notes by 

· emphasizing them in some way (playing 
them louder, with a different timbre, etc). 

During the late '60s and through the '70s, 
another style came into widespread use. In 
this style, known as the melodic style, 
almost every note played is a melody note, 
and there are very few "filler" notes (which 
is what rolls are, essentially). The melodic 
style was originally used to imitate fiddle 
tunes on the banjo, but has since evolved 
into a sophisticated style incorporating 
elements of blues, jazz, and classical music. 
Melodic melodies often incorporate scales, 
for which a clever method of playing on the 
banjo with limited left hand movement 
exists. Sample Scruggs style and melodic 
style melody fragments are shown in Figure 
2. 



Scruggs 

melodic 

1igure 2: Sample melodies in Scruggs style 
and melocti.c style. 

Our melody algorithm incorporates elements 
of both of these two predominant bluegrass 
styles. Each measure of the piece is 
randomly chosen as a Scruggs or melodic 
fragment, and a separate algorithm for each 
style is used to compute the actual notes. 
The percentage of each style is one of the 
parameters that can be changed by the 
user. This scheme is quite similar to that 
actually used by many modern bluegrass 
players, and hence is quite realistic. 1 will 
now briefly describe the complete 
composition program. 

The Program 

A bluegrass tune traditionally consists· of one 
or more sections ("A" section, "B" section, 
etc). The BANJO program composes each 
section independently and theri 
concatenates them to form a multi-section 
piece. This is not unrealistic, since the 
sections of a bluegrass piece do not usually 
have much interdependency. 

The complete algorithm for one section of a 
piece is shown in Listing 1. The parameters 
labelled p2, p3, p4, and so on, are the 
various parameters (real numbers between O 
and 1, representing probabilities) that can 
be specified by the user on each run. Files 
of parameter sets can be stored for later 
use; thus, if a particularly "nice" set of 
parameters is discovered, these parameters 
can be easily recalled during a composition. 
A typical parameter set is shown in Figure 3. 

Also visible in Listing 1 are the details of the 
melody-generating algorithms. As 
mentioned earlier, the Scruggs algorithm is 

Number cl measures= 2n+ 1 (n=random integer) 

Choose chords WliDg t.nmsition probabilities. 
(force measures 1 and NM to G major). 

Choose rhythms randomly for each measure. 
Rhythms are chosen from 3 different sets: 
First measure (pickup notes), middle measure, 
and last measure (no more than 3 beats). 

For each measure, choose notes using this algorithm: 

if rnd<p2 then measure=scruggs measure 
else measure:::melodic measure 

if measure:::scruggs then 
! 

l 

note = last note 
+ single roll step (if rnd<p3) 
+ double roll step (if rnd>p4) 
+ backward roll step (otherwise) 
+ whole/half step perturbation (if rnd<p5) 

(whole step if rnd<p6, half otherwise) 

if measure=melodic then 
! 

note ::: last note 
+ single scale step (if rnd<p9) 
+ double scale step (otherwise) 

if rnd<p8 lhen change direction of scale 
if rnd<p7 lhen restart melody on a new note. 

Listing 1: The bluegrass composition algorithm (in structured 
English}. rnd is a random-'11.u.mber-generating functiDn 

31 

based on rolls, and the melodic algorithm is 
based around scales. Note that both 
algorithms use "first order" dependencies; 
that is, each note depends to some extent on 
the previous melody note. This is necessary 
to avoid the "random sound" that is present 
in some computer-composed music in which 
each note is computed independently of the 
surrounding notes. This is a small step 
toward the realization of recognizable 
melodies, motifs, and higher-order musical 
ideas. 

Figure 4 shows a piece generated by the 
program, both printed in banjo tablature 
and regular music notation. This is a 
"typical" piece - neither the best nor worst 
that the program has composed - but it 
illustrates a typical piece's quality fairly 
well. It is particularly striking to _i::iotice 
several typical melodic-banjo fragments 



CURRENT PARAMETER&: 

HARMONIC FILENAME ANFILEl 
PROB OF MELODIC MELODY .I 
PROB OF SINGLE STEP C&H> .5 
PROB OF BACK STEP CSH>. .1 
PROB OF PERTURBATION <SH> .05 
PROB OF 'JHOLE STEP PERTURB CSH>.8 
PROB OF SEQUENCE RESTART CMH> .i 
PROB OF DIR CHANCE CMM> .3 
PROB OF 2 HALF-STEPS <HH> .2 

1lgure 3: &ample pa.ra.m.eter list used by the 
composition program. By varying the 
parameters, pieces of d:iJ!erent varieties are 
prod:uced. 

.J JJ'hJj 
I 1: r I 

Ii I l. I f t ! 11 t 11 I ! I I 11 
f C I 

I 
O 1 l l l L 1 L1 

1 L 1 L 1 ] l 11 

I !' l l ! l .~ ti' I ! I r t r !I 
C 

j 1 L 1 L ~ L L Lt 
! I 

~i 

1lgure 4: Sample piece composed by the BA"JJO program.. The piece is 
here slwwn both in tabla.tu.re and in regular music notation. 

32 



appearing (such as the first five notes of the 
fifth measure), when no information of this 
type is explicitly included in the algorithm. 
All in all, I consider this piece, while not a 
masterpiece, quite pleasant and playable, 
and not obviously distinguishable from a 
piece that might have been composed by a 
person. 

Finally, a few statistics on the program 
itself. It is written in Applesoft 
(interpretive) BASIC, occupies 4K of 
memory, and composes a piece the length of 
the above example in 20 seconds. I believe 
this program is another indication of the 
potential of the small computer in music 
composition and other areas of music 
research. 

References 

1. K. Ebcioglu, "Strict Counterpoint by 
Computer," Proc. of 1980 International 
Computer Music Conference. 

2. M. Keith, "NCC: A program that composes 
canons," Proc. of 1981 IEEE Symposium on 
Small Computers in the Arts, IEEE Press. 

3. C. Fry, "Computer Improvisation," Proc. 
of 1980 International Computer Music 
Conference. 

4. M. Keith, "A Combinatorial Aspect of 
Computer Music Composition," Proc. of 1979 
Personal Computing Festival (NCC). 

33 





GRAPHICS SOFTWARE INTERACTION USING THE APPLE* COMPUTER 

by Ame Choate Flynn 

TechniGraphics 
_111 Hicks Street 
Brooklyn, NY 11201 

ABSTRACT 

A drawing or painting goes through many stages 
stages before its completion. Different tools or 
implements are used for different effects. In 
this paper I will show how the creation of compu
ter art using separate pieces of software is 
similar to the traditional method using traditio
nal tools. 

INTRODUCTION 

As more "paper and print" artists transfer 
to the world of computer graphics, programmers are 
recognizing the need for better and easier-to-use 
software. Hardware peripherals and software 
utilities mimic traditional tools and also bring 
new freedom to art and artists. 

One of my graphics or illustrations can go 
through eight or more stages. I use software 
written for the Apple II Plus to create and en
hance my graphics. Certain software utilities may 
be used for only one purpose, but they may be the 
best tool for a specific job. 

The objective is to know which utility to.use 
when. Just as an artist may prefer oils to water
colors, a computer artist may favor one package 
over another. The more pieces of software an 
artist knows, the easier it will be to complete a 
picture or achieve a desired effect. Using these 
tools interactively, by bringing the software to 
the graphic saved on disk, mistakes can be over
come. If a picture is saved at regular intervals, 
it need never be irretrievably lost. It is always 
available for another update or enhancement. 

SOFTWARE OVERVIEW 

APPLE GRAPHICS TABLET 

The Apple Graphics Tablet1 is comparable to 
the traditional "sketch" process. I use this 
peripheral to lay out the rough elements of my 
drawings and may then 'work into' them with other 
pieces of software. 

The Apple Graphics Tablet comes with a soft
ware package containing various routines. Perhaps 
the finest available "quickdraw" routine is 

* Apple and Apple II Plus are registered trademarks 
of Apple Computer Inc., Cupertino, Calif. 

82CH1831-7/82/0000/0035$00.75 © 1982 IEEE 
35 

included; the line drawn on the screen keep up 
with the users' hand movements on the tablet. The 
stylus feels comfortable; it is held and moved like 
a brush or pencil. 'Mountain' - Figure 1, was 
created.entirely with the Apple Graphics Tablet. 

Some of them, and their uses, are: 
Line, a point-to-point line drawing routine. 

Frame makes an open rectangle. Box creates a 
'filled' frame which is useful assn erase function 
if the box is the same color as the background. 
Circle creates a circle based upon your midpoint 
~radius specification. Slide will move a pic
ture around the screen. To effect a slide you 
specify a beginning point and the move point. 

The Tablet uses the eight Apple colors. Soon 
these eight colors begin to pall. The ability to 
fill in large areas with color will seem necessary. 
Other software utilities now come into play, 

MICRO-PAINTER 

I use Micro-Painter2 to fill in an enclosed 
area with any of 21 colors or color-patterns. 
Taking a sketch created on the tablet (Windsurfer -
Figure 2) and saved to disk, I can then make the 
sky light blue, the sea dark blue, and the sail 
areas various colors. I save the image again and 
take it back to the tablet - Figure 3 - working 
into the picture to create waves and rounded 
shapes. 



Figure 2. 

Micro-Painter uses paddles or a joystick to 
move the cursor, and the keyboard to enter com
mands. Black can be changed to white, or green to 
blue, etc. with the use of the Negative function 
to change Apple colors to their complements. 

A magnified view of the screen is achieved 
with the Microscope mode. This is a very handy 
feature when cleaning up text or making miniscule 
changes. 

TEXT 

Character Generators and Font Editors reach 
their intended use in the hands of an artist/ 
designer. In the print or graphics world, text is 
as important as the design or illustration. The 
type style should fit the content and be legible. 

Character Generators allow you to "type" your 
text directly on the high-resolution screen, or 
add it to a previously saved image. 

Text or Font Editors let you create new type 
styles or modify existing ones. Some of the best 
known text generators and/or font editors are: 

E-Z DRAW3 includes many fonts which can be 
displayed in different sizes, weights and widths. 

36 

HIGHER TEXT4 has many fonts and an editor 
which lets you see your font-in-progress in a 
variety of styles. 

THE COMPLETE GRAPHICS SYSTEMS has both a 
character generator and an editor. It can use 
fonts from other packages. It incorporates a kern
ing feature (for tightening up letters) and a lead
ing feature (space between lines) to mimic profes
sional typesetting systems. Figure 4 shows a 
variety of type styles that have been typed or 
created using the above software. 

lernt b etb eng;Ust, 
.ftD n -r&e r n e b 
(Jountdown-li igher TaN I 
Working Font by 

Michael Callery 
Anncz lcKa!:f Font b!:I 

AIUE Fl!:fnn Figure 4. 

TABLET-DRIVEN SOFTWARE 

The Graphics Tablet is considered the easiest 
peripheral for use by the artist. In the past year 
several packages have appeared utilizing the 
Graphics Tablet. Existing packages have also been 
modified for use with the tablet. 

Artists now have the freedom to choose a 
'brush', pick up a color and 'paint' with it 
directly on the screen. They are no longer 
restricted to filling within lines. Color can now 
be put next to color for more dramatic and 
painterly effects. 

SPECIAL EFFECTS 6 includes a Brush Module for 
painting with a selection of 96 different brushes. 
Add these brush options to a choice of 1~8 colors 
and color patterns and the possiblities are 
endless. 'Storm' - Figure 5 was created in this 
manner. 



Other packages for the tablet are THE COMPLETE 

GRAPHICS SYSTEM, UTOPIA7 , GRAPHICS PROFESSIONAL 
8 ---

SYSTEM, and EDU-PAINT. All packages should be 
weighed equally when starting a graphic. Just be
cause a package is mentioned in this paper does 
not imply a recommendation. These happen to be 
software packages I have used. There are other 
good graphics packages on the market that I have 
not mentioned due to space considerations. 

CUMBERLAND GAP TO DONNER PASS 

An example of this interactive-software 
process is provided with Figures 6, 7 and 8. These 
illustrations were produced for educational soft
ware (c) KG Productions. I turned the Cumberland 
Gap into the Donner Pass. 

Figure 6 depicts the Cumberland Gap as drawn 
using the Graphics Tablet, In Figure 7, it has 
been 'flipped' (left is now right) using the 
Tricks Module of Special Effects. I then saved 
the picture, and used the Brush Module of Special 
Effects to add snow. I again saved the graphic 
and went back to the Graphics Tablet to create the 
final Donner Pass illustration. I worked into 
the snow, modified the mountains and added snow
covered pine trees. Starting this picture from 
scratch would have taken more time than was 
available. With the knowledge of what software 
could do, and when to use it, I saved much 
repetitive work, 

Acknowledgement 

Thanks to KG Productions for their per
mission to reproduce "Cumberland Gap" and 
"Donner Pass". 

37 

References 

1. Apple Graphics Tablet by Apple Computer, Inc. 
Cupertino, California. 

2. Micro Painter, (c) Datasoft, Inc., by Bob 
Bishop. 

3. EZ Draw, (c) Sirius Software, by Nasir 
Gebelli and Jerry W. Jewell. 

4. Higher Text, Synergitic Software, by 
Ron and Darrell Aldrich, (c) 1980. 

5. The Complete Graphics System, (c) Penguin 
Software by Mark Pelezarski. 

6. Special Effects, (c)· Penquin Software, by 
Mark Pelezarski and David Lubar. 

7. UTOPIA, by Todd Rundgren. 

8. GPS, (c) Stoneware Software. 

9. EDU-PAINT, (c) Edu-Ware. 





MICROCOMPUTER DRAWING 

by William J. Kolomyjec, Ph.D., M.F.A. 

Department of Engineering Graphics 
The Ohio State University, Columbus, Ohio 

Abstract 

This paper presents graphics software which 
will enable an Apple II Plus™ microcomputer to 
draw in an aesthetic manner. The palette consists 
of the fundamentals of lines, rectangles, circles, 
arcs, and spline curves. A joystick or paddle 
driven cursor is used to locate visual components 
on the screen. A clipping algorithm makes the 
screen boundaries a viewport for large shapes that 
exceed the screen limits. This program illus
trates the potential of using a small computer as 
a medium for individual expression. 

Introduction 

Drawing with the microcomputer is easy if one 
has the appropriate graphics software. Presently, 
individuals who seek to do computer drawing must 
either buy drawing packages or write their own. 
Ideally, individuals should put together their own 
graphics package but not everyone has the desire 
nor, more often, the expertise. The computer art 
movement examplified by organizations such as Small 
Computers in the Arts, should strive to make soft
ware available to the potential electronic artist. 
Consider this an installment for establishment of 
a new direction in small computer arts practice. 

The software presented here incorporates what 
I feel are the essential components of computer 
drawing. It is not a commercial package. However, 
it will present a point of departure for the dis
cussion of arts software. 

The overall program design is original. It 
is comprised of graphic algorithms that are my own, 
obtained from friends, from public domain (maga
zines}, or from textbooks. A description of the 
program and each subroutine will be given which will 
cite specific references. The program will allow 
the user to make visual statements. The computer 
becomes a tool in the hands of the user in a manner 
similar to image-creating tools in other aesthetic 
media. 

Hardware 

A standard Apple II Plus™ microcomputer with 
at least 48K of memory is required. An X-Y joy
stick with two buttons or two game paddles with 
buttons is necessary. 

82CH1831-7/82/0000/0039$00.75 © 1982 IEEE 
39 

Operation 

Upon running the program a text menu is dis
played. The following FUNCTION OPTIONS are pro
vided: 

0 = ERASE SCREEN 
1 = LINE (END POINTS) 
2 = LINE ( CONTINUOUS) 
3 = RECTANGLES (OPPOSITE CORNERS) 
4 = CIRCLE (CENTER & RADIUS) 
5 = ARC (THRU THREE POINTS) 
6 = SPLINE (UP TO 15 POINTS) 
7 = EXIT 

The user selects an option and presses RETURN. 
Only option 0 erases the drawing, entering modes 
1-6 will not erase the screen. Option 7 will exit 
the program. 

In each of the drawing modes (1-6) depressing 
paddle button 0 will perform the function, depress
ing paddle button 1 will return to the function 
option menu. Spline is an exception: Pushing 0's 
will define the curve, pushing l will draw it. The 
mode is not exited until 1 is pushed again after 
the curve is complete, i.e., twice. That's all 
there is to tt. 

Main Program 

The main program, lines 100-999, typifies 
good graphics style. Line 120 keeps the program 
above the graphics portion of memory. 1 Li~e 130 
jumps to a subroutine that performs initialization 
of clipping and joystick routines as well as other 
program variables. Line 140 jumps to the TEXT MENU 
subroutine. 

After the user enters the option, line 150, 
it is checked for being in the appropriate accept
able response range. Line 170 branches to the 
chosen function. Each function is a subroutine in 
itself. A branch to each function entails: 1} 
switching into graphics without screen erasure, 2) 
performing the function, and 3) upon return, the 
menu is re-displayed and control is transferred to 
line 150 once again. The exceptions are clear 
screen and exit. 

Subroutines 

CPLOTSUB, 1000-1070. This subroutine converts 
X, Y, P plot codes into Xl,Yl,X2,Y2 vectors. It 



checks for valid pen control values, line 1020. 
Once a vector or line segment is obtained the 
clipping routine is called, line 1040. Clipping 
works as follows: If the line segment is off the 
screen, nothing happens. If the line segment is 
partially off the screen, clipping is perfonned 
and it is plotted. If the line is totally on the 
screen, it is plotted. 

DON'T ERASE, 1250-1260. A series of soft 
switches are POKE'd to re-enter graphics without 
clearing screen memory. 2 

RECTANGLE SUB, 1500-1550. This general rec
tangle drawing algorithm generates the plotcodes 
for a rectangle given a starting location and a 
height and width. The source of this routine and 
others like it is Computer Graphics,3 a fine com
puter graphics primer/workbook. 

ARC SUB, 1700-1800. This is a general arc 
drawing subroutine that requires 6 parameters: X 
and Y coordinates of the center, a radius, a be
ginning and final angle (_in degrees) and a flag 
to indicate drawing direction, clockwise or 
counter clockwise. The sampling rate varies and 
is detennined by the radius. 

DELAY, 2000-2010. This is a short sub
routine that does nothing more than waste time. 
It acts as an adjustment to paddle button sensi
tivity (the heavier your touch - the longer the 
delay). The variable determining the duration of 
this loop is located in line 8020. 

LINEl, 3000-3080. This is the first func
tion option subroutine. The cursor is displayed 
(line 3010). Depressing button~ will continually 
define the respective end points of lines. After 
the first end point is entered that pixcel (dis
crete screen coordinate) is turned on (.line 3030), 
after the second location is entered, the line 
segment is drawn (line 3060). Depressing button 
1 will exit the routine and consequently return 
to the main menu. 

LINE2, 3500-3590. This routine is similar 
to the LINEl subroutine with the exception that 
every time a location is entered after the 
second location, the line is connected to the 
previous location producing a continuous line. 
Depressing button 1 will exit the routine and 
return to the menu. 

CURSOR RECTANGLES, 4000-4120. Two locations 
are entered via positioning the cursor defining 
opposite corners of a rectangle. These locations 
are momentarily displayed. The computer checks 
the coordinates of these locations, determines 
the smallest X and Y, switching them if necessary, 
and calculates the height and width of the rec
tangle (.lines 4070-4090). With this data the 
RECTANGLE subroutine is called (line 4100). This 
process continues until button l is depressed. 

CIRCLE, 4500-4620. This function routine 
uses the ARC SUB and hence the variables: FANG, 

40 

LANG and !DIR% are illlllediately defined. The re
maining variables, XCT, YCT, and Rare defined 
after a center location and a point on the cir
cumference are provided, using the cursor. The 
radius is computed using the Pythagorean Theorem 
in line 4600. Note that before the circle is 
drawn the center location pixcel is turned off, 
line 4590. This is a clue for "selective erasure." 
The point is simply drawn over in black (HCOLOR = 
4). 

With all six parameters required by the ARC 
subroutine defined, a circle can be plotted. Note 
that it is possible for part of the circle to lie 
off the visible screen or outside the viewport. 
Fortunately CPLOTSUB in conjunction with CLIP 
takes care of these occurrences. This function 
routine, like the others, will continue in this 
mode until button l is depressed. 

ARC THRU THREE POINTS, 5000-5220. The logic 
in this routine is by far the most complex to this 
point, save the spline algorithm. Once three 
locations are defined using the cursor, an arc of 
a circle will be drawn through those points in 
the order that they are provided. Clearly, use 
of the existing ARC subroutine is appropriate 
but this tends to add to the complexity of this 
routine. There are probably easier ways to do 
this but I haven't found anything else that will 
work as wel 1. 

The key to this routine is the use of the 
THETA function which returns the angle (in radians) 
fonned between a point in a plane and the plus 
X-axis vector of that coordinate system. But this 
is only half the problem. Based on the parameters 
required by the ARC subroutine a starting angle, 
FANG, ending angle, LANG, and a direction are re
quired. This is accomplished in lines 5140-5190. 
Incidentally, MANG is the middle angle between 
FANG and LANG which determines the appropriate 
arc (and not its complement) that is required. 

SPLINE, 5500-5670 and CURVE COORD FINDER, 
6500-6560. These two routines need not be separ
ate but are in order to make the code easier to 
understand. This algorithm was given to me by a 
friend, Christopher Scussel. Anyway, I'm not 
sure where he got it, or why it works, but it 
does. 

The routine gathers screen locations into 
an array, plotting and storing them until button 
l is pushed. Note: this is the one exception to 
exiting from a function routine. The algorithm 
then takes over and plots a smooth curve or spline 
curve through the points. Truly amazing! The 
cursor reappears when the curve is complete and, 
unless button l is depressed to exit, another 
curve may be defined and plotted. 

CURSOR2SUB, 7000-7070. This is the heart of 
the interactive graphics capability of this soft
ware. The cursor, which is a high-resolution 
shape, is controlled using the analog inputs (joy
stick or paddles). The location of the center of 
the cursor at any time it appears on the screen is 



X%, Y%. The cursor is deliberately confined to 
the Page2 graphics screen (280 X 192) and hence X% 
can only be in the range 0 to 279 and Y% fr?m ~ to 
191. The loop on line 7030 controls the blinking 
quality of the cursor and must be performed an_even 
number of times or little cursors get left behind. 

4 u I G "d 5 See the Applesoft manual or Apple II ser s u~ e 
for more about XDRAW. The two IF statements, lines 

6 7040-7050, check the paddle button status. If 
either button is depressed the button flag variable, 
Fl%, is redefined and the routine is exited. 

INITCURSORSUB, 7500-7560. This routine is 
only used once at the beginning of the program. It 
POKE' s a shape ( the cursor) into an obscure part 
of memory (.$301,} - $30F). This shape can then be 
used by the XDRAW function in the cursor routine. 

COMPUTE CENTER AND RADIUS, 8500-8570. This 
algorithm was taken from a book of BASIC 
algorithms. 7 Once the errors it was published 
with were removed, it was implemented to calculate 
the center and radius of a circle given three 
points. It has also been imp~oved to pre~ent 
divide-bj-zero errors (by adding 0.00001 in ap
propriate places) when three points get too close 
to coinciding with a straight line where, of 
course, there is no answer. 

THETA FUNCTION, 8750-8850. This subroutine 
returns an angle when given a coordinate location. 
Its function was previously discussed in the ARC 
THRU THREE POINTS subroutine narrative. The credit 
here again goes to C. Scussel. 

TEXT MENU, 9000-9110. The main menu is 
provided by this routine. Upon its ~xecuti?n the 
text screen is cleared and the function options 
list is printed. Control is then transferred 
back to the main program. I have found that a 
graphics menu works bet~er, th~t is, using ~he key
board is too visually distracting. A graphics menu 
allows the cursor position to "pick" the function 
option. This version of the program will not be 
given. 

CLIPPING INIT, 10000-10030. Like INITCUR
SORSUB this routine is only used once by the pro
gram. It performs a little houseke~pi~g and s~ts 
the string variables used by the clipping routine 
to the null string, line 10010. Line 10020 de
fines the boundaries of the viewport which exactly 
coincides with the screen limits. 

CLIP SUBROUTINE, 20000-20430. This is the 
famous Cohen-Sutherland clipping algorithm. 8 It 
is somewhat ill-suited to BASIC but works well 
enough. This particular adaptation was brought to 
my attention via a magazine article. 9 I have 
modified it to work more efficiently in conjunction 
with CPLOTSUB but it slows the program down and 
takes a lot of program memory. Without clipping, 
fatal errors would occur any time the screen boun
daries were exceeded causing the program to halt 
prematurely. Clipping is a must for the majority 
of interactive graphics programs. 

41 

Conclusion 

Computer software is what gives intelligence 
to the computer enabling it to function as a tool. 
The program given at the end of this article will 
enable an Apple II™ microcomputer to perfonn like 
an aesthetic tool. In keeping with my philosophylO 
the mind which is the source of inspiration is 
facilitated by the hand using the computer with 
appropriate software to generate or create a vis
ual statement. Software can be art too! 

This program was written by me in my own 
style. I like to use mnemonic variable n~mes and 
I tend to write in a manner that makes things 

·clear for me. Programming style, like aesthetics, 
is very personal. Individual style is revealed in 
programs because people write them. The Walt . 
Disney film, TRON, presented programs as personif
ications which emphasize this point. 

A final word about the Applesoft code that 
follows. It had to be compressed. The majority 
of the REM statements were removed and multiple 

. 1 11 statements per line had to be used extensive y. 
This technique saves space and makes the program 
fit into memory but makes it less readable and for 
this I apologise. Compiling really improves the 
speed but requires expensive compiler software. 

Take the time to enter it into an Apple. 
Learn from it! Make beautiful pictures with it 
and, most of all, enjoy it. Any art making ex-. 
perience should be positive. Try computer drawing 
as a medium for your personal expression. 

1. 

2. 

3. 

4. 

5. 

6. 

]. 

8. 

References 

Poole, L. et al. Apple II User's Guide. 
Osborne/McGraw Hill. Berkeley, Ca.: 1981. 
p. 204. 

Ibid. p. 205. 

Demel, J.T. et al. Computer Graphics. Crea
tive Publishing Company. College Station, 
TX. : 1979. p. 25. 

A lesoft: Basic Pro rammin Reference 
Manual. Apple Computer Co. Product# 
A2L0006). Cupertino, CA.: 1981. p. 98. 

Poole, L. et al. Apple II User's Guide. 
Osborne/McGraw Hill. Berkeley, CA.: 1981. 
p. 312. 

Ibid. p. 344. 

Tracton, K. 57 Practical Programs & Games 
in Basic. TAB Books. Blue Ridge Summit, 
PA.: 1978, p. 30. 

Newman, W.M. and Sproull, R.F. Principles 
of Interactive Computer Graphics. McGraw
Hill Book Co. N.Y.: 1973. p. 123. 



9. Hansen, C. "A graphics package for the 
Apple." Creative Computing Magazine, Vol. 
8, No. 7, July 82, p. 110. 

10. Kolomyjec, W.J. "Thoughts on computer aes
thetics and the future role.of small com
puters." Proceedings Symposium on Small 
Computers in the Arts. Philadelphia, PA. 
Nov. 20-22, 1981. pp. 59-62. 

11. Applesoft: Basic Programming Reference 
Manual. Apple Computer Co. (Product# 
A2L0006). Cupertino, CA.: 1981. pp. 118-
120. 

Program Listing 

100 REM <<<<<<<<< COMPUTER DRAWING>>>>> 
)))) 

110 REM <<< COPYRIGHT 1982 W.J.KOLOMYJEC 
))) 

128 L01EM: 24576 
130 GOSUB 8000 
140 GOSUB 9000 
150 PRINT INPUT "ENTER OPTION:• ;O'/. 
160 IF O'/. < 0 ORO'/.> 7 THEN 140 
170 ONO'/.+ 1 GOTO 180,190,200,210,220,23 
0,240,250 
180 HGR2: GOTO 140: REM ERASE 
190 GOSUB 12501 GOSUB 3000: GOTO 140 
200 GOSUB 1250: GOSUB 3500: GOTO 140 
210 GOSUB 1250: GOSUB 4000: GOTO 140 
220 GOSUB 1250: GOSUB 4500: GOTO 140 
230 GOSUB 1250: GOSUB 5000: GOTO 140 
240 GOSUB 1250: GOSUB 5500: GOTO 140 
250 HOME: VTAB 10: PRINT "END COMPUTER D 
RAWING" 
999 END 
1000 REM «<« CPLOTSUB >»» 
1010 IF P = 2 THEN Xl = X:Yl = Y: RETURN 

1020 IF P < > 1 THEN STOP 
1030 X2 • X:Y2 = Y 
1040 GOSUB 20000: REM CLIPSUB 
1050 IF OUT= 1 THEN 1070 
1860 HPLOT X1,Y1 TO X2,Y2 
1070 Xl = X:Yl = Y: RETURN 
1250 REM <<<<< DON'T ERASE))))) 
1260 POKE 49232,0: POKE 49239,0: POKE 492 
37,0: RETURN 
1500 REM <<<<< RECTANGLE SUB>>>>> 
1510 X = XR:Y = YR:P = 2: GOSUB 1000 
1520 X = XR + W:Y = YR:P = 1: GOSUB 1000 
1530 X = XR + W:Y =YR+ H:P = 1: GOSUB 10 
00 
1540 X = XR:Y =YR+ H:P = 1: GOSUB 1000 
1550 X = XR:Y = YR:P = 1: GOSUB 1000: RETU 
RN 
1700 REM <<<<< ARC SUB>>>>> 
1710 IF R < = 8 THEN NS= 101 GOTO 1760 
1720 IF R > = 9 AND R < 16 THEN NS= 20: 

GOTO 1760 
1738 IF R > = 17 AND R < 32 THEN NS= 30 
: GOTO 1760 
1740 IF R > = 33 AND R < 64 THEN NS= 45 
1 GOTO 1760 
1750 IF R) • 65 THEN NS= 90 
1760 AL= ABS <LANG - FANG) :N = INT <<AL 
/ 360) ~NS+ 0.5) 

42 

1770 F •FANG/ 57.295779:L =LANG/ 57.29 
5779 
1780 FOR J • 1 TON 
1790 PCT= <J - l) / (N - l + 0.00001) 
1800 IF IDIR¾ < 0 THEN PCT= 1.0 - PCT 
1810 AN= <L - F> i PCT+ F 
1820 X = INT <R i COS <AN> + XCT + 0.5>: 
Y • INT (R • SIN <AN> + YCT + 0.5) 
1830 IF J < > 1 THEN 1850 
1840 P = 21 GOSUB 10001 GOTO 1868 
1850 P • 11 BOSUB 1888 
1860 NEXT J1 RETURN 
2000 REM <<<<<DELAY>>>>> 
2010 FOR D0 = 1 TO DL1 NEXT D0: RETURN 

3000 
3010 
3020 
3030 
3040 
3050 
3060 

3070 
3080 

3500 
3510 
3520 
3530 
3540 
3550 
3560 
3570 

3580 
0 
3590 

REM < «·« LI NE 1 » ») 
GOSUB 7000: REM CURSOR 
IF F1X = 1 THEN 3080 

Xl = XX:Yl = YX: HPLOT X1,Y1 
GOSUB 20081 GOSUB 7888 
IF Fl'/.= 1 THEN 3080 

X2 = X%:Y2 = YX: HPLOT Xl,Yl TO X2,Y2 

GOSUB 2000: GOTO 3010 
RETURN 

REM <<<<< LINE2 >>>>> 
GOSUB 7000 
IF F 11/. = 1 THEN 3590 

X1 = X"/.:Yl = Y%: HPLOT X1 ,Y1 
GOSUB 2000 
GOSUB 7000 
IF Fl¾ • 1 THEN 3590 

X2 = X%:Y2 = Y'/.: HPLOT X1 ,Y1 TO X2,Y2 

GOSUB 2000:Xl = X2:Y1 = Y2: GOTO 355 

RETURN 



□ 
c:::, c::J I 

0 

~ C 
c::, 

I 
- -r-~ 

CJ CJ --I - I CJ 
a 

I 
I 

□ D -
-

4888 REM <<<<< CURSOR RECTANGLES>>>>> 
4818 GOSUB 7880 
4028 IF FIX• 1 THEN 4128 
4030 XR = XXrYR = Y"/.1 HPLOT XR,YR 
4048 GOSUB 20881 GOSUB 7080 
4058 IF FIX• I THEN 4120 
4068 XS• XX1YS = Y'/.1 HPLOT XS,YS 
4878 IF XS< XR THEN T = XR1XR = XS:XS = 
T 
4888 IF YS < YR THEN T • YR1YR = YS:YS • 
T 
4098 H • ABS (YS - YR) :W • ABS <XS - XR> 

4108 GOSUB 1508: REM RECTSUB 
4110 GOSUB 2000: GOTO 4010 
4120 RETURN 

4500 REM <«« CIRCLE »>>> 
4510 FANG= 81LANG • 3681IDIRX = - 1 
4528 GOSUB 7888 
4538 IF FlX = 1 THEN 4620 
4540 X1 = XX:Y1 • Y'/.1 HPLOT X1,Y1 
4550 GOSUB 20801 GOSUB 7000 
4560 IF FlX = 1 THEN 4620 
4570 X2 • XX1Y2 = Y'/.1 HPLOT X2,Y2 
4580 GOSUB 2000 
4590 HCOLOR= 4: HPLOT X1,Y1: HCOLOR= 31 R 
EM REMOVE CENTER 
4600 XD = ABS (X2 - Xl> :YD= ABS <Y2 - Y 
1)1R • SQR <XD l XD +YD~ YD> 
4610 XCT = X1:YCT • Y11 GOSUB 1700: GOTO 4 
520 
4620 RETURN 

43 

5000 REM <<<<< ARC THRU THREE POINTS>>> 
» 
5818 GOSUB 7000 
5828 IF FlX = 1 THEN 5220 
5830 X1 • XX:Y1 = Y'/.1 HPLOT X1,Y1 
5048 GOSUB 2800: GOSUB 7888 
5858 IF FIX• 1 THEN 5220 
5868 X2 • XX:Y2 = YX: HPLOT X2,Y2 
5070 GOSUB 28881 GOSUB 7888 
5888 IF FIX• 1 THEN 5228 
5898 X3 = XX:Y3 • Y'/.1 HPLOT X3,Y3 
5100 GOSUB 28881 GOSUB 898: REM CALC X 
O,YO,R 
5110 XCT • X01YCT = Y01XX • XI - XCT1YY • 
Yl - YCT1 GOSUB 87581FANG • THETA l 57.295 
779 
5120 XX = X2 - XCT.1YY • Y2 - YCT1 GOSUB 87 
50:MANG • THETA l 57.295779 
5130 XX= X3 - XCT1YY • Y3 - YCT1 GOSUB 87 
50:LANG = THETA l 57.295779 
5148 IF FANG< MANG AND MANG< LANG THEN 
IDIR'/. • 11 GOTO 5280 
5150 IF FANG< LANG AND LANG< MANG THEN 
IDIR'/. • - 1 :TEMP = LANG:LANG = FANG + 368 
:FANG= TEMP1 GOTO 5200 
5168 IF MANG< FANG AND FANG< LANG THEN 
IDIR'/. • - 11TEMP • LANGtLANG = FANG + 368 
1MANG =MANG+ 368tFANG = TEMP: GOTO 5208 
5170 IF MANG< LANG AND LANG< FANG THEN 
IDIRX = 11MANG • MANG + 360 :LANG = LANG + 
3601 GOTO 5200 
5180 IF LANG< FANG AND FANG< MANG THEN 
IDIRX = 1:LANG =LANG+ 360: GOTO 5200 
5198 IDIR'/. = - 1tTEMP = LANG:LANG • FANG1 
FANG= TEMP 
5200 GOSUB 1700 
5218 GOTO 58 10 
5220 RETURN 



REM <<<<<SPLINE>>>>> 
K = 1 

GOSUB 7000: GOSUB 2000 
IF F1X = 1 THEN 5590 
HPLOT XX , Y"/. 

C<K,I> • XX:C<K,2> • YY. 
K • K + 1 

I F K > NP'/. THEN K = NP'/. 1 REM 

GOTO 5520 

LIMIT 

5500 
5518 
5520 
5530 
5540 
5550 
5560 
5570 
CHECK 
5580 
5590 
~88 
5618 

l<NT • K - 1 :NS • 
FOR J • 1 TO NS 

T = (J - 1) / <NS 

IRS )I l<NT:P • 2 

- 1) • Cl<NT - D + 

I 
5620 
5630 
5640 
5650 
5660 

GOSUB 6508 
IF J < > 1 THEN P = 1 
GOSUB 1808 
NEXT J 
GOSUB 70881 IF FIY. • THEN 

5670 GOSUB 20001K • 11 GOTO 5540 

RETURN 

6500 REN <<<<< CURVE COORO FINDER>>>>> 
6510 X • 81Y • 0:0 • 81S • - 1 
6528 FOR I= 1 TO l<NT 
6530 F • EXP CT - l + 8.181)1F • 2 / CF -

1 / F> 
6540 X = X + S )I C<I,1> )I F1Y = Y + S )IC< 
I ,2> )I F 
6550 0 = 0 + S )I F1S = - S 
6568 NEXT I:X • X / 01Y = Y / 0: RETURN 
7000 REM <<<<< CURSOR2SUB >>>>> 
7010 XP = POL (8) / 2551YP = POL (1) / 2 
55 
7828 XX• 279 )I XP + 0.51Y"/. • 191 l YP + 0 
.5 
7830 FOR J • 1 TO LOOP1 XORAW 1 AT XX,Y½: 
NEXT J 

7040 IF PEEK <P0) > 127 THEN F1X = 0: GO 
TO 7070 
7050 IF PEEK <PI) > 127 THEN F 11/. = 1: .RE 
TURN 
7060 GOTO 7010 
7070 RETURN 
7500 REM <<<<< INITCURSORSUB >>>>> 
75l8 ROT• 01 SCALE= 2:LOOP = 6 
7528 DATA 1,0,4,0,36,76,145,58 
7530 DATA 63,63,23,82,9,36,4,0 
7540 FOR J = 768 TO 7831 READ 01 POKE J,D 
: NEXT J 
7550 POKE 232 1 01 POKE 233,3 
7560 RETURN 

44 

8000 REM <<<<< INIT PROGRAM VARIABLES>> 
»> 
8010 HGR: HGR2: HCOLOR= 3 
8020 DL = 50:P0 = 49249:Pl = 49250:FlX = 0 

8030 
8040 
8050 
8060 
8508 
»» 

GOSUB 7500: REM INIT CURSOR 
GOSUB 10000: REM CLIPPING INIT 

IRS= 5:NP'/. = 15: DIM C(NP½,2) 
RETURN 
REM <<<<< COMPUTE CENTER~ RADIUS> 

8510 Tl= (Y2 - Yl> / CX2 - Xl + 0.00001>: 
T2 = <Y3 - Y1) / <X3 - Xl + 0.00001> 
8520 T3 = <<X2 - X1) )I <X2 + X1>> + <<Y2 -
YD )I CY2 + YD> 

8530 T4 = T3 / (2 )I (X2 - Xl) + 0.00001) 
8540 TS= ((X3 - X1) )I (X3 + Xl)) + <(Y3 -

YD )I (Y3 + Y1)) 
8550 T6 =TS/ (2 * (X3 - Xl) + 0.00001) 
8560 YO= (T6 - T4) / (T2 - Tl>1XO = T6 -
(T2 )I YO> 
8570 R = SQR ((X3 - XO) A 2 + (Y3 - YO) A 

2)1 RETURN 

8750 REM <<<<< THETA FUNCTICN >>>>> 
8760 PI= 4 * ATN (1.) :UNOF = 0 
8770 IF XX< 0 THEN THETA= Pl + ATN <YY 
/ XX>: RETURN 

8780 IF XX= 0 THEN 8800 
8798 GOTO 8830 
8800 IF YY < 0 THEN THETA= PI~ 1,5: RET 
URN 
8810 IF YY = 0 THEN THETA= UNDFt RETURN 

8820 THETA = PI / 2: RETURN 
8830 IF YY < 0 THEN THETA• 2 )I PI+ ATN 

(YY / XX> 
8840 IF YY = 0 THEN THETA= 81 RETURN 
8850 THETA= ATN <YY / XX) 1 RETURN 
9000 REM <<<<< TEXT MENU>>>>> 
9010 HOME : TEXT I VTAB 5 
9020 PRINT "FUNCTICN ~PTICNS1• 
9030 PRINT PRINT• 0=ERASE SCREEN" 
9040 PRINT • 1=LINE <END POINTS)" 
9050 PRINT " 2'=LINE (CCNTINUOUS) • 
9060 PRINT" 3-RECTANGLE <OPPOSITE CORN 
ERS)" 
9070 PRINT • 4=CIRCLE (CENTER~ RADIUS> 

5=ARC CTHRU THREE POINTS>" 

6=SPLINE <UP TO 15 POINTS> 

9080 PRINT• 

9090 PRINT • 

9108 
9110 
10000 
10010 

PRINT• 7=EXIT" 
RETURN 

REM <<<<< CLIPPING INIT >>>>> 
X = FRE (0) :EH$= "":ET$= ••:El$= 

••:E2$ = •• 
10820 VL = 0:VR = 279:VB = 8:VT • 191 
10038 RETURN 



20000 REM <<<<< CLIP SUBROUTINE>>>>> 
20010 GOSUB 20250: GOSUB 20350 
20020 IF E1$ = "0000" AND E2$ = "0000" TH 
EN OUT = 0 : RETURN 
20030 ET$= LEFT$ (E1$,1) 1 IF ET$= LEFT 
$ <E2$,1) AND ET$< ) "0" THEN OUT= 1: R 
ETURN 
20040 ET$= MID$ <E1$ 1 2,1>: IF ET$= MID 
$ <E2$,2, 1> AND ET$ < > 11 0" THEN OUT = 1: 

RETURN 
20050 ET$= MID$ <E1$,3 1 1): IF ET$= MID 
$ < E2$ , 3, 1 > AND ET$ < > 11 0 11 THEN OUT = 1 : 

RETURN 
20060 ET$= RIGHT$ <E1$,1): IF ET$= RIG 
HT$ ( E2$ , 1 > AND ET$ < ) 11 0 • THEN OUT = 1 : 

RETURN 
20070 EH$ = E1$: IF EH$ = 11 0000" THEN EH$ 
= E2$ 
20080 IF LEFT$ (EH$,1) = •0• THEN 20110 
20090 Y3 = Y1 + <Y2 - Y1> * <VL - X1> / <X 
2 - X1>:X3 = VL 
20100 GOTO 20190 
20110 IF MID$ (EH$,2,1> = "0" THEN 20140 

20120 Y3 = Y1 + (Y2 - Y1> * <VR - X1> / <X 
2 - X 1> :X3 = VR 
20130 GOTO 20190 
20140 IF MID$ (EH$ 1 3,1) = "0" THEN 20170 

20150 X3 =XI+ (X2 - X1) * <VB - YI)/ <Y 
2 - Y1> :Y3 = VB 
20160 GOTO 20190 
20170 IF RIGHT$ <EH$,1) = "0" THEN 20190 

20180 X3 =XI+ (X2 - X1> * (VT - Y1> / <Y 
2 - Y 1> :Y3 = VT 
20190 IF EH$= El$ THEN 20220 
20200 X2 = X3,Y2 = Y3: GOSUB 20340 
20210 GOTO 20020 
20220 X1 = X3:Y1 = Y3: GOSUB 20250 
20230 GOTO 20020 

45 

20240 
20250 
20260 
80 

REM ENDPOINT CODES X1,Y1 
El$••• 

IF X1 < VL THEN El$= •1•: 

20270 El$= "0" 

GOTO 202 

20280 IF X1 > VR THEN E1$ =El$+ •t•: GO 
TO 20300 
20290 El$= El$+ •0• 
20300 IF Y1 < VB THEN El$= E1$ + •t•: GO 
TO 20320 
20310 E1$ = E1$ + •0• 
20320 IF Y1) VT THEN E1$ = E1$ + "1": RE 
TURN 
20330 
20340 
20350 
20360 
80 

E1$ =El$+ "0": RETURN 
REM ENDPOINT CODES X2,Y2 

E2$ = H. 
IF X2 < VL THEN E2$ = •t•: 

20370 E2$ = •0• 

GOTO 203 

20380 IF X2 > VR THEN E2$ = E2$ + •1•: GO 
TO 20480 
20390 E2$ = E2$ + "0" 
20400 IF Y2 < VB THEN E2$ = E2$ + "1": GO 
TO 20420 
20410 E2$ = E2$ + •9• 
20420 IF Y2 > VT THEN E2$ = E2$ + "1": RE 
TURN 
20430 E2$ = E2$ + "0": RETURN 
22222 REM <<<<< END COMPUTER DRAWING>>> 
)) 





ANALYTICAL COMPUTER A..~T 

Joe Jacobson 

675 E. Street Road, Apt. 1009 
Warminster,PA 18974 

Abstract 

Analytical computer art,consisting of geomet
ric designs based on explicit mathematical funct
ions, is discussed in terms of 3 fundamental types 
of algorithms. An example is given of each type, 
with sample output patterns included. 

Introduction 

One of the oldest forms of visual computer art 
is the geometric design, or "line drawing;" pictures 
of this type have been generated ever since the 
first plotting peripherals became available. The 
field is still lively and today a great deal of 
experimentation and innovation has been done, in an 
attempt to exploit the potential of the high-speed, 
high-resolution graphics systems that are currently 
available. While most home computer CRT monitor sys
tems do not fall under this category, it is possible 
to achieve high spatial resolution with a personal 
computer system if it includes a good mechanical 
plotter. In addition, an increasing number of artists 
are gaining access to high-performance laboratory
quality systems. 

I create geometric designs on a Tektronix 4054 
computer terminal, which contains a 16-bit micro
processor and can be used in "stand-alone" mode 
without involving a larger, remote computer. I use 
the Tektronix "PLOT 50" software system, which inc
ludes a version of BASIC language and some machine-

specific graphics commands 1 

Types of Computer Art Programs 

My computer art is "analytical" in the sense 
that it is based on explicit mathematical functions 
expressed in either rectangular or polar coordin
ates. These functions are typically algebraic, trig
onometric, or exponential in nature. The resulting 
computer programs fall into one of three classes. 

The first type of program is custom-designed to 
generate a specific, pre-conceived geometric pat
tern. The second type allows the user to prescribe 
values for a set of input parameters, with each 
specific combination of inputs resulting in a unique 
output pattern. The third type of program is a comb
ination of the first two; a particular output patt
ern is selected that resulted from a program of the 
second type, and a new program (of the third type) 
is written to deliberately improve this pattern in 
some way. As an example, the visual contrast of the 

82HC1831-7/82/0000/0047$00.75 © 1982 IEEE 
47 

picture may be enhanced. 
Examples of outputs from all three types of 

programs will be presented here. BASIC listings will 
be given for two of the programs. 

An Example of the First Type of Program 

A program of the first type resulted in the 
pattern shown in figure 1. This picture is a 3-D 
perspective plot of the surface generated by a 
function of 2 variables. This function, which has 
the form z= f(x,y) , is given by the following 
expression: 

z "' 5xe -x /sin(60y)/ 

2r 2 2] +0. 9e-10(x-0.95) le-lO(y-1.5) +e-lO(y-4.5) (1) 

where the argument of the sine function is interp
reted in units of degrees (not radians) and the 
surface is plotted over the domain O!x~6, O!y~6. 
While this complicated function may seem somewhat 
abstract, the resulting pattern, shown in figure 1, 
will probably remind most viewers of a certain 
biological form. I "tailor-made" the function 
expressed in equation (1) to generate this pattern. 
The particular combination of elementary functions 
used, as well as the values of all constants, were 
selected accordingly. 

In this program the numerical parameter values 
can, in fact, be varied slightly in order to effect 
desired changes in the pattern. An example would be 
selection of a value larger, or smaller, than 0.9 
for the coefficient of the gaussian "fine structure" 
term, which can have an interesting psychological 
effect on male viewer response to the pattern. How
ever, the overall pattern shown in figure 1 is 
basically the only output of the particular comput
er program used. 

It might be noted in passing that this program 
did not use hidden-line suppression techniques; 
instead, the viewing angle was chosen to minimize 
the effects of hidden lines. The program was trans
literated into BASIC from a low-level calculator 
language and a listing is not given here because it 
would take up several pages. However, if the 3-D 
perspective transformation equations had been coded 
directly into BASIC, the program would probably be 
no more than a tenth as long. 



An Example of the Second Type of Program 

An example of the second type of program is 
the "Composite Loop" program, for which a listing 
is included here. 

1• 11£ft C°"'°51T£ LOOP "°"'Ml 
118 PAGE 
198 PRINT •ENTER L TO GENERATE A PAIITICULAR PICTURE.• 
1&11 INPUT L 
178 PRINT "ENTER OTO ADJUST SPACING" 1• PRINT •ETIIEEJII ANGUL.Alt SIIEEPS,• 
IN PRINT •SELECT A YAU£ ETIIEEN 18 AND !le FOR 0. • 
288 IN'UT D 
218 PRINT •ENTER G TO ADJUST ANGULAR INCltUIENT.• 
228 INPUT C 
221 PRINT "ENTER ANGULAR FltEOUENCY P.. • 
222 INPU'f,. 
221 PtUNT "ENTER INTERNAL IIE1CMTS, UI ,U2 • 
224 INPUT UI ,112 
2a PRINT "ENTER EXTERNAL 11£11:HTS, 111,112 • 
228 INPUT 111,112 
218 PRINT "ENTER Tl• 
248 INPUT Tl 
298 PAGE 
288 SET DEGlt£ES 
278 JF' Tls2 THEN -
288 YIEIIPORT 22, IN, 14, IN 
218 CO TO 118 
- VJEIIPORT 15,115,8,1-
118 F'Olt ••• TO IU STEP D 
128 F'IIR A.a TO IU STEP C 
◄- SsATNIVl/112) 
418 T■IU.81,IV1'5JNISl+V2SCOSISI) 
428 VINOOII -T,T,-T,T 
515 z.i1,1PJ/21SIUISSINILSAl+U2SCOSIL•AJ) 
528 R•1v1ssrN1z1+112'CDS1z,1 
748 XJSCOSIAI 
718 YsltSSINIA) 
7&11 IF' A>8 THEN 718 
778 IIOVE X,Y 
719 CO TO -7- OltAV X,Y 
- NEXT A 818 NEXT I 
128 IF' Tl■ I TtlEN 848 
8a END 
... VJNDOII 8,111,8,t• 
8118 VIEIIPIIRT 8, •·••• 1• 
-ftOVE ■.11 
878 PRINT • CIJltlOIITE LOOP PIIOGIWI PARM1£TEltS• 
- l'IOYt •• , 
■- PRINT "IL O G ,., • •··L·· ··o·· ·•c·· •. ,. .• ,. 
-

I NJNT •1ui,U21 1 VI 112>; ( ■ :u•,.~ ~.: .. ~.•.:11•1•• •.~.•,• 
- JNPUT Je • • • • • ,wa, • • • , •••• 
818 Tl-2 
129 CO TO 2Y 

This program prompts the user to select values 
for eight input parameters. The output pattern is 
very sensitive to these input values and a large 
variety of pictures, of varying aesthetic appeal, 
can result from the use of this program. ·Once a 
program of this type is written, the artist tries 
to exploit its potential by repeated selection of 
sets of input values. This can be done at random, 
but better results are achieved if the user applies 
mathematical and artistic intuition tempered by a 
knowledge of how the program works. Some sample 
output patterns, with the corresponding input 
values displayed as annotations, are shown in 
figures 2 through 9. 

Programs of this second type illustrate a 
practical paradox associated with computers. In 
principle, computers function in a totally determi
nistic manner; a given algorit.hm will, for a 
certain set of inputs, always yield the same 
output pattern, (The set of inputs may include 

48 

seed inputs to a random number generator; if all 
the inputs are known, the output is repeatable:) 
However, from a practical standpoint, the results 
can seem quite random and unpredictable; there is 
no way of predicting the exact output that will 
result from previously untried combinations of 
input parameters, except by cranking through the 
calculation manually--which in many cases would 
take a human lifetime to do. However, in using 
programs like Composite Loop, intuition has a 
definite place; it is a trans-logical process that 
can help the artist increase the frequency of 
appearance of aesthetically desirable outputs. 

An Example of the Third Type of Program 

A program of the third type is typified by 
the ;'Gear" algorithm, for which a listing is 
included here. 

N 11£11 CE.Alt 
18 REN IF'ILE 42> 1• PAGE 
180 SET OEGREES 
118 VINDOV -981,Ml,-Ml,YI 
111 YIEIIPIIRT 19,119,8,IN 
I 12 PAGE 
1 II L•48 
115 PAGE 
128 F'OR e.1• TO 4N STEP I 
118 FOR A .. TO - STEP 5 
148 GOSU8 IU 
145 IF A>I THEN IY 
141 ftOVE X.Y 
147 CO TO IU 
198 DRAII X,Y 
Ill !EXT A 
171 NEllT 8 
175 CO TO 211 
1• lt■8•tl+8.25•A8StSJNIL•AIII 1• X.lhCOSIAl 
288 YsltSSUII A I 
218 RETUllft 
211 FOR Nae TO L STEP I.I 
212 RslN 
211 T■NSlllll'Ll 
214 XahCOSITl 
215 V.RSSINITI 
211 IIOVE X,Y 
217 XahCOSIT+INI 
211 Y•R•SINIT+1Nl 
21'1 OltAV X, Y 
228 NEXT II 
221 DC> 

This routine had its origins in an earlier 
program, called "Sinusoidal Loop No. 2," which is 
of the second type. This program will be described 

in detail elsewhere2 . Selection of a particular 
set of input parameters with "Sinusoidal Loop No. 
2" resulted in the pattern shown in figure 10. I 
then wrote the "Gear" routine to incorporate these 
inputs as program constants and to include modific
ations that would increase the visual contrast. The 
resulting pattern is shown in figure 11. 

Acknowledgment 

I would like to point out that the "Composite 



Loop," Sinusoidal Loop No. 2" and "Gear" programs 
all make use of a procedure originated by a 
fellow computer artist and former co-worker, 
Woodrow Europa~ Woodrow conceived the idea of 
incrementing the radius by a constant for success
ive angular sweeps in a polar coordinate plot. He 
used this algorithm to generate iterated, "concen
tric" versions of traditional polar coordinate 
curves. Somewhat later, I realized that use of 
finite angular increments and high angular freq
uencies with this algorithm would make possible 
the generation, using various polar coordinate 
functions, of patterns radically different from 
classical polar coordinate curves. Such patterns 
include those displayed in figures 2 through 11. 

Conclusion 

I am currently exploring the possibilities 
inherent in the abovementioned process. A wide 
variety of polar functions can be formulated, 
and each yields a large set of possible output 
patterns(which result from different combina
tions of input parameter values). This is but 
one small instance of the current expansion of 
analytic computer art techniques into new 
mathematical and aesthetic domains. The near
term future should prove to be an exciting time 
in the development of geometric design as an art 
form, as moieartists obtain access to high
performance computers and develop new tech
niques. 

References 

(1) "PLOT 50: Introduction to Graphic Programming 
in BASIC," a computer software manual available 
from Tektronix, Inc. 

(2) "Computer Art for the Tektronix 4052," by 
J. Jacobson, Creative Computing (in publication). 

(3) W. Europa, unpublished computer program 
written in Hewlett-Packard "HPL" calculator 
language, 1978 (private communication). 

49 



Figure 1 

50 



COMPOSITE LOOP PROGRAM PARAMETERS 

<L,O,C,KI = (48,30,5,3.5) 
(U1,U2,W1,W2> = (2,6,4,5) 

Figure 2 

51 



COMPOSITE LOOP PROGRAM PARAMETERS 

(L,O,C,Kl = l16,6,5,1l 
(U1,U2,Wl,W2l = (1,1,1,11 

Figure 3 

52 



COMPOSITE LOOP PROGRAM PARAMETERS 

fl,O,C,Kl = (76,30,5,49.51 
fU1,U2,W1,V2l = (1,1,1,1) 

Figure 4 

53 



COMPOSITE LOOP PROGRAM PARAMETERS 

(L,D,C,Kl = (456,30,5,6.3> 
(U1,U2,V1,W2) = tl,1,2,2> 

Figure 5 

54 



COMPOSITE LOOP PROGRAM PARAMETERS 

lL,0,C,~I = (75,30,5,48.3> 
CU1,U2,W1,W2> = (1,1,1,1) 

Figure 6 

55 



COMPOSITE LOOP PROGRAM 

CL,O,C,KJ = (1540,30,6,34.25> 
( U 1 , U2, V 1 , V2) = ( 1 , 1 , 1 , 1 J 

Figure 7 

56 



COMPOSITE LOOP PROGRAM 

fL,O,C,K> = ( ◄55,60,6,7.5) 
fU1,U2,W1,W2l s (1,1,2,ll 

Figure 8 

57 



COMPOSITE LOOP PROGRAM PARAMETERS 

lL.D,G,KJ = (450,75,6,7.51 
CU1,U2,W1,W2) = (1,1,2,11 

Figure 9 

58 



Figure 10 

59 



Figure 11 

60 



PANTOMATION A SYSTEM FOR POSITION TRACKING 

by Tom DeWitt and Phil Edelstein 

Electronic Body Arts, Inc., Albany, N.Y. 

Pantomation is a tracking chroma key system. 
It is similar to a light pen interface for a 
computer but uses a color video source and chroma 
keyer to detect positional information. The 
system operates on the principle of tagging 
objects with colors of unique hue which can be 
masked out by chroma keying. Pantomation uses a 
computer and has an operating system which can 
process positional information in a variety of 
ways. Included are algorithms to remove spurious 
key occurrences, calculate velocity, record time 
of occurrence of tracked points, and output 
derived data as control voltages. As currently 
implemented, the system tracks up to four colors. 
It can be used to reposition juxtaposed images in 
a composite scene so that their movement is 
correlated. Research is underway to track the 
depth co-ordinate in the expectation of combining 
Pantomation with three dimensional computer 
graphics. 

GLOSSARY TERMS: Blanking, Chroma Key, Key, 
NTSC color encoding, Raster, Re-entry Special 
Effects Generator, Vertical Interval, Wipe 

Conception 

Pantomation is a system for the corelation 
of scenes recorded by a camera with images 
created by electronic graphic synthesis. The need 
for such a tool became evident during productions 
by the authors in 1974 at the WNET TV Laboratory, 
a studio that housed video synthesis instruments 
and a re-entry switcher with chroma key. 
Significant production delays were encountered 
when foreground and background images had to be 
manually repositioned to provide a sense of 
realistic relationship between them. An example 
is illustrated by a sequence in which a mime 
creates the illusion of opening a box wipe {fig. 
1). The scene had a background image of a 
stylized battlefield and a foreground image of 
the mime. The mime's movements were matched to 
the box wipe by manual controls on the wipe 
generator, Although the effect contributed to an 
award winning tape (1), the expense of producing 
such effects inhibited their further exploration. 

Corelation between background and foreground 
images has been achieved by using computer 
controlled camera mounts (2), In these systems, 
camera movements are carefully controlled so that 

82CH1831-7/82/0000/0061$00.75 © 1982 IEEE 

separate scenes are recorded in registration for 
subsequent recombination as composite images. 
Typically, these systems impart movement to 
static objects such as miniature models by moving 
the camera, Complex scenes are created when a 
series of shots are combined in a motion picture 
optical printer, 

Pantomation takes the approach of analyzing the 
picture itself to bring different images together 
in the proper positional relationship. Based on 
the principle of "tags" suggested by Leonard (3), 
small color chips are placed on objects in a 
scene to mark the positions of the objects. For 
the system to work, the color selected to 
identify each object must be unique to the tag. 
To facilitate precise color detection, a chroma 
keyer called the Window Keyer was designed. The 
Window Keyer discriminates colors precisely and 
can be set by computer to detect any of the tag 
colors being tracked. Chroma keyed video of a 
tagged object is converted from raster scan form 
to a set of digital words containing the 
Cartesean co-ordinates within the raster of each 
tag. Typical tags are small objects, and the 
co-ordinates describing them represent just a few 

61 

Fig. 1) A manually controlled box wipe 
synchronized with the movement of a mime. 



points out of the video raster's quarter or a 
million pixels. As a. result, the acquisition of 
data is compatible with computer processing 
speeds which are a fraction of the pixel to pixel 
data rate of the actual video, The computer has a 
bank of digital to analog convertors (DACs) as 
outputs which are patch programmed to voltage 
controlled audio and video synthesizers. When the 
system is operated the synthesizers are 
essentially controlled by the positions of the 
color tags. 

System Description 

Serge 
Seq,_. enc.er 

Uoltage 
So•-1rce 

Wi ndc,1..J 
ChroMa 
Ke•Jer 

Up 

PDP SL 
Mini 

CoMputer 

CoMputer 
Key Input 

Pulse lnterf'ace 

n 
k 

Display 
Control 

Unit 

Pantomation is achieved through the system 
illustrated in fig, 2, The head end consists of a 
color video source containing red, green, blue 
and encoded ~'TSC color signals. The R,G,B signals 
are routed to a voltage controlled window chroma 
keyer (fig. 3),The keyer consists of six 
comparators and associated logic to derive a 
combined key signal pulse. The "window'' is 
created by setting limits on both the upper and 
lower levels of each of the three color signals. 
This requires a total of six reference voltages 
which are provided by the analog progranuner. This 
device is a sequential voltage source typical of 
voltage controlled audio synthesizers. In the 
analog programmer, a mattrix of potentiometers is 
preset to store reference voltages. Pulse lines 
from the computer set the sequencer to the preset 
values that define a color. In the current 

R G B 3.58 H lJ Blanking 

Sync 
Generator 

NTSC color B&W 

EAB 

Rescan 
Cal'lera 

UideoLab Uideo 
SEG Monito 

Keyer 

Fig, 2) Block diagram of the Pantomation 
system hardware 

HI A NOT TRUE 
LO ,-~TRUE 7 7irNOT TR

1
JE 

SERGE Analog 
Progral'IMer 

Color 
••lect 
pulses 
f'rot1 
COPlput•r 
int•rf'ac• 

0 0 0 011-· ------41-, 
0 0 0 01-----, Red 

000 

Green 

Blue 

Fig. 3) Window chroma keyer, Insert in upper 
right shows an example of logic applied to each 
channel of video, 

62 

OUT 



implementation of the keyer, four different 
colors can be tracked.In normal operation a 
different color is keyed each video field. 

Key Positioner 

The Key Positioner provides the means to 
extract horizontal and vertical position 
information from a key signal and make that 
information available to the computer system. 
This device (fig.4) resembles a light pen 
interface for a computer system.It reports the 
position of a tag in a fashion similar to a photo 
cell reporting the position of a light pen "hit". 
At the beginning of the vertical interval of 
video, the horizontal and vertical counters on 
the key positioner board are reset, and a one 
microsecond pulse is sent on the interrupt line 
of the computer bus. This event triggers a set of 
interrupt service routines which are described 
below in the description of the system software. 

On the Key Positioner device, an interrupt 
is generated by the occurrence of the vertical 
interval or a key pulse. When a key pulse occurs, 
the current values of the horizontal and vertical 
counters are transferred to storage latches. In 
the Key Interrupt Service Routine that follows, 
the values in the latches are sent to the 
computer via the computer bus. The vertical 
counter is clocked by horizontal sync, and the 
horizontal counter is clocked by color subcarrier 
(3.58 MHz). The counters are reset to zero by 
vertical sync and horizontal sync respectively. 
Although eight bit counters are used, 
approximately 180 horizontal and 190 vertical 
lines are resolved due to limiting factors such 
as video blanking and tag size. 

Central Processing Unit (CPU) 

The CPU is used to provide computer software 
control, storage, and routing of the position 
information extracted from the tracked tag. The 
current implementation of the system is built 
around a PDP-8 mini-computer manufactured by 
Digital Equipment Corporation. The computer has 
an instruction cycle time of 1.5 microseconds 
and a memory size of 4096 twelve bit words of 
core. A teletype terminal is used as a console, 
and the computer's front panel switch registers 
are also used for operator communications. 

Analog and Digital Input/Output (I/0) 

The I/0 system includes four digital to 
analog convertors (DACs) and three software 
programmable pulse outputs. The DACs are 
generalized in their use and can be patched to a 
variety of voltage controlled devices in the 
system. Of the programmable pulses, two are used 
to control the sequencer in the chroma keyer. 
There is a reset pulse that zeroes the sequencer 
at its first position and a clock pulse that 
steps the sequencer to the group of six preset 
voltages defining a particular color. This 
process takes no more than 200 microseconds and 
occurs during the vertical blanking interval. The 

63 

third programmable pulse is for display 
blanking. A final input device is an external 
clock input that synchronizes the computer to the 
timing of outside devices. Each cycle of the 
external clock triggers an interrupt service 
routine which transfers data to the DACs. 

ke4 

clear 

VD HD 

count:~ 
8 bit 

Cor,puter Bus 

3.58MHz 

~ ~ 
8 bit 

Counter 

Fig. 4) Key positioner 

Analog Synthesis Modules 

The analog portion of the Pantomation system 
is used to create and modify video and audio 
signals. Two of the components in the block 
diagram in figure 2 are labelled "SERGE". These 
are combinations of analog devices manufactured 
by Serge Modular Music Systems of San Francisco, 
California. Pantomation includes the following 
modules: oscillators, amplifiers, filters, 
mixers, sequencers; comparators. These modules 
are voltage controlled and patch programmable. 
They are designed for synthesis and processing of 
waveforms in the audio frequency spectrum and are 
comparable to Moog, Buchla, and other audio 
synthesizer components (4). A VideoLab special 
effects generator designed by Bill Hearn of 
Electronic Associates of Berkeley, Ca. is also 
used in Pantomation. The VideoLab is used for 
processing functions such as re-entry keying, 
colorization, wipe and cursor synthesis. (5) 

Output Subsystem 

The output display system is based on a 
Rutt/Etra CRT and control unit manufactured by 
Rutt Electrophysics of New York City. The display 
controller has manual and voltage controlled 
inputs for altering the height, width, depth, 
rotation, intensity, and position of a video 
image. The display itself is a black and white 
CRT and is rescanned by a black and white 
television camera. The display yokes can deflect 
the CRT beam the entire screen width at 
frequencies up to 50 KHz. The CRT beam can be 
blanked at video bandwidth. The voltage control 
functions operate at approximately the same 
bandwidth as the SERGE modules, hence the 
selection of audio synthesis technology in a 
video synthesis application. 



There are two different modes of operation for 
the output display: Raster and Stroke. A raster 
display consists of a television image taken from 
a composite video source. This image is displayed 
on the Rutt/Etra CRT in raster format, but is 
repositioned according to the position of the 
tracked tag. The rescanned version of the image 
is then available for insertion in a composite 
image through the re-entry special effects 
generator. In Stroke operation the display is 
used much like an oscilloscope to produce 
synthesized images. These are images created by 
movement of the CRT beam. Unlike raster based 
images which depend on changes in light 
amplitude, stroke displays can produce images 
with no change in beam brightness but simply with 
changes in beam position. In Pantomation, the 
only brightness change used during stroke display 
is a blanking pulse taken from the third 
programmable I/O pulse. lt is used to turn off 
the display when it is not being refreshed. 
Stroke displays are used in Pantomation when the 
repositioned image can be synthesized from vector 
lists. 

Software Operating System. 

Much of Pantomation exists as computer 
programs. The Pantomation Operating System (POS) 
performs initialization during startup and 
services interrupts originating from the hardware 
interface. Other areas of memory are used to 
store positional information, system variables, 
and a program called Octal Debugging Technique 
(ODT). 

Initialization Routine 

When POS first begins, the initialization 
program resets memory locations used for system 
variables, normals the chroma keyer to the first 
color in the sequence, enables all interrupt 
flags, and enters a wait state until an interrupt 
occurs. When an interrupt is asserted, the 
hardware interface is polled to determine which 
interrupt has occurred, and the appropriate 
interrupt service routine is entered. The program 
returns to the wait loop in the initialization 
routine after all requested interrupts are 
serviced. 

Keyer Interrupt Service Routine 

A flow chart of the key interrupt service 
routine appears in fig. 5. When the computer 
senses a key interrupt pulse on its bus, the most 
recent values stored from the horizontal and 
vertical counters on the Key Positioner are 
transferred to the CPU. If the vertical position 
is less than a variable called TOPLINE, the key 
interrupt routine aborts and the computer returns 
to its wait state. The TOPLINE software function 
was implemented to eliminate accidental or 
spurious key interrupts that occurred at the top 
of the frame from overhanging studio lights. If 
a key occurs below the TOPLINE variable, the 
horizontal and vertical position is stored in a 

64 

pair of words in memory. 
If a second key occurs in the same video 

field, it is tested to determine how close it is 
vertically to the previous key in that field. 
This test, called SOLID, compares the vertical 
offset between keys by subtracting their vertical 
positions and comparing the results to a 
constant. This value is initialized as 7 vertical 
lines but can be changed by the operator. If the 
key has occurred no more than the tested number 
of lines from the previous key, it is assumed to 
be part of the same "solid" object. The purpose 
of separating "solid" keys from isolated key 
interrupts is to eliminate occasional key pulses 
that are artifacts of the video system such as 
color camera mis-alignments or signal noise. If 
the key pulses test as solid, the computer stores 
the vertical value of the first key occurrence 
and the horizontal value of the second key. This 
format of determining the position of the key 
source was found to be necessary because of large 
amounts of dither in the horizontal position of 
the first line of a keyed area. 

Ke Interru t 

Calculate 
""H & .,,u 

Store 
H & U 

Reset 
Interrupt 

EXIT 

No 
Exit 

No 
Exit 

No 
Exit 

Flowchart for ke~ Lnterrupt 

Fig. 5 



Int. 

ef'ault Window 
Test 

The key interrupt routine also has a 
provision to reject spurious "solid" key sources 
as might occur if a color in the video is 
identical to a tag color. As keys occur during 
the field, their position is compared to the 
position of the tag during the last field during 
which that tag was sampled. The change in 
position between the samples is stored as the 
difference between current and past horizontal 
and vertical positions. If more than one "solid" 
key is detected within a frame, the key which was 
closest to the position of the previous key is 
accepted, and key points occurring elsewhere in 
the frame are ignored. Pantomation has been able 
to separately track two objects of identical 
color provided they did not touch. Running on the 
PDP-8, the key interrupt service routine is 
performed within 200 microseconds, allowing a new 

Calculate 
and Output 

Ueloclty 

____ _._ ___ , key to be tested every four video lines. 

Yes 

Set H & U to 

Jitter Box 
Test 

values f'roft Set H & U to 
previous values froft 
frafte .._ ________ _,,Key interrupt 

Dots 

Update V & H 
& Increftent 
Color Counter 

Yes 

Output next 
step in raftp 

Set H & U to 
Def'ault pre
set values 

Update Buffer 
& lncreftent 

Poi nter:!'r 

No 

Clear teMporary H & U 
Reset Interrupt & Exit 

Flowchart for Vertical Interrupt 

Fig. 6 

65 

Vertical Interrupt Service Routine 

At the beginning of the vertical interval, 
an interrupt triggers a service routine (fig. 6) 
which further processes the key position 
information obtained during the previous field. 
Two tests are run, both similar to TOPLINE. The 
first test, designated DEFAULT WINDOW, tests the 
position of the key to determine if it is within 
boundaries at the borders of the frame. These 
botmdaries are TOP, BOTTOM, LEFT, and RIGHI' (fig. 
7). Their values are stored on page zero of POS. 

Left Right 

Top 

Jitter Box 

BottoM 

Fig. 7 

If the key is in the DEFAULT WINDOW, the 
positional information from the actual tag is 
replaced by preset horizontal and vertical 
values, typically O,O. The DEFAULT WINDOW is 
useful for creating the illusion that a tag 
carried to edge of the camera field has been 
carried out of view of the camera. Another test 
made during the vertical interrupt routine i.s 
called JITTER BOX. If the position of the latest 
sampled key position is within a pre-assigned 
distance from the position of the previously 
acquired key, the latest key position is ignored, 
and the position of the previous key is used. 
This inhibits occassional dither in values coming 
from the key positioner. The effect of this 
technique is observed when a tag is virtually 
stationary. As soon as the tag Dloves outside the 
JITTER BOX the full 8 bit resolution of the key 
positioner is used. 



After the value of the position of the tag 
has been established, the information can be 
deposited in several locations in memory. In 
VECTOR DUMP mode, the data is stored as one entry 
in a software implemented First-In-First-Out 
(FIFO) buffer. This buffer can be likened to a 
software function generator that produces the 
position versus time function for a selected tag. 
This feature is useful for creating patterns from 
the path of movement of the tag (fig. 8). A 
special use of VECTOR DUMP is reading a formatted 
graph from a video camera into the FIFO buffer. 
This technique requires that the computer 
generate an analogue ramp wave from one of its 
DACs to move a voltage controlled cursor. As the 
cursor increments, it acquires the next value of 
a graph scanned by a video camera. The technique 
allows the operator to load handdrawn waveforms 
into the software function generator. 

In DOTS mode, the position of the tracked 
tag is loaded into a pair of registers associated 
with the color being tracked. The number of 
colors corresponds to the preset values on the 
analog programmer and is set by the operator for 
each production situation. The POS software has 
been written to keep track of up to eight colors. 
Finally, the vertical interrupt service routine 
calculates the velocity of the tracked tag. This 
calculation averages the change in position of 
the tag over several fields to allow for the 
measurement of the velocity of slowly moving 
objects. 

External Clock Service Routine 

Most output functions of the computer are 
associated with the External Clock Interrupt 
Service Routine. This program is initiated 
whenever a pulse is sent to a patch programmable 
input on the I/O intetface. Typically the pulse 
comes from an oscillator. Each pulse 
triggers an output cycle consisting of a transfer 
of data from the computer memory to the DACs. In 
DOTS mode DAC assignment for the routing of the 
data is determined by the operator before startup 
and establishes which tag positions will appear 
at which DACs. The VECTOR DUMP FIFO buffers are 
preassigned, one to each DAC, and they are 
enabled or disabled by computer console faceplate 
toggle switches. 

Applications 

Conventionally, a chroma key opens an area 
of a picture for insertion of another image. Such 
effects allow combinations of images by dividing 
a picture into foreground and background planes. 
Ordinarily, the background is keyed out of an 
image by placing the camera subject in a setting 
of unique and uniform monochromatic color such as 
blue or green. Pantomation alters an assumption 
of chroma key technique in that the tags it 
follows by chroma key masking are primarily 
foreground objects. Unlike the large areas of 
nonochromatic background in the typical chroma 

66 

Fig. 8) "Drawing with Cheerios," a mime 
traces a space using a colored ball. 128 
sequential positions are shown in Vector Dump 
mode. 

key studio, these foreground objects are small. 
Conceptually they represent the center points of 
images that will be inserted over them. The 
foregrounds that will be inserted are not the 
same size or shape as the tags. The tags may 
never be seen in the final composite picture, 
because they are in the hidden portion of the 
background plane. 

Pantomation, as currently implemented, can 
track up to four colors. There are conventional 
chroma key studios that use multiple chroma keys. 
As more than two images are combined, foreground 
and background distinctions must be extended to a 
series of planes that exist in a conceptual third 
dimension. Even in simple two plane chroma keys, 
depth information is important if the camera 
moves, If a pan over the foreground moves the 
foreground figure, the background being inserted 
must also move and at a rate which· is 
proportional to its assumed distance from the 
foreground. Pantomation can be used to 
automatically move a background in 
synchronization with camera movement on the 
foreground object. As the position of a tag 
changes, the position of the second plane in the 
image is repositioned by a proportional amount. 
This technique does not actually determine the 
true depth of the tracked object. 

Depth Detection 

Some commercially available equipment can 
detect the size of a chroma key object (6). Size 
is proportional to the distance of the object 
from the camera, so this facility could be used 
to calculate the depth coordinate, In Pantomation 
this measurement is accomplished by placing tags 
at the edges of the object being tracked. The 
distance between the tags, calculated by 
subtracting the left tag position from the right 



tag position, is proportional to the distance-of 
the object from the camera. Another method for 
determining the depth plane position of tracked 
objects is to use more than one camera to detect 
position (fig, 9). A scene recording camera looks 
at the subject front-on, and another camera is 
placed at an orthogonal angle to the subject. The 

Front-on cal'ler'a Tags 

horizontal axis of the image in the orthogonal • 0 
camera corresponds to the ·depth axis of the front-Hor 1 zo~ta 1 - ----'""+----I 
on camera. With nrultiple cameras set at ax 1 s 
orthogonal angles to a subject, Pantomation can • 
derive the horizontal, vertical and depth co- I 
ordinates of tracked tags. Depth detection would Qepth 
be useful in applying computer graphics to ax i s 0 
television production, Computers can manipulate :I 
images in three dimensions. Television systems ., 

Orthogonal 
Cal'lera 

interfaced to computer graphics systems will need I 
methods for addressing three dimensional co-
ordinate space. U er ti ca 1 

axis 

Animation 

One approach contemplated by the authors for 
television controlled computer graphics is based 
on the art of marionettes. A puppet is a three 
dimensional object which is manufactured a single 
time for subsequent manipulation in a performance 
environment. If a three dimensional model of an 
object is stored in a computer, it can be 
displayed in a wide variety of translational, 
rotational, and scaled configurations. Creating 
such models forms the analogy to making the 
puppet. 

There are many methods being explored for 
building mathematical models of objects. 
Pantomation can be used in at least two 
approaches to the problem. Artists normally draw 
on a two dimensional surface such as paper. The 
Pantograph would allow an artist to draw "on air" 
in a three dimensional space: In this 
application, the artist handles a baton with a 
color tagged tip. If the baton tip is tracked in 
three dimensions, its spatial co-ordinates can be 
used to construct a computer graphic. An artist 
watching on a stereo-pair crt system (7) can draw 
a three dimensional object. Another approach, 
being developed conceptually, analyzes a real 
object for its three dimensioan co-ordinates. The 
system would record the positions at which an 
object is struck by a point of light from a laser 
beam which is deflected over the object: In 
Pantomation, the "hit" of the laser light would 
be used to tag the surface, allowing acquisition 
of all the points that intercept the light. 

After a computer "puppet" is created, its 
movements can be imparted by Pantomation 
techniques. The puppet is partitioned into 
volumes that will be corelated to tags in a scene 
recorded by television cameras. In the analogy to 
marionettes, the tags correspond to marionette 
strings. During production, repositioning of the 
tags by the movement of actors or cameras will 
control the movements of the partitioned volumes. 
The proposed computer puppet process would 
benefit animation, because a character would only 
need a single rendering. The process would allow 
for much greater detail in designing the 

67 

Fig. 9) Diagram of the set-up for three 
dimensional tracking 

character than is permitted when many multiple 
drawings must be made. 

In an experiment conducted with Pantomation, 
lip movements of an animated face were made by 
tracking the lips of the narrator who wore a 
color tag on his chin. This technique could free 
animators from the time consuming task of 
corelating lip movements with spoken dialogue. 
Another experiment with Pantomation created an 
animated wing for a dancer giving his 
interpretation of flight. Three points were 
tracked: the hand, the elbow, and the shoulder. 
This allowed for a realistic articulation of a 
synthetic wing made by video synthesis (fig. 10). 
The experiments are leading toward production 
techniques that divide control of an animated 
character among several artists such as a 
draughtsman for the image, a dancer for the body 
movement, and a orator for the voice, 

Performing Arts 

Other experiments with Pantomation have 
focussed on combining audio and video synthesis 
with music, dance and mime. A musical performance 
has been conducted by a bassist who used a tagged 
hand to control the pitch and rhythm of an audio 
synthesizer. He appeared to be playing an 
"invisible" instrument, but his videotaped image 
had the synthesized image of a vibrating bass 
string superimposed. The Pantomation system has 
been used to read a handwritten musical score. 
This technqiue uses a variant of the VECTOR DUMP 
program. The score is prepared according to the 
format of skyline notation, a form of bar graph,. 
and each voice is written in a different chroma 
key color ink. The graphs are made on paper with 
punched registration holes, and are scanned by a 
video camera on an graphics stand.The graph is 
stored as a list of values in the VECTOR DUMP 
buffers and is output later through DACs under 



Fig. 10) A corporeal mime articulates a 
synthetic "wing." 

68 

timing control of the external clock. The 
technique has the advantage that a composer can 
prepare an electronic music score away from the 
studio using the traditional approach of 
handwriting at the piano. 

Pantomation was developed within a modern 
dance company, Electronic Body Arts, and has had 
immediate applications in videotaping dance and 
mime. As a tool for training and rehearsal, the 
system allows the teacher and choreographer to 
study the isolated tagged parts of the dancer. 
Audio cues can be generated by tracking position, 
giving the dancer an indication of important 
variables such as location on the stage or 
relationship to other dancers. Velocity detection 
is of use when comparing the current performance 
to performance standards. Notation for dance can 
be accomplished with videotaping, but some of the 
abstract ideas in dance can be understood by 
limiting the notation to key components of body 
movement. Laban notation has been implemented on 
computer graphics systems for this purpose (8), 
Pantomation dance notation has the advantage of 
simplicity, both in the recording and the 
reconstruction of dance movement. The system has 
produced videotapes in which graphic abstraction 
itself is combined with the dance (fig. 11) (9). 

Fig. 11) A dancer holding two tags of 
different color manipulates pompoms created 
by electronic image synthesis. 

SUMMARY 

A tracking chroma key process called 
Pantomation has been developed. The system 
incorporates a mini-computer and operates on the 
principle of color tagging. Positional 
information about subjects or scenes is derived 
from computer analysis of color coded information 
taken from images scanned by television cameras. 
These positions are marked in the scene being 
televised by placing color chips called tags on 
the points to be tracked. ThP- ta2s are detected 
by chroma keying techniques, and a special 
interface to the computer detects their position 



in the raster. The computer proces!Uls, stores and 
outputs the positional data under software 
control. The output of the computer is connected 
to production components such as video and audio 
synthesizers. Pantomation is similar in 
construction to light pen interfaces common to 
computer graphics, but a camera is used to sense 
light instead of a single photo cell. The system 
is interactive and designed for real time 
operations. 

Pantomation was developed by a theatrical 
company that pl'9duces works in dance, mime and 
music and is intended to advance the integration 
of these arts with film and television, Some of 
the applications for the system are in matching 
movement of chroma key backgrounds with 
foregrounds, tracking and displaying trajectories 
of objects in motion, and controlling electronic 
graphics and sounds, Uses under investigation 
include three dimensional tracking for 
interfacing video to computer graphics systems. 

ACKNOWLEDGEMENTS 

Pantomation was developed by a team of 
artists and engineers. Analog electronics were 
designed by George Kindler and the operating 
system software was written by Roger Meyers. The 
display and special effects generator came by way 
of the efforts of Bill Etra. Video artist, Vibeke 
Sorensen, and dancer, Maude Baum, made production 
contributions, The authors are indebted to John 
Godfrey of the WNET TV Laboratory for his 
foresighted endorsement of the project, and to 
Aaron Heller, Dean Winkler, Dave Powell, and the 
people of WRPI radio who gave Pantomation a home. 
The apparatus was constructed on a grant from the 
New York State Council on the Arts to mnrr TV and 
took place at the Electronic Music Studio of the 
State University of New York at Albany, Research, 
conceptualization and exercise of Pantomation was 
supported by grants from the Media Arts program 
of the National Endowment for the Arts, the John 
Simon Guggenheim Memorial Foundation, and the 
Creative Artists Public Service Program (CAPS). 
Pantomation is a project of Electronic Body Arts, 
Inc. of Albany, New York and the system resides 
at the Image Processing Lab of Rensselaer 
Polytechnic Institute. 

(1) Tom DeWitt, "Zierot in 'War Walls'"• 
CATHODE RAY THEATER, distributed by Electronic 
Arts Intermix, New York City 

(2) John Dykstra, "Miniature and Mechanical 
Special Effects for Star Wars"• The American 
Cinematographer, V, 58, July 176, p,702; Joseph 
L. Matza and John Crale, 1'Magicam - The Process 
and Production Techniques", SMPTE Journal, V, 86, 
Oct. 177 • p, 728; Pennfield Jensen, "Battlestar 
Galactica", Filmmakers Newsletter, v. 11, 112, 
Oct, 178, p, 20 

(3) Eugene Leonard, "Considerations 
Regarding the Use of Digital Data to Generate 
Video Backgrounds", SMPTE Journal, V, 87, Aug, 
'78 

69 

(4) Allen Strange, ELECTRONIC MUSIC, Wm, C. 
Brown Co., 1972; Thomas Wells, THE TECHNIQUE OF 
ELECTRONIC MUSIC, Schirmer Books, 1981 

(5) Peter Caranicas, "Video Hardware Gets 
Smart", Videography Magazine, V. 1, 13, June 
176. p. 28 . 

(6) Michael D. Patten, "The Digital Video 
Effects (DVE) System", SMPTE Journal, V, 87, 
April 178, p, 217 

(7) J.N. England," A System for Interactive 
Modeling of Physical Curved Surface Objects", ACM 
Siggraph 1978 Proceedings, p. 336 

(8) Norman I, Badler and Stephen W, Smoliar, 
"Digital Representations of Human Movement", ACM 
Computing Surveys, Vol 11, No, 1, March 179, p 
29 

(9) Tom DeWitt, "Pantomation" • SIGGRAPH 
Video Review, Issue #2, section 9, Sept. '81 
distributed by UICC/NFE, Box 4348, Chicago, Il, 

GLOSSARY 

Blanking: The period during the video signal 
when the crt beam is turned off such as during 
the vertical interval. 

Chroma Key: A key created by analyzing a 
c·olor video signal for red, green, and blue 
components. 

Key: A comparison of the video signal to a 
reference brightness level, A keyer creates a bit 
mask based on the outcome of the brightness test. 

NTSC cclor encoding: A method for 
transmission of color information using a 3,58 
MHz phase modulated sine wave which is added to 
the brightness level of a black and white 
television signal, 

Raster: The Cartesean grid of a television 
picture, for example, North American television 
has a raster of 525 lines vertically, each with 
several hundred pixels horizontally, 

Re-entry special effects generator: A 
television production component that combines 
several signals by keying, wiping and mixing, 
Sometines called a "switcher." 

Vertical Interval: A synchronizing period 
which occurs between fields of brightness 
information. In North American television the 
vertical interval is about one millisecond and 
occurs each l/60th of a second. 

Wipe: A video special effect which produces 
a simple geometric mask such as a box, 





REAL TIME ANIMATION TECHNIQUES WITH 
MICROCOMPUTERS 

Frank Dietrich 

Pixel Creations 
731 West 18th Street 

Chicago, Illinois 60616 

Animation movies are back in 
business. For a long time this genre was 
almost identical with Walt Disneys' cutely 
drawn animals and fairy tale characters. 
Now it is the Disney Studios again making 
the breakthrough into the animated space 
age of computers with a new creation TRON. 
The computer generated special effects of 
many other current films make headlines in 
the movie critiques. The type of computer 
animation possible with low-cost machines 
with less resolution, less colors, less 
speed, ••• the list of deficiencies could 
easily be extended, are a far cry from 
these expensive and very sophisticated 
visual innovations. Nevertheless, as will 
be demonstrated throughout this article, 
the small graphics computers have strong 
features for animation used by industrial 
and educational video productions as sell 
as in the exploding world of cable TV. 

TRADITIONAL & COMPUTER ANIMATION 

Animation is the art of changing 
images in time. This is faster said than 
done. Traditional film animation requires 
many tedious ,and time consuming steps to 
produce the numerous drawings necessary 
for sophisticated motion effects. 
Computer animation can save labor by 
automating some of these tasks like eel 
inking or inbetweening. Computer Assisted 
Imagery (CAI) can even produce complete 
movies. But most computers do not produce 
real-time animation. Instead they 
generate one still image at a time. The 
illusion of motion is invoked later, as in 
traditional animation, when complete 
series of stills have been filmed and are 
projected at 24 frames per second. 

Real-time animation has been possible 
in the past only with vector refresh 
displays, mainly because the computer 
could calculate the new endpoints of 
relatively few vectors forming the image 
during the refresh cycle of the display 
device. Much less picture information has 
to be processed in such vect?r systems 

82CH1831-7/82/0000/0071$00.75 © 1982 IEEE 
71 

than in a raster system, where the entire 
screen memory containing up to millions of 
pixels (picture elements) has to be 
rescanned for display. Changing parts of 
this amount of such large memory has been 
untill now too slow to allow for real-time 
animation. Only modern high speed 
computers with dedicated image processors 
can accomplish this task in the short time 
of a 30th of a second. 

In this respect it is a surprise that 
microprocessor-based video game machines 
are highly interactive and capable of 
real-time animation. Their main 
limitation, low resolution, becomes a 
feature: less pictorial information has 
to be moved around. Even if this motion 
appears to be somewhat crude, it is 
nevertheless real-time animation and 
serves the interactive purpose. 

The animation techniques discussed 
here were executed on a low-cost 
micro-graphics system, the Datamax UV-1, 
initially developed from a video arcade 
game computer. Its RAM was expanded to 
32K, and 256K of screen memory were 
added, yielding a 320*200 pixel resolution 
with 16 2-bit 'thin' framebuffers. ZGRASS 
is the hi-level graphics programming 
language of the system, ready to go in 32 
K of ROM. An internally generated standard 
NTSC signal puts the imagery from the 
computer right into the heart of the video 
world. Even though all this accounts for a 
specially configurated micrographics 
system, many of the animation techniques 
are commonly used and thus serve as 
general examples for getting a maximum of 
motion out of small computers. 

ADDITIVE CHANGES 

Two different ways exist to change an 
image, one, by drawing new graphics (or 
erasing existing ones for that matter), 
the other by changing previously created 
and stored images. Of course the later 
which can be either a change of color or a 



switch to another image plane happens much 
faster and therefore is better suited for 
real-time animation. In terms of how much 
information is changed by drawing, the 
least demanding animation techoique simply 
keeps writing one graphic element over the 
previous ones, thus building up the image. 
This amounts to a gradual change of the 
image, where the order of introduction of 
the picture objects significantly 
contributes to the meaning produced. In 
some respect this is like story telling 
with pictures as an ongoing process. And, 
as in stories, one new element can 
drastically turn the already known facts 
around. 

There are two flaws with additive 
changes. This technique can only produce 
gradual changes of an image and the viewer 
has to watch the drawing of the new 
graphic, which can divert the attention to 
a very insignificant action like filling 
in an outlined shape. Computer systems 
featuring at least two image planes offer 
help: With a technique called "Double 
Bufferirtg" the imme~iate action of drawing 
can be hidden by always showing the image 
in the other buffer, where no drawing 
takes place. Once the drawing is finished 
the program switches to the plane 
displaying the new image and continues to 
draw onto the plane which is now not 
shown. In this manner the animation 
effect is concentrated on the images 
changing in time without having to show 
how the images are being drawn. 

SHOW plane!; DRAW to plane2 
SHOW plane2; DRAW to plane! 

COLORMAP ANIMATION 

The fastest method of changing a 
raster image is known as colormap 
animation. Since no drawing is done, the 
bitmap, storing the digital information of 
the screen, is not touched at all. 
Instead, only the representation of color 
for each given combination of numbers is 
altered. Since this is a minimal 
computation it can be quickly 
accomplished. Just consider the 
difference between changing only four 
color values to calculating up to 320*200 
pixels. A simple but effective trick like 
the blinking of a particular object is 
done by switching back and forth between 
its color and the background color. 
Continuous motion ( e.g. bloodstream, 
waterfall) can rather easily be 
visualized, if a series of colors is 
switched. 

TEMPCOLOR = COLOR l; COL0Rl=COLOR2; 
COLOR2=COL0Rn; COLORn=TEMPCOLOR 

72 

A more elaborate version of blinking 
is the creation of multiple frames in one 
image plane. Essentially it is a 
trade-off between color resolution against 
multiple images which are initially hidden 
in the background and then consecutively 
switched on to create the illusion of 
motion. 

COLORl ... COLORn=BACKGROUND 
COLORl=FOREGROUND;COLORl=BACKGROUND 

COLORn=FOREGROUND;COLORn=BACKGROUND 

SNAP ANIMATIONN 

Numerous animation techniques are 
possible given the ability to store parts 
of the screen in a special image array. 
The DATAMAX UV-1 features a custom 
designed chip to handle the activity of 
storing and displaying images up to a 
quarter of the total size of the screen. 
Such a memorized image is called a 
SNAPSHOT or SNAP for short. The same 
effect can be done with other systems by 
storing images into another frame buffer 
for instantaneous retrieval. 

The simplest method of animation is 
to make a SNAP and then continuously 
display this image along a computed path. 

SNAP name,xcenter,ycenter, 
width,height 

!MOVE DISPLAY name, xcenter, ycenter, 
displayoption 

xcenter=xcenter+offset; 
ycenter=ycenter+offset; 
IF Xcenter AND ycenter< 

screenborder,GOTO !MOVE 

The display option defines how the 
SNAP information is logically combined 
with the existing values in that 
particular part of the screenmemory. A 
total of 150 different display options is 
available: PLOP, OR, XOR, AND, etc. are 
the choices for the BOOLEAN operation to 
be performed. Additional color filters can 
be applied to determine which colors would 
be effective. For instance, one useful 
application of appropriate display options 
would be to let a red car drive behind a 
green house, disappear and become visible 
again. 

A special trick called the 
"Difference Snap" relies exclusively on 
these display options.The difference snap 
deals with the problem of having to 
execute two drawing commands to move an 
object once: first the image has to be 
erased at the old location and then it 
must be displayed at the new location. 
Not only does this take more time, it also 
causes a disturbing flashing visually 
interrupting the movement. 



The "Difference Snap" combines 
erasing and displaying into one single 
action. Its name describes what it is: 
the visual difference between a snap at 
location Xl and 12, created by XORing the 
snap onto itself while it was offset by 
exactly the amount of pixels it should 
move. The visual result becomes the 
difference snap and is stored. Now the 
movement can be achieved by displaying the 
original image only once and then 
continuing to XOR the difference snap 

with the pre-defined offset. Memory 
considerations restrict this technique, 
since two snaps are needed and the 
direction of movement is not variable. 

SEQUENCING 

By now we know how to move static 
images across the screen. In order to 
change the image itself the snaps have to 
be sequenced. This technique consists 
of pre-storing and playing back a series 
of snaps. First a number of snaps are 
created, each.slightly different than the 
previous one. These images are labeled in 
series PICl, PIC2, ... , PICn. Again, 
memory constraints allow only a limited 
number of snaps of a limited size to be 
stored. The animation takes place as a 
simple sequencing through the snaps much 
like flipping through a flipbook. In this 
case the PLOP display option is used, in 
order to completely cover the old image 
information with the next one. 

DISPLAY PICl, x,y,PLOP 
DISPLAY PIC2, x,y,PLOP 

DISPLAY PICn, x,y,PLOP 

The particular effect achieved 
depends on the chosen approach. One 
approach is a sequence in the tradition of 
Disney animation where two keyframes (or 
extremes) for each cartoon character are 
drawn first. Then a number of inbetweens 
are drawn to create a smooth transistion 
from one extreme to the next. 

A pseudo rotation around either the X 
or Y axis can easily be created by scaling 
down either the width or the height of the 
snap until only a thin line remains. 
Along this scale subsequent new snaps are 
made and later played back in sequence. 
The net result of this technique is a 
rotation without any time consuming 
computation of the sine and cosine 
functions which are usually employed. 

MULTI-PLANE ANIMATION 

Similarly, the 16 planes of the UV-1 
can be utilized for full screen animation 

73 

by cycling though a series of previously 
designed images. This is an important 
extension of displaying graphic objects in 
snaps both in terms of the size of the 
image changed and the decrease in time 
this takes. The switching from one plane 
to the next (memory bank switching) is so 
fast, that the eye can no~ detect the 
switch. In addition to multi-plane 
animation, the UV-1 hardware has two other 
important features: video-digitizing as a 
source of input and programmable 
arrangements of 16 screens either into a 
panorama of X by Y planes or into a stack 
of 16 planes, one behind the other. 

INTERPOLATION 

Since the very beginning of computer 
animation various mathematical forms of 
interpolation were established mainly to 
produce keyframe animation of cartoon 
characters. Basically the interpolation 
algorithms are set up to divide a range 
formed by two given numerical poles into 
a specified number of intervals, thus 
producing intermediate values in between. 
The distribution of the intervals and the 
numbers of interpolated values depends on 
the function (e.g. linear, sinusoidal, 
etc. ) and the step factor used. Both 
determine the number of intervals and 
whether they are constant (linear) or 
not (sinusoidal). Interpolation 
algorithms as such are so general that 
they can be applied to almost any element 
of the animation sequence: distance , 
size, angle, time, etc. 

Interpolation techniques played a 
prominent role in a recent computer 
installation entitled DO-IT YOURSELF 
MACHINE ART by Joanne Culver, Zsuzsa 
Molnar and myself. The DATAMAX UV-1 was 
programmed in such a way that two 
participants from the audience could 
create instant animation. Each of them 
drew one keyframe into plane 1 and plane 
16 respectively. Then the computer took 

over, interpolating the in betweens 
necessary to transform the picture drawn 
by the first player into the picture by 
the second one. After finishing the 
drawing job the computer cycled through 
the planes creating a short animation 
sequence. 

FIELD MOVES 

Most animation techniques discussed 
so far share one commonality which can 
easily turn into a major problem. They 
require memory space set aside for the 
storage of images. Fortunately another 
technique exists that does not need one 
single bit more image memory to move 
fields as large as the entire screen. 



ZGRASS provides two graphic commands 
facilitating this welcome option, SCROLL 
AND WRAP. Both enable the move of an 
entire section of the bitmap to a 
different location ( memory block move ). 

Both commands require the 
specification of X and Y location, width 
and ~eight of the field, X and Y direction 
of the move and finally the display 
option. The main difference between the 
two is that SCROLL simply moves the 
designated field to a new location, 
automatically clipping it along the screen 
boundaries if necessary. WRAP performs a 
wrap-around function to the image 
information contained within the area, but 
displays it again at the same location. 

Both techniques lend themselves very 
well to preparing animation sequences for 
later playback as well as copying large 
areas. But the drawing of these techniques 
is such a visible interruption , that it 
should be hidden by double buffering ( as 
described earlier ) to successfully 
utilize these field moves. Sometimes an 
artifact of WRAP can be turned into a 
visually interesting result. Since WRAP 
simultaneously executes both READ and 
WRITE functions, the image that appears 
during the WRAP as seen as though through 
venetian blinds in motion. 

TIMING AND CONTROL 

Finally the question of timing and 
rhythm must be addressed, since a high 
degree of coritrol over time is absolutely 
necessary for animation. Unfortunately the 
option of greater speed is limited. Only 
two possibilities presently exist: to 
compile a program or to streamline it. 
The latter can be done, for instance by 
calculating lookup tables of moves defined 
by complex functions thus stripping down 
the computation during the animation to 
the bare bones of retrieving those values. 

Slowing down the animation is much 
easier and offers more options. A WAIT 
command counts in seconds helpfully 
slowing down the action. System timers 
which need to be set only once and then 
count down to zero become helpful for 
triggering a new event after completion of 
a previous one. 

For choreographing a number of 
simultaneous events parallel processing 
comes in handy. ZGRASS offers three 
different execution modes: normal, 
foreground and background. The normal 
mode executes a program only once and then 
returns. Background and foreground modes 
execute the program until explicitely 
stopped. The difference between them is 

74 

that programs running in background mode 
are executed one line of code at a time 
whereas macros in foreground mode are 
executing a line of code each 60th of a 
second. 

Features like this make use of the 
extendability of the graphics language to 
allow the development of libraries of 
special purpose routines. They also 
support the task of combining a handful of 
different events into one complex 
animation. A controller program for such 
a sequence could look like this: 

READJOYSTICK.FOREGROUND 
MOVESHIP.FOREGROUND 
CHANGECOLORS.BACKGROUND 
MAKESOUND.BACKGROUND 
DISPLAYSCORE. BACKGROUND 

SUMMARY 

The variety of animation techniques 
available for small computers and the rich 
palette of examples already produced will 
convince even skeptics that powerful.tools 
are ready to enhance video and cable TV 
productions. Even the micro graphics 
computers of today's generation are far 
superior to the titlers and character 
generators widely used in audio-visual 
production. 

By now the excuse that computer 
animation is so difficult that it can only 
be handled by programming staff can no 
longer be made. The software is so 
advanced that it allows the animator to 
concentrate on the graphic design without 
bothering about the internals of the 
assisting computer. What it does require 
however is the courage to develop new 
techniques for new machines. 



An Application of n Microcomputer as an Interactive Art Medium 

George K. Shortess 

Department of Psychology 
Lehigh University 

Bethlehem, PA 18015 

Abstract 

This paper describes the way that 
I am currently using a microcomputer as 
the medium for expressing some art 
ideas. Specifically, it allows me to 
incorporate real time interaction be
tween the art piece and the viewer, who 
thus becomes part of the work. 

Introduction 

In one sense, all traditional art 
forms can be considered to involve 
interactive or participatory activity. 
Certainly in the visual arts, the 
viewer typically moves around in the 
gallery space to gain different per
ceptions of the painting or sculpture. 
In addition, the active scanning proc
esses of the eyes change the particular 
focal areas and the sequences of eye 
fixations. In both ways, the viewer is 
interacting with the piece and, while 
not changing the physical properties of 
the art object, he/she is changing the 
nature of the stimulation reaching 
his/her eyes. 

A higher order of participation 
would be achieved if the viewer could 
actually manipulate the piece and change 
it to suit her/his needs, desires or 
whims. The_ artist, of course, has 
always had this experience in the design 
and execution phases of the work. In 
recent history, getting viewers more 
fully involved began in the late 1950's 
and l960's with the advent of Happenings 
and various forms of Conceptual Art. 1 
However, with the availability of power
ful microcomputers, and their ability 
to operate in real time, the possibil
ities of participatory art pieces ex
panded tremendously. While a number of 
artists are using microcomputers in 
interactive ways, I will describe only 
my own applications. 

82CH1831-7/82/0000/0075$00.75 © 1982 IEEE 
75 

An Application 

The art ideas behind my work have 
been based on the functioning nervous 
system. That is, I have selected proper
ties of the nervous system and attempted 
to give them artistic form, much as a 
landscape painter selects features of the 
physical environment and gives them 
artistic form. Among the various features 
of the nervous system that I have used are 
(1) the structure of the neural network, 
(2) the electrical impulse activity of 
nerve cells and (3) the interactive qual
ity of the nervous system. These features 
have been incorporated into various con
structed sculptural pieces. They are net
works made from 1-1/2 inch square aluminum 
tubing which simulate, in a formal way, 
the structure of the nervous system. These 
structures vary in size from 2 to 20 feet 
in length and width, and up to 7 feet in 
height. Small aluminum boxes, varying in 
size from 2-3 inches, have been attached 
at the points where the pisces of square 
tubing join together. Covering these 
boxes are photographs of imag·es, which 
were digitized using a television camera 
input to an Apple II Plus microcompute~ 
equipped with a Digisector card (Figure l). 

Figure l. A drawing of a section of one 
of the sculptural pieces, showing the 
network of tubing with the small boxes 
at the junctions (not to scale). 



Micro- Structure of 
computer . Aluminum Tubing J I Control 

J 
with Speakers . Viewer 

I System with ' and Photocells 
Amplifiers 

Figure 2. Schematic of Interactive Art Work 

In addition, these pieces emit sound~ 
simulating nerve cell impulses. A simpli
fied schematic is shown in Figure 2. Em
bedded within the aluminum structures are 
(1) speakers which emit the sounds and 
(2) photocells which sense the light from 
the environment. The microcomputer (an 
Apple II Plus) is programmed in BASIC to 
read the resistances of the photocells 
and to generate the electrical signals 
which are amplified and fed into the 
speakers. In its "resting state," with 
no viewers around, the computer, with the 
program generates a low level of sound 
activity in the speakers and continually 
samples the resistance values of the 
photocells. 

As viewers move to the nearby space, 
they change the light level reaching the 
photocells. This causes the micro
computer system to change the particular 
group of speakers that is activated and 
to increase the sound activity of these 
speakers. In this way the viewer can, 
in a very natural manner, change the 
physical qualities of the piece and 
select the kinds of stimuli to be ex
perienced. 

The basic program design is rela
tively straightforward. It consists of 
several loops and sub-routines. There is 
a main loop through which the computer 
"idles" when there are no viewers in the 
area. It continually reads the resist
ances of the photocells and generates a 
low level of sound in several speakers. 

Membrane +7 0 
Potential 

(mV) 
0 

-7 V 

0 1 2 3 4 

When there is a change in the light level 
falling on a photocell, the program 
senses this and shifts to another loop, 
depending upon the particular photocell 
activated. This loop causes increases in 
the sound activity in the speakers near 
the photocell that had "experienced" a 
change in light level. Then, depending 
upon further changes in the light to that 
photocell or to others, the sound patterns 
change in terms of both how and which 
speakers are activated. 

The sound simulates a form of elec
trical activity generated by nerve cells. 
They are called nerve impulses (Figure 3) 
and consist of a sequence of brief {several 
milliseconds) changes in the electrical 
potential occurring across the membrane of 
the nerve cell. The amplitude (voltage) 
of each impulse is the same (approximately 
100 millivolts). With an appropriate 
sensor inserted in an active nervous 
system, these voltage changes can be de
tected, amplified and played through a 
speaker. The result is a sequence of 
click-like sounds with each click (im
pulse) of the same loudness. (For more 
details of these neural processes, see 
Carlson.2) 

The sounds generated by the computer 
and amplified for the speakers in my art 
work are similar. The rate of "impulse" 
generation changes in response to changes 
in the viewer's behavior, much as most 
nervous systems do. In this way, I have 
created computer controlled art works 

5 6 7 8 9 

Time in Seconds 

Figure 3. An example of impulse patterns. Each vertical line 
represents one impulse. 

76 



which incorporate certain features of the 
nervous system. There is a fixed struc
ture which responds interacively with a 
viewer by changing its pattern of simu
lated nerve impulses. 

A video tape of a viewer inter
acting with one piece, "Network," will be 
presented and discussed. 

1. 

References 

Arnason, H. H. 
Art. New York: 
1977. 

History of Modern 
Harry N. Abrams, Inc. , 

2. Carlson, N. R. Physiology of Behavior 
(2nd ed.). Boston: Allyn and Bacon, 
1980. 

77 





AN ARTIST 1S COMPUl'ER SYSTEM 

Walter Wright 

Digital Image Corporation 

ABSTRAcr 

Digital Image Corporation 1111.kes computer 
generated 35mm slides tor audio visual producers 
and graphic artists. We aspire to be better and 
less expensive than the competition. Therefore, 
we use relative'.cy inexpensive hardware and we 
write our own software. I will list briet:cy our 
hardware and then describe in more detail our 
graphics software. 

HARIMARE 

Our hardware includes a CrOlll.8lllco Z2D 
mic..""Oprocessor, video terminal, dual .5¼'1 

fioppy disks, 64 K bytes ot random access 
IUIIIOry, the SDI graphics controller and two 
48 K image butters or pages. As inputs we 
use a Houston Instruments Hipad digitizer 
and a Via Video digitizer. This latter device 
consists ot a b and w video camera and an 
interface to digitize and store the camera 
image in either image butter. As outputs we 
have an Aydin Controls RGB color 1110nitor and 
a Matrix Instruments Camera system IIIOditied 
to accept a pin registered Nikon 3.5mm camera 
body, The Matrix camera takes the seperated 

... 

Figure 1 

82HC1831-7/82/0000/0079$00.75 © 1982 IEEE 
79 

red, green and blue video images from the 
computer, displays them, in turn, on its own 
high resolution band w monitor and exposes 
each image through the appropriate color tilter 
onto a single frame ot 3.5mm film, See Figure 1, 

Worth approximate'.cy $35,000 this system 
isn't tor the average hobbiest but it is within 
the grasp ot enterprising individuals like 
ourselves. 

SOFTWARE 

Our software is designed to make commercial 
slides. This means word copy slides, Slides 
tor speaker support, to augment training manuals, 
title slides, tables ot numbers and so on. We 
make charts, graphs and special effects slides. 
Posterization, digitizing a video imag• and 
adding color with the computer, is a hot item, 

Beginning at the beginning, our software 
includes image 1111.king programs such as FONT, a 
program which produces word copy or text in a 
variety of typefaces or fonts, Next, image 
manipulating or "cut and paste" programs such as 
MENU, Bitpad driven, this is our 1110st powerful 
program, the heart ot the system, More about 
MENU later. Final.:cy SHOOI' retrieves completed 
images and outputs them to the camera, See 
Figure 2, 

RJNT 

Figure 2 



ASJ/GK RNP I llll.lfll 6tJK 
!61K!k 

➔ 

1
NX 

1-15 

IZ 

{j I 

., 
I 

~' 

- "' 
13 I~ 

, /(I 

5 6 

1. :2 

ce 

, /5 rI I Hf' -1-G -,.15 
-

' --· 
II -I -A' :-G 

I 
-.i 

7 MP 
CtlUlr 

3 CatM' SLr , SAWRj KIi/TE. ('!,.Alf 
'L1 · ~6/f I c""" 

Figure J 

At the creative center of our system sits 
MENU. The user co111111unicates with MENU using 
the bitpad and occassio~ the keyboard. 
MENU communicates with the user on the video 
terminal screen. Looking at the bitpad, the 
upper portion is an array of 21 x 7 function 
keys. These keys are activated by depressing 
the bitpad stylus within the key boundary. 
See Figure J. 

The top line ot keys control basic 
program operations such as input/out3>ut, 
page sel.ection, reaolution, ~roa and 
program termination. Near the center of the 
array is a number pad. On the bott0111 left 
of this number pad is a key labelled BOX; 
keys to the left. ot the number pad control 
boxes. Boxes are defined using the ASSIGN, 
FIND and BOX=BOX keys. Boxes are moved and 
aligned using the SHIFT• JmTIFY • ADJUST and 
directional arrow- keys. The YES key confirms 
possibly dangerous operations. Various 
operations can be applied to boxes• groups ot 
boxes or images with the AVERAGE, FUNCfION, 
COPY• KEY and FUZZ keys. These operations can 
be applied in ADD, SUBl'RA.CT • AND, OR, XOR or 
REPLACE function modes. On the bottom right 
of the number pad is a key labelled COLOR; 
keys to the right ot the mmiber pad control 
color. Colors are set using the SE!' RGB, 
RANDOM COLOR, SHADE and COLOR=COLOR keys. 
Color intensity and red, green and blue 
components can be tine tuned using the I• 
R, G and B keys. Color maps can be saved and 
retr!.eved with the Pur MAP and GE? MAP keys. 

In summary• the user controls 16 boxes 
per page and 4096 colors. He/She can recall 
any number of images from disk. Function modes 
include add, subt.ract, and, or, xor, replace. 
These modes can be invoked tor any disk load, 
camera load (digitizing an image from the 
video camera)• average, copy, key and tuzz. 
These operations apply to image loads and to 
boxes. Individual boxes or groups ot boxes 
can be tilled, inverted, cleared, shirted, 

80 

justified, adjusted, equivalenced, assigned and 
found. Colors are set, shaded, raised or 
lowered in intensity, seperated into red, green 
and blue components, equivalenced and 
transliterated. Color codes are used by the 
function modes to produce effects such as slllOOth
ing, edge detection, surface textures, etc. 
MENU allows the user to define macros which 
become higher-level operations and can be used 
to define grids, shading, animation etteots etc. 

Artistic expression is difficult to achieve 
in any medium. Computer art genera~ eaphasizes 
technique over expression. Artifice is not art. 
Artistic expression is akin to personal express
ion, an artist develops his/her own st:,le. 
Technique 1s important as a starting point and 
as a foundation to build upon. MENU demands 
this technical skill and, in turn, offers the 
potentional for developing individual style. 
To illustrate I will describe one aspect ot my 
own work in more detail. 

FEEDBACK 

Abstract expressiolliSII 1s my favorite 
school 01' painting, The subject or content is 
spiritual, the soul ot the artist. It recogn
izes feelings and eotiona; defines structure in 
terms of balance, pattern, rhythm, harmony, 
contrast, counterpoint, etc; and defines beauty 
as appropriateness ot t"orm ( content plut struct
ure). 

Video feedback has interested many artists 
in recent years. It produces detailed and 
dynamic images which symbolize, tor :many, 
cybernetics, the computer revolution and so on. 
Its basic structure is recursive, an important 
programming technique ot solll8 philosphical inter
est. A feedback image is produced through a 
combination of controlled and random elements. 
Again, tor many, this symbolize• the electrollic 
age. 



My feedback images are created by pointing 
the video camera at its own monitor. Noise and 
sources ot light ref'l.ected on the monitor screen 
are repeated within the loop, like a hall ot 
mirrors. This coll'l8ntial feedback loop is 
moditied by our slow column by column •canning 
process. The image is controlled by varying 
camera position, lena settings and monitor bright
ness and contrast. Arter considerable tinkering 
acceptable images are selected and stored. 

I use a panop:q ot techniques to develop 
these buic b & w images. Fuzzing with the 
replace function SllOOths the image. Fuzzing with 
the subtract or xor function produces an edge 
detected outline. This outline can be averaged 
back into the original image in various modes. 
Fuzzing with the add function then loading the 
original image with the and function produces 
cutouts. These can be used as mattes tor 
collaging. Sections ot the image can be assi«n-

81 

ed to boxes and these boxes keyed over the full 
trame to produce foreground or background 
patterns. Colors can be transliterated. I 
clean up a complex image by set.ting colors 
1 - 3 to O, 5 - 7 to 4, 9 - 11 to 8 and 13 - 15 
to 12. Selecting colors can be approached in 
•111' ways. Ott.en, I randomly set colors O and 
15, then shade the map to produce an overall 
tone, and t1nal:q randomly select onq the odd 
or even colors. The combined results of these 
and 11&111' more related atrategi .. are illustrated 
in the photos toll.owing this article. 

For Jlle, using MDU in this manner parallels 
the process of painting. I am directed by 111,Y 
intuition. I respond to the image u it develops 
on the color monitor. I can store an image I'm 
having trouble with and return to it later. I 
can make false starts, backup and start again. 
I can develop several images silllultaneous:q. 
The computer is 'fq studio. 



82 



83 



84 



\ 

85 





VIDEOTEXT AS PERSONAL EXPRESSION 

WENDY RICHMOND AND SUSAN RUBIN 

ABSTRACT 

"Videotext as Personal Expression" 
is a description of two artists' 
participation in the creation of a 
videotext electronic art gallery. 
This project was funded by the 
National Endowment for the Arts 
through a grant awarded to the 
Alternate Media Center at New York 
University. The first section is a 
description of the graphic workings 
of the videotext system. The second 
section is a discussion of Susan 
Rubin's interactive electronic 
calendar, created for the project. 
It encompasses an evaluation of the 
database for the calendar, as well 
as her methodology of working with 
the medium. The third section 
describes Wendy Richmond's project, 
an exploration which emphasizes the 
search for an appropriate visual 
language and imagery for the 
videotext medium. The conclusion 
addresses the definition of an 
electronic art gallery in the home. 

Videotext is the generic name for 
the transmission of computerized 
information and services to the home 
television screen. It is delivered 
via cable or telephone line, and is 
accessed by the home viewer using a 
hand-held decoder or computer 
keyboard. The videotext displays are 
static pictures, or "pages" which 
are called up individually by viewer 
request. These pages can be either 
text or graphic information, or 
both. Videotext is interactive, in 
that the viewer selects the pages 
she wishes to see. 

The Telidon videotext system, which 
was selected because of its enhanced 
graphic capabilities, provides a 
pallette of six colors--red, blue, 
yellow, green, cyan, and purple--as 
well as six shades of gray from 
black to white. 

82CH1831-7/82/0000/0087$00.75 © 1982 IEEE 
87 

Its drawing system is based on 
Picture Drawing Instructions, or 
POi's, which enable the user to 
create points, lines, arcs, circles, 
rectangles, and polygons using a 
compact set of commands. These 
shapes can be drawn in any specific 
location using a keyboard, joy 
stick, or electronic stylus to 
position the cursor. 

Telidon offers textures in the form 
of grids, diagonal lines, dot 
matrices, and stripes, all in 
changeable widths. These textures 
can be used to draw and fill, and 
can be overlayed to create 
variations in pattern and tonal 
value. 

Each page is created by issuing a 
sequence of commands. When the 
image is displayed, it appears to 
draw itself in sequence for the 
viewer. This step-by-step picture 
creation offers the potential for 
limited movement and animation. 

In addition, the Telidon system 
enables the artist to edit her 
pages, providing commands to change 
colors, move forms, rotate and scale 
shapes, erase specific areas, and 
combine part of one page onto 
another. 

Generally, videotext services 
consist of news, financial data, 
sports scores, community activities, 
weather reports, travel information, 
and the like. In the fall of 1981, 
Martin Nisenholtz of the Alternate 
Media Center at New York University 
received a grant from the National 
Endowment for the Arts to create an 
electonic art gallery using Telidon. 
The grant was awarded to artists 
selected for their abilities to 
explore the graphic potential of the 
medium, and to extend its 
application as an art form. 



This paper is a collaboration 
written by two of the participating 
artists, Susan Rubin and Wendy 
Richmond. They come to the project 
with complementary yet different 
backgrounds and attitudes. Ms. 
Rubin is an animator with a 
persistent interest in calendars. 
Her approach lies in translating her 
interest into a new medium. Ms. 
Richmond is a graphic designer whose 
work focuses on exploring the visual 
language with which a given medium 
communicates. Her primary objective 
in this project is to discover the 
appropriate imagery to be viewed on 
this medium, and the appropriate 
style in which to portray the chosen 
imagery. For Ms. Rubin, videoteKt 
is yet another graphic tool for 
creating personal imagery. For Ms. 
Richmond, it is an extension of her 
research and evaluations of the uses 
of media. 

INTERACTIVE 1983 CALENDAR 
Susan Rubin 

I was invited to participate in the 
project based on my work as an 
animator. The calendar has been a 
theme in my work for the past six 
years. Four of my films are 
animated months. I also designed a 
calendar for 1982 using xerox, 
collage, and rubber stamping. So 
for the Telidon project, I proposed 
to create an electronic interactive 
calendar, with an emphasis on its 
graphics. My approach was to extend 
my interest in calendars to a new 
graphic medium, and to find the 
appropriate structure, imagery, and 
vocabulary within that medium. 

The database for the calendar is the 
twelve months, each created in a 
different graphic style using the 
elements of the system. For each 
month, there is a selection of four 
additional pages, each keeping 
within the graphic theme and "look" 
of the month of which it is part. 
There is a holiday page, depicting 
reference to a holiday celebrated 
during the month. There is a recipe 
page, offering a different recipe 
for each month. The order of the 
recipes throughout the year follow 
the order of a meal, from appetizer 
through dessert. There is a 
quotation page, which presents 
quotes from poetry, prose, and 
songs. And there is a page for each 
month which is one installment of a 
twelve-part story which progresses 
through the year. 

88 

The calendar is designed to offer 
the user an initial choice of any of 
the twelve months. Once the 
selected month has been displayed, 
the viewer is asked to move on to 
the next menu. At this point, she 
can select either a new month, or 
a choice of holiday, recipe, 
quotation, or story. If she 
selects, for example, the recipe 
page, the recipe for the month will 
be displayed. At this stage, she is 
given the option to view other 
recipes, or to go back to the 
month's menu and select either its 
holiday, quotation, or story. She 
is also offered the opportunity to 
return back to the cover menu, from 
which she can select another month. 
(See Figure 1> 

The interactivity of the calendar in 
this medium allows the viewer to 
travel multi-dimensionally through 
time and content, month by month, 
through the holidays, recipes, and 
quotations one by one, and through 
the story chapter by chapter. She 
can also elect to view each full 
month, with all of its options, one 
at a time. As previously explained, 
all options for each month are 
graphically similar, whereas moving 
"horizontally" through the months, 
holidays, recipes, quotations, and 
story results in twelve different 
graphic styles. 

It took several weeks for me to 
become accustomed to the system and 
to produce images that I found 
acceptable. Initially, I attempted 
to sketch certain ideas on paper and 
translate them onto the monitor. 
The results were frustrating. I 
found it necessary to spend several 
sessions playing loosely with the 
system in order to develop a feel 
for the kinds of images I was 
looking for. Eventually, my 
sketching as well as my final pages 
were created soley on the system. 

As I became more familiar with 
creating these pictures, I developed 
certain preferences and styles of 
working. For instance, when the 
program is booted, the screen is 
black. At first, I drew my shapes 
against the black background. It 
didn't occur to· me for several 
sessions that I could change the 
color and texture of the background. 
In the final calendar, a good number 
of my pages were drawn on 
other-than-black backgrounds. 



I also found that I preferred 
working in certain modes. I 
discovered the polygon mode much 
more useful to me. And I began to 
know which fill patterns I wanted. 

I developed the habit of storing 
successive stages of pages as I was 
creating them, and of saving as much 
as I could, even if I was not 
intending to use it. As it turned 
out, a number of early sketches were 
eventually developed and 
incorporated into the final calendar. 

Essentially, I found the system a 
satisfactory vehicle for my personal 
creative expression. As the 
calendar evolved, I discovered a 
language with which to produce 
imagery which was aesthetically 
gratifying and exciting. 

CULTURAL PATTERNS 
Wendy Richmond 

As a graphic designer, my approach 
to creating electronic videotext art 
consisted of an exploration of the 
medium itself. What are its 
limitations? What are its 
advantages? How will the audience 
view the images? What is the 
appropriate content for this medium, 
and what is the appropriate style in 
which to display this content? 

The limitations include extremely 
low resolution, limited choice of 
colors, small screen size, and slow 
display time. Each image is always 
displayed as it has been 
constructed: piece by piece. The 
viewer must "request" each image. 
It is impossible to represent highly 
realistic, photographic images. 

Conversely, each limitation can be a 
strong advantage. The extremely low 
resolution can be used to exhibit 
rich, patterned textures -
electronic weavings, mosaics, 
tapestries created with electron 
beam threads. The colors are 
emitted rather than reflective, and 
are bright, strong, highly graphic. 
As the image builds up, piece by 
piece, its form unfolds. From 
mysterious disconnected shapes, it 
evolves, like a story, into a final, 
fully constructed image. The viewer 
can request any image, and construct 
her own sequence, And ft nal-1 y.,, 'the 
images~ are not of our real it:y, but 
characters of an electronic world. 

89 

The key, then, is to analyze the 
limitations/advantages, and use them 
appropriately. 

Information displayed on a CRT 
screen is never literally static. 
The picture is constantly being 
redrawn by an electronic beam which 
traverses the screen left to right, 
top to bottom, completing an entire 
frame every thirtieth of a second. 
Although the picture may not 
actually move, it is never totally 
stable. One of the most important 
requirements of textual typography 
is that it be extremely stable, 
allowing the reader to progress 
smoothly through the text without 
encountering visual breaks and 
inconsistencies. Videotext type, 
because of the medium's extremely 
low resolution, is made up of very 
few pixels, thus causing the type to 
be jagged and poorly articulated 
(not unlike the type that you are 
reading at this very moment, that of 
a low resolution dot matrix printer). 

Therefore, I decided that the frames 
should rely primarily on graphics, 
and text should be confined to 
short, caption-like material. All 
graphics themselves should be strong 
and free from miniscule detail which 
does not "read" in such low 
resolution. 

My electronic imagery consists of 
masks, figures, and tapestries of 
primitive art. Each of the three 
categories is intended to support 
the physical nature of the videotext 
medium in its own manner. 

The masks of primitive art are 
strong and highly graphic. They 
have immediate emotional impact. In 
translating these images to video, I 
strove to retain this visual and 
emotional impact, creating large, 
looming "faces", full of 
benevolence, anger, or fear, with an 
imposing stature. As elements build 
on the screen, the mask emerges, and 
its emotions unfold. If floats in 
space, with no landscape. 

The figures that I chose to 
translate into electronic form offer 
a different kind of appropriateness 
to the medium; they are geometric, 
with sharp edges and angles. They 
are bright and cartoon-like, and 
have a surprisingly (or not so 
surprisingly) strong resemblance to 
the figL1res of video games. 



The tapestries have the most obvious 
and concrete appropriateness to low 
resolution computer graphics. They 
can be translated almost literally 
from their original form, where the 
patterns and textures provided on 
the Telidon system are extremely 
similar to patterns and textures of 
weaving. 

The viewer has a choice of two paths 
in which to travel through the 
database. She can view a sequence 
of masks, figures, and tapestries 
from a specific geographic origin, 
such as Africa, Peru, or the Pacific 
Northwest. Or, she can choose to 
view a sequence of either masks, 
figures, or tapestries from a 
variety of geographical origins. 

In conclusion, a note regarding the 
illustrations. Because this is a 
"paper", a hard copy, black and 
white, primarily verbal description 
of a soft copy, color, primarily 
graphic set of images, I am 
compelled to allude to the irony of 
displaying the artwork in this 
paper. Therefore, I am including 
additional images more appropriate 
to the medium at hand, that is, hard 
copy sketches. 

CONCLUSION: WHAT IS AN ELECTRONIC 
ART GALLERY? 

An electronic art gallery is one 
which is viewed at home, on a 
television monitor. It can be 
viewed at any time, at any speed, in 
any sequence. It differs greatly 
from the art gallery as we know it. 
Think of the way in which you 
normally view art. You allot a 
Sunday afternoon, most likely only 
several per year, outfit yourself 
accordingly, leave your home, and 
drive or take the subway to the 
chosen location. The purpose of 
your trip is to view art. Anything 
that happens during your visit that 
does not involve looking at art is 
secondary. Think of viewing an art 
gallery at home, on your television 
set. Are you eating dinner at the 
same time? Doing the dishes? 
Waiting for a phone call? Why not? 

Susan Rubin 

90 



3elect a Month 

'° 

FIGURE 1 

INTEl:tAC1'IVE VIDEOTEXT CALii;NDAR 
.:3usan Rubin 



92 



93 





COMPUTER PAINTING WITH RODIN 

by Monique Nahas<•> and Herve Huitric <••> 

Production Automation Project 
University of Rochester 
Rochester,New York 14627 

<*> On leave from the University PARIS VII, Paris,France. 
<**>On leave from the University PARIS VIII,Paris,France. 

ABSTRACT 

This paper presents computer generated 
artistic images produced by a system called 
Rodin, which we designed and implemented. Rodin 
utilizes the following techniques. 

Surface design with bicubic B-Splines 
Elimination of hidden parts 
Generation of shadows 
Surface modulation 
Blending or concatenation of surfaces 
Texture generation 
Recursive subdivision 
Reflection, refraction, and 
simulation 
3D interpolation 

SURFACE~ 

transparency 

We model objects by using bicubic B-Spline 
surfaces because these are well suited for 
constructing smooth 3-D objects. A B-Spline 
surface is defined by a set of "control points", 
with each point represented by its x,y,z 
coordinates. B-Splines are not interpolating 
surfaces, i.e., they do not pass exactly through 
their defining control points. 

The control points to produce a desired 3-D 
surface can be estimated by a number of 
different ad hoc methods. We illustrate the use 
of the methods through several examples. 

1. For the head in Picture we used 
20*40 = 800 control points. An initial set 
of points was selected by hand drawing two 
views of a face (front and profile). This 
technique is similar to the data acquisition 
procedure described in [1]. We spent 
several days manipulating manually the 
control points to achieve a satisfactory 
result. For an easier manipulation, we 
implemented algorithms based on the 
so-called "Oslo algorithm" [2] for the local 
non-uniform introduction of new control 
points. This provides a means for modifying 
objects locally in the regions where the 
objects are richer in details. 

82CH1831-7/82/0000/0095$00,75 © 1982 IEEE 
95 

2. For the dinosaur in Picture 2, we started 
with a wood skeleton and and measured by 
hand coordinates of points along the spinal 
column and various cross-sections 
("slices"). Initial estimates for control 
points were computed by positioning the 
slices appropriately with respect to the 
spine. This spine/slices combination has 
the advantage of being rapidly adaptable for 
an animation sequence: this only requires 
changing the spinal column position and the 
orientation of slices. 

3. The control points of a surface can also be 
generated algorithmically. For example, the 
control points for the mountains of Picture 
1 were generated via fractal curve 
algorithms [3]. The control points for the 
lake of Picture 3 were defined by 
superposing several waves generated 
algorithmically. 

Improving the methodology of data 
acquisition for complex scenes is of fundamental 
importance to our overall work. Consider, for 
example, the construction of a pseudo-realistic 
movie, and think of how many different simulated 
objects and actors are needed to keep an 
audience from being bored after a few minutes. 

~VIEWING 

~ Buffering 

Rodin calculates visible surfaces 
shadows by using algorithms based on 
buffering [4] which are similar to 
described in [5]. These algorithms were 
for ease of programming. 

and 
depth 
those 

chosen 

Visibility calculations are performed as 
follows. We step along the u,v parameters which 
define the surface in equal increments and 
generate the corresponding points P(x,y,z) on 
the surface. Each point Pis projected onto a 
discretized "screen" to determine a 
corresponding pixel. The depth (i.e., the 
distance VP, where V is the viewpoint) is 



computed and compared to the depth stored in a 
Z-Buffer for the appropriate pixel. If P's 
depth is smaller than that in the Z-Buffer, then 
P's depth is stored in the buffer. 

Shadow calculation is similar to visibility 
calculation. We use an S-Buffer in which we 
store distances SP between the (point) light 
source S. and surface points P. The S-Buffer 
corresponds to an "auxiliary screen" 
approximately orthogonal to the "average" light 
direction. The Z-Buffer and the S-Buffer are 
computed in a single u,v scan of the surface. 

To produce a display with shadows we 
proceed as follows. We traverse the surface 
again. For each point P we determine visibility 
by comparing the depth VP with the appropriate 
entry in the Z-Buffer. If P is visible, we 
project it onto the "auxiliary screen" and find 
if Pis illuminated (or if it is obscured by 
another point) by comparing the distance SP with 
the contents of the S-Buffer. If P is not 
illuminated then it belongs to a shadow and is 
painted black. If P is illuminated then we 
compute its corresponding intensity by using 
Lambert's law or different formulas as described 
in [4], and display it. Surface normals are 
computed by finding the partial derivatives with 
respect to u and v by using de Boor's formulas 
[6], and then evaluating the cross product of 
these derivatives. We have encountered the two 
following problems with the above method: 

1. When two neighboring points P and P' on the 
surface project onto the same S-Buffer 
"pixel", the point which is farthest from S 
will be assigned to the shadow, and the 
object will appear with some rather strange 
"self shadows". This problem is easy to 
solve by introducing a tolerance in the 
distance comparisons. Specifically, if the 
distances SP and SP' are approximately 
equal, both P and P' are considered 
illuminated. 

2. The surface often is "under-sampled", i.e., 
not enough points on the surface are 
generated to fill completely and correctly 
the Z- and S-buffers. The effects of 
under-sampling are quite visible in the 
shadow cast by one object upon another. For 
example, a shadow point P may be found by 
the algorithm to be illuminated simply 
because a portion of surface which obscures 
P was under-sampled and therefore was not 
taken into consideration in the calculation 
of the S-buffer. Under sampling effects can 
be avoided by using a very large number of 
points, which is an expensive solution, or 
by interpolation. 

Interpolation .metllPd. 

To reduce computing time we use the 

96 

following interpolation technique. First we 
compute the points of the surface corresponding 
to two successive discrete values of v and to 
all the discrete values of u. After projection 
on the screen, two sequences of 2-D points are 
thus obtained. Then we interpolate each polygon 
of four points as shown in Figure 1. 

Figure 1 

To each corner of the 2-D polygon being 
considered, we associate a set of values to be 
interpolated simultaneously: (a) brightness 
value, (b) the contents of the Z-Buffer, (c) the 
values of the two indices of the S-Buffer, 
(d) the contents of the S-buffer itself, (e) the 
depth, and (f) the S-depth, i.e, the distance 
between the point and the light source. During 
the interpolation the shadow and the hidden 
parts are evaluated for each point. Note that a 
Gouraud shading [7] is included automatically. 

Brightness 

The brightness of a point can be computed 
by using Lambert's law or several other formulas 
[°4]. Highlight effects are used in Picture 10 
to enhance the rocks in the foreground. Fog 
effects are used in Picture 7; fog is created 
by adding a diffuse light whose intensity is 
proportional to the distance to the eye. Other 
effects can be created by modulating the light 
according to different parameters (e.g., the 
altitude). All these effects seek realism. In 
addition, certain promising effects can be 
produced by random modulation of the light 
around an average computed value. 

SURFACE MANIPULATION 

.l.,.Qgal surface Modulation 

We modulate a surface by perturbing its 
defining control points. First the Oslo 
algorithm [2] is used to add the desired number 
of control points to a selected region of the 
surface. Then the control points are moved 
according to a specific rule. For example, in 
Picture 4 control-point perturbations were 
sinusoidal, with variable frequencies. 

A local 
controlling the 

modulation is 
displacement 

obtained by 
of a subset of a 



surface's defining points. When the point 
perturbation in a region has zero amplitude, the 
initial surface appears without deformation in a 
subregion because of the local properties of 
B-Spline surfaces. Local modulation was used, 
for example, to construct the head of a faun in 
Picture 5. 

concatenation SJ.I a-spline Surfaces 

Blending two or more B-Spline surfaces 
together is required to obtain more complex 
shapes such as a body with limbs or a tree with 
branches. 

We describe our concatenation process for 
the · specific example of the dinosaur shown in 
Picture 6. First, subdivision algorithms (2,8] 
are used to cut the surface into two B-spline 
surfaces, with two sets of corresponding control 
points. Then the control points of the foreleg 
are juxtaposed with those of the first part, and 
the corresponding surface is displayed as a 
whole (Picture 6). The process continues by 
cutting the rest of the body, juxtaposing the 
new leg and displaying it as shown in Picture 6. 
Finally the last part, the tail, is displayed 
alone. 

The trees of Picture 7 are made in a 
similar way, the sole difference being in this 
case that the process of cutting and attaching a 
branch is recursive. The tree is made with two 
B-spline surfaces: a trunk and a branch, and 
the branch is automatically translated before 
each concatenation. 

.3.::12. Interpolation 

By equalizing the number of control points 
in two B-Spline surfaces, it is possible to 
combine the surfaces through interpolation in 
various ways. The combination can be local by 
controlling spatially the coefficients of the 
interpolation. The head emerging from a 
mountain of Picture 8 was constructed in this 
way, and can be imagined as a part of an 
animated sequence. 

Texture 

In Rodin, we are using the ideas of [9]. 
The texture is produced by modifying a point in 
the direction of its surface normal. We use 
different kinds of texture, either by giving a 
pattern (e.g., the ground in Picture 9), or by 
using random functions (e.g., the 
mountains,ground, trees in Pictures 7, 2, and 
1). 

Many different textures can be obtained by 
employing stochastic functions or by locally 
controlling their variations. The texture can 
be altered in coordination with different 
parameters of the Picture, the characteristics 

97 

of the objects, etc ••• 

For our artistic goals, this kind of 
stochastic method is very important. It gives 
some life to the uniformly metallic aspect of 
the B-spline surfaces and thus we are pursuing 
the stochastic approach in all the imaginable 
directions trying to produce hair and skin 
textures, and stochastic movements (10]. 

Recursive Subdivision 

Using the ideas in [11), we combine 
Z-Buffer techniques and recursive subdivision to 
get another way of displaying a B-SPLINE 
surface. The subdivision is obtained by cutting 
the given surface into four B-Spline surfaces 
using [2] and [8]. It is then possible to 
modify the control points of the subsurfaces in 
a way analogous to that described in [3]. 
According to the number of recursions, the 
amplitude, and the direction of each deformation 
we obtain different perturbed surfaces as shown 
in Picture 10. 

Reflection .and. refraction 

We simulate reflection and refraction of 
light on B-Spline surfaces by using the 
raytracing techniques described in (12]. We 
traverse the reflecting or refracting surface, 
and for each point on it we determine the ray 
going from that point to the eye. Then the 
brightness of the point is determined by optical 
geometry: light can come from a ray symmetric 
with respect to the normal in case of 
reflection, or from a ray determined by the 
index of refraction in case of refraction • 

To find the intensity along these rays, we 
intersect them with the other objects of the 
scene. Then the same process is repeated 
recursively at each point of intersection. We 
refer the reader to (12] for a full description 
of the algorithm. In Pictures 11 and 12 we 
stopped the process at the first intersection 
(point A in Figure 2a) in order to produce the 
reflection of one opaque object -- the body -
in the lake-mirror. 

Figure 2a 

Reflection 



In Picture 1 we stopped the process at the 
second intersection, i.e, point Bin Figure 2b, 
to compute a refraction through thick glass. 
(The two sides were obtained by a small 
translation of an initial vase.) The 
illumination of A (respectively B) is then 
computed in the usual way and used as part of 
the brightness of the point M of the mirror. 
This method uses certain approximations: for 
example the influence of the reflected light 
source, an important factor, is neglected. 

Figure 2b 

Refraction 

In any case, we must compute the 
intersection of a ray with a B-Spline surface. 
We use a recursive subdivision algorithm [2] and 
[8]. We cut the B-spline into four subsurfaces, 
and determine if the ray can intersect each of 
the subsurfaces. If a potential intersection 
with a subsurface is detected, we subdivide 
again, and so on. Intersection tests are made 
by examining the largest cube that encloses the 
control points of a subsurface. Since B-Splines 
have the convex hull property, a ray which does 
not intersect an enclosing cube cannot intersect 
the surface itself. 

Texture can be added to the mirror without 
difficulties. Note, however, that some problems 
involving the reflection of a textured object 
are still not solved. 

Transparency 

By using a ray tracing procedure it is 
possible to combine the intensities of different 
points on the same ray to compute transparency. 
When there are no reflections or refractions we 
compute transparency by simple depth buffering 
techniques using multiple Z-buffers as in [13]. 

CONCLUSION 

Rodin was implemented in Fortran on a VAX 
11/780 under VMS at the University of Rochester. 
The system extends to 3-D scenes many of the 
ideas used in our earlier work [14], and 
exploits the specific capabilities of 3-D 
computer graphics. 

In order to address the artistic questions 

98 

that constitute our fundamental concern, we must 
always use the state of the art in computer 
graphics; this prevents Rodin from ever being a 
closed system. 

The choice of B-Spline surfaces reflects 
our own preference for smooth surfaces, even if 
we try to perturb them most of the time. 
Obviously the choice of tools is a personal 
affair and is not, and does not have to be the 
same for all artists. 

ACKNOWLEDGMENTS 

We are grateful to the Production 
Automation Project of the University of 
Rochester for facilitating our artistic research 
by hosting us during 1981-1982. We would 
especially like to thank Dr. Herbert Voelcker, 
Professor and Director of _the P.A.P., and 
Dr. Aristides Requicha, Associate Director, for 
their kind efforts in our behalf. 

REFERENCES 

~: The references given here are a 
very samll part of all the literature existing 
about B-Spline and other topics considered in 
this paper. We list only those papers which are 
directly relevant to our system. For a very 
interesting, complete, but mathematical 
presentation of B-Splines, we add the reference 
[15]. 

1. F. I. Parke, "Computer generated animation 
of faces", in H. Freeman, Ed., Interactive 
Computer Graphics. New York: IEEE 
Compu~er Society, 1980, pp. 357-363. 

2. 

4. 

5. 

6. 

E. Cohen, T. Lyche, and Richard Riesenfeld, 
"Discrete b-splines and subdivision 
techniques in computer-aided geometric 
design and computer graphics", Computer 
Graphics .ani1 .I.m,age_ Processing, no. 14, 
pp. 87-111, 1980. 

L. C. Carpenter, "Rendering of fractal 
curves and surfaces", ACM Computer 
Graphics, vol. 14, no. 3, p. 109. July 
1980. 

w. M. Newman and R. F. Sproull, Principles 
.2f. Interactive Computer Graphics. New 
York: McGraw-Hill Book Co., 2nd ed., 1979. 

L. Williams, "casting curved shadows on 
curved surfaces", ACM Computer Graphics, 
vol. 12, no. 3, pp. 270-274, August 1978. 

C. de Boor, "On calculating with 
B-Splines", .sl.... Approximation ~. 
vol. 6, no. 1, pp. 50-62, July 1972. 



7. H. Gouraud, "Continuous shading of curved 
surfaces", ~ Transactions cm. Computers, 
vol. C-20, no. 6, pp. 623-628, June 1971. 

8. w. Boehm, "Inserting new knots into 
B-Spline curves", Computer-Aided ~. 
vol. 12, no. 4, pp. 199-201, July 1980. 

9. J. F. Blinn, "Simulation of wrinkled 
surfaces", A!a1 Computer Graphics, vol. 12, 
no. 3, pp. ?86-292, August 1978. 

10. A. Fournier, D. Fussell, and L. Carpenter, 
"Computer rendering of stochastic models", 
Communications Qt .tru:. .Mai, vol. 25, no. 6, 
pp. 371-384, June 1982. 

11. E. Catmull, "A subdivision algorithm for 
computer display of curved surfaces", 
Tech. Report No. UTEC-CSC-74-133, 
University of Utah, December 1974. 

99 

12. T. Whitted, "An improved illumination model 
for shaded display", Communications SU:. .th!l 

ACM., vol. 23, no. 6, pp. 343-349, June 
1980. 

13. P.R. Atherton, "A method of interactive 
visualisation of CAD surface models on a 
color video display", ACM. Computer 
Graphics, vol. 15, no. 3, pp. 279-287, 
August 1981. 

14. H. Huitric and M. Nahas,"Computer art 
experiments of the last ten years", 
Proceedings of IEEE Symposium on Small 
Computers in the Arts, IEEE catalog 
no. 81CH1721-0, pp. 87-89, November 1981. 

15. C. de Boor, "A 
b-splines", Applied 
vol. 27. New York: 

practical guide to 
Mathematical Science, 

Springer-Verlag, 1978. 



100 



IOI 



102 



103 





Computer Graphics and Woven Fabric Design 

Laura Giannitrapani 

Personal Computer Arts Group 
Box 1954, Philadelphia, Pa. 19105 

ABSTRACT 

The nature of the weaving process 
lends itself to using computer graphics in 
the design stages. As a designer and hand 
weaver, I have used computer graphics in 
generating decorative and graphic designs. 
I intend to use the computer as a design 
tool in weaving. In this paper I will 
describe ways that s~all computers can 
assist the weaver. 

Computers are used as design aids in 
a variety of fields both functional and 
aesthetic. One area that lends itself 
particularly well to computer assistance 
is woven fabric design. Both commercially 
mass produced fabrics and individually 
hand woven fabrics can be enhanced by the 
use of the computer in the design stage. 

The structure of woven fabric is 
composed of two sets of interlocking 
threads called the warp and weft. The warp 
extends the entire length of a piece of 
fabric and is held under tension on a loom 
for the duration of the weaving process. 
Alternating warp threads are lifted and 
depressed by harnesses and treadles 
creating a shed for a weft thread wound on 
a shuttle to pass through. This process 
ranges in complexity from the simple 
methods (American Indian backstrap loom) 
to the most complex (Dobby and Jacquard 
looms). 

The design of woven fabrics involves 
1determining which warp threads to raise 
for each shed. The treadle sequence for a 
plain (or tabby) weave requires lifting 
everi other warp thread.for each shed. 
More complicated designs are achieved by 
varying the treadle sequence. A point by 
point graph is made of the design 
illustrating which threads will appear on 
the completed surface. The columns and 

82CH1831-7/82/0000/0105$00.75 © 1982 IEEE 
105 

rows are assigned numbers. Threading and 
treadling sequences are generated from 
them. 

A computer can be programmed to 
simulate patterns of warp sequences. The 
treadling sequences can be entered in any 
combination and the graphics monitor can 
display the rendered patterns. The weaver 
may experiment and perfect a pattern and 
color combinations before she/he 
undertakes the time consuming tasks of 
threading a loom and weaving. 

Granted, experimenting and planning 
with the fiber itself reveals invaluable 
information about how a fabric can and 
will look, while the computer's rendering 
is presently rather plastic. Nonetheless, 
the computer can be used in the planning 
stages when the designer establishes 
desired constants such as texture, number 
of colors, and complexity of pattern. Here 
the computer is an invaluable aid in 
experimeriting with the other elements and 
in finalizing a design. The plotter and 
printer can then draw and list the 
threading and treadling sequences. 

More than accelerating the design 
process, the computer can help to generate 
designs. For example, a design sampler 
could be generated by giving the computer 
a threading sequence and the number of 
harnesses. The computer would generate 
every possible treadling sequence and 
render the resulting patterns. The element 
of color is always a variable which can be 
controlled either by the designer or the 
computer. 

A unique approach to designing with 
the computer would be to use mathematical 
forumulae to make harmonic transitions in 
designs. Given a formula, number of 
harnesses, warp and weft threads, and 
colors, the computer could generate an 
entire plan for a piece of fabric without 



pattern repetitions as is common in 
conventional weaving. Naturally, the 

.number of harnesses and treadles 
contribute to the complexity of a design. 

Microcomputers are limited in their 
inability to render the unlimited variety 
of colors available in yarn dyes. The 
micro's relatively low screen resolution 
also inhibits accurate rendition of fabric 
texture. However, their low cost and 
ability to generate and manipulate 
patterns quickly and interactively makes 
them both accessable to and desireable for 
an independent handweaver. Software 
packages that include some of the features 
described above are currently available; 
interested weavers need not worry about 
having to program the computer themselves. 
However, after establishing familiarity 
with the computer, the designer may wish 
to explore the many possibilities 
available through programming. 

106 



COMPUTERS AND CHOREOGRAPHY 

Cathy M. Stadler 

The Spence School 
22 East 91st Street 
New York City, N.Y. 

ABSTRACT 

I am a dancer and teacher of dance 
who up to a year ago had no exposure to 
computers. In this paper I will describe 
where my year-old interest in using a 
computer to choreograph and replay dances 
has taken me. 

My first encounter with computers was 
seeing a child's exhibit called Graphics 
Theatre running on an Atari 800 micro
computer. The program was designed to 
show the animation capacity of a small 
co~puter and how it could be controlled 
interactively. It enabled a child to 
manipulate the color, path and speed of 
three different objects, a rocket, a tree 
and a man. As a dancer/choreographer, I 
was immediately captivated by the man who 
appeared to be dancing. I didn't care 
about changing his color or speed, I 
wanted to change how he moved. I 
turned to the creator of the program and 
asked, "How do you change his movements? 
How many positions can he strike? How many 
objects can interact on the screen 
simultaneously?" 

While my friend answered my 
questions, my mind raced on. I considered 
how difficult it was to express movement 
ideas with dance notation systems like 
Labanotation. While Labanotation and 
other dance notation systems provide the 
positional information of a movement, they 
don't show the stylistic qualities that 
help a choreographer visualize the spatial 
flow of the dance. However, here before my 
eyes was a means to solve these oroblems. 
The computer could help a dancer create, 
preserve, and animate her movement ideas. 

After this experience I was hooked. I 
was convinced the computer could serve as 

82CH1831-7/82/0000/0107$00.75 © 1982 IEEE 
107 

a tool to help me create dance combi
nations and view their spatial design. I 
thought that if I could learn some 
programming skills, I would be able to 
direct an army of animated dancers with a 
single keystroke. I even envisioned a 
system that would enable me to see both 
the positional relationships and the 
stylistic qualities of each movement. Or 
so I thought .•.• I had lots of dreams. 

I plunged in and began to learn Basic 
and Logo on a friend's Apple II computer. 
I experimented with a number of animation 
packages trying to create figures that 
could do individual dance steps and 
combinations. In many instances I never 
moved beyond creating the figure because 
the system couldn't accomodate the size 
or shape I wanted. When I did manage to 
create the desired image it took forever 
because I had to key in seven discrete 
body positions to compose the one movement 
phrase I wanted! It took an hour to create 
a figure leaping. After spending days 
designing the figure, compiling the paths, 
and generating the actors, I discovered 
that the movement could only follow a 
horizontal or diagonal path. And even 
worse, it was impossible to show a figure 
jumping or turning. 

Discouraged by my own inability to 
program and frustrated by the limitations 
of animation packages, I turned to 
research. What I discovered was that 
together programmers and dancers at 
universities here and in Canada were 
grappling with similar issues, albeit on 
larger computers. I 
discovered computer dance programs that 
used keyboard equivalents of Labanotation 
to animate a figure. Some programs were 
sophisticated enough to generate an image 
that could articulate 21 body joints. 
Using this system one could program leaps, 
runs, and complex movements like 
a forearm extending or shoulders rotating. 
Other systems used goniometers, devices 
which measure angles, and transmit that 
movement information to the computer. The 



computer could then produce a Labanotation 
score or an animation directly from the 
dancer's movement. Another system 
reproduced a dance from video frames 
grabbed at specific time intervals from a 
video camera. 

* (Labanotation is the most thorough 
system for symbolically describing 
movements. There are notations for 
movements as small as a tiny hand 
gesture,) 

While most of these systems produced 
an animated figure that moved in a 
humanlike manner, there still remained the 
major issues of body orientation and 
notation, Many of the systems generated a 
turning figure but one couldn't tell 
whether the shape was turning clockwise or 
counter clockwise. Nor was it clear 
whether the image was moving forward or 
backward. 

None of the systems I investigated 
could completely serve my needs. There 
were limitations with each either in the 
cost or the design. I didn't see myself 
buying a goniometer any time soon and I 
needed a system that could let me create a 
dance that included turning movements. 

So after months working on the 
computer what had I achieved? I still 
hadn't found an easy way to choreograph a 
dance. What the research taught me was 
that every system had its limitations. But 
most importantly, the time I spent working 
made me realize that the computer could 
operate as a tool to serve my artistic 
ends ony if I knew what I wanted. The 
months of work forced me to take my dreams 
and translate them into ideas that could 
be adapted to the capabilities of a 
computer I could afford. 

A software package integrating the 
following eight features would suit my 
needs when choreographing a dance. While 
I believe that such a package could be 
built on a microcomputer, I also realize 
now that the programming skills involved 
would be far in excess of my own. 

Draw Mode: For drawing a series of two 
dimensional stick figures directly on the 
screen. These figures would be composed of 
six or seven lines to represent the 
relative position of the arms, legs, head, 
and torso as they exist in an individual 
dance pose. A carrot shaped line could be 
used for the head and when pointed either 
left or right would allow me to see the 
direction of the movement. 

Save Screen: I would want to draw a 
specific number of figures on one screen 
to constitute one movement phrase. This 
screen could be saved and recalled 

108 

subsequently for viewing and editing as 
needed. 

Interpolation Function: When I draw a 
dance phrase I use a shorthand notation. 
of my own. I don't draw every discrete 
body change. I draw a sequence of gross 
positional stances (see Figure 1). The 
interpolation function would encode the 
relative limb and body positions of the 
figures on the screen and fill in the 
interval movements to create a humanlike 
animated movement that would complete the 
movement phrase. 

Color Function: A means to use color to 
determine the body direction, focus and 
orientation. This would enable me to use a 
two dimensional screen and still be able 
to work with angular and turning move
ments. For example, a movement phrase such 
as a pirouette would be represented by 
displaying the initial forward stance 
in white, the side view of the leg lifted 
in red, and the ending stance with back 
faced upstage in green. 

Repeat Function: A means to create 
repetitive movements or positions on the 
screen without having to draw them each 
time. 

Path Drawing: Once a movement phrase were 
drawn, it would be essential to establish 
its spatial and directional design. The 
ability to draw a path along which the 
movement would be executed would satisfy 
this need. 

Edit, Grab and Insert Functions: I would 
need to be able to take a movement phrase 
and either edit a segment of it or pick up 
a segment and place it in another 
part of a phrase. This would allow me to 
easily resequence the movement phrases. 

Animating Sequences: I would need a means 
of specifying and sequencing the movement 
phrases in order to create the full dance. 
When this ordered sequence was recalled 
from the disk, I would see the dance 
performed. 

If all of these features were 
integrated in a single program, I could 
draw a figure, create the steps, 
experiment with their order and direction, 
animate them, view the steps and their 
spatial design, and finally hook them 
all together to create a movement score. 



This system would reflect my own 
individual style of choreographying. 
However, I feel that these are the basic 
elements any dancer would need to create 
and view a dance. Once give~ this, a 
dancer could watch a movement score 
without the choreographer being present. 
The interpretation of the movements would 
come later, after the dancer had learned 
the work. If such a package were fully 
designed and programmed, it would provide 
a system that preserves movement ideas as 
well as animating them on the screen for 
others to learn from and adapt. 

109 





DESIGNING A RECURSIVE FRAMEWORK FOR EVOLUTIVE POETRY 

by Ned J, Davison 

University of Utah, Salt Lake City 

Abstract 

The personal computer offers new solutions to 
the sequential limitations imposed on creative 
writers by traditional printed forms. Temporal 
experiences can now be manipulated, re-ordered, 
and juxtaposed in new and endlessly varied combi
nations. This essay explores the literary impli
cations of the new creative freedom and suggests 
ways in which the computer may expand our literary 
imagination in the future. 

Since the first time a text was cut into 
segments and the resulting pages broke the 
sequential tyranny of the papyrus roll, writers 
have searched for greater temporal freedoms. 
Late nineteenth-century experiments with the 
displacement of action and the spacial disposition 
of words, phrases, and letters brought critical 
incomprehension and cries of "degeneracy" and 
"decadence." The modern artist's sensibility was 
no longer served by the orderly forms of the past. 
His world view was indeed "dis-integrating," and 
new technical needs arose. Mallarme, Joyce, Dos 
Passes, Jorge Luis Borges, Julio Cortazar, or a 
William Burroughs, all inherited the marvellous 
flexibility of the separate leaves of a book, 
susceptible to instant leaps from middle to back 
to beginning, but they were still obliged to 
struggle against the confinement of the imprisoned 
pages and the unalterable printed letters. 

The personal computer offers new 
freedoms, and perhaps even new forms, 
some musings on one of them. 

solutions, 
Here are 

I recall reading, I believe in Creative 
Computing, of an Argentine poet who was working 
on a program that would allow the user to make 
literary decisions. Since then, notations of 
narrative or filmic forms that invite the 
spectator to choose the ending or simulate open
ended dialogue have proliferated. Recent 
experiments with adapting the video-disc to new 
game-development are, in a way, a variant of the 
same impulse to add new dimensions to our play and 
aesthetic activities. In one way or another these 
are all manifestations of the evolution of a 
participatory art in which the artist and the 

82CH1831-7/82/OOOO/O111$OO.75 © 1982 IEEE 
lil 

spectator, or the author and the reader, are 
merged and share the creative act. In a curious 
sense this evolution, or quest of modern artists, 
prefigures in aesthetic terms the emergence of 
Alvin Toffler's economic "presumer," the social 
archetype of the high-tech society. (The 
parallel is not fortuitous, and further speculation 
on the socio-psychological implications of the 
relationship might be worthy of consideration in 
some future essay.) 

At any rate, it is very possible that 
recollection of the arrival of the computer in 
the arts might arouse, in coming generations of 
writers, a sense of appreciation analogous to 
what others must have felt when first provided 
with the freedom of separate manuscript leaves 
bound together in easily managed pages. 

If we limit ourselves to only letters, words, 
and phrases--leaving aside for the moment the 
bewildering promise of graphics and sound--we can 
quickly see that the almost instantaneous 
variation of sequence that pages provide is 
extended by the computer to the simplest element 
of written language, the printed or displayed 
alpha or numeric character. Passing from the 
letter to the syllable, word, phrase, line, stanza, 
or paragraph is a simple and natural progression 
in the liberation of verbal art from the bonds of 
fixed sequence. 

Future literature that takes advantage of 
this exceptional feature of the computer is very 
difficult to envision with any clarity. It will 
be the artist who will uncover the new forms, 
though certain characteristics are already 
discernable. One is the obvious realization that 
all materials of composition, potential structures, 
and forms, will be stored in a format that is 
essentially latent and unfixed. Latency in art has 
always existed, of course, but in a simpler way-
the book, dormant, waiting to be opened and the 
action and characters put in motion; the film, on 
the point of being projected; the record or tape, 
ready to be played. Even the sonnet awaits a 
reader to put its structure in motion, like a 
mobile anticipating the touch of a finger or a 
thrust of air to bring its planes and light to 
life. All of these, in their way, share a latent 
expressivity. But the electronic file holds 
ready a sensory pattern of experiences, feelings, 
and sensations that are uniquely unfixed and 



mutable. The pathways that weave them together 
offer ever-renewable roads and combinations. 
Each presentation, or playing, or reading of the 
electronic work may be made to be inevitably 
individual, unique, and not repeatable. The 
spiritual variety that we feel with each 
reading of a traditional work is extended and 
embellished with the variety and unpredictability 
of the computer driven work, The creative manage
ment of traditional ingredients, time, characters, 
place--or physical, emotional and sensorial 
environment--is made more flexible and complex 
with the power to "program" chance, to invite it in 
and then put limits and borders on it. Random 
occurence is given an opportunity to entwine 
itself with the will of the author and to combat 
his choices. The popular idea of the poet/god, 
the magus, takes on new meaning with a fictional 
world of such structured chance, guided but 
unpredictable even to its maker. 

An example is in order. Let's take the 
archetypal notion of a "trip." It could be a 
voyage through space, that is to say, geographical, 
or through our bodily perceptions (sensory). The 
basic structure is the same in either case--a 
matrix of meeting places like a Borgean network 
of spacial and temporal junctures. The links are 
varied in form and intensities. As in a railroad 
network, some lead to dense nuclei out of which 
spread new routes that terminate in "minor" 
modules. The switchman is a "double," a multiple 
personality. One part is the programmer/author 
who creates the nuclei and modules--as a formal 
act of structuring and composition--and who fills 
those modules with life experiences, metaphors 
and images. The other half of this "double" is, 
naturally, the reader/spectator. Using a 
controller, a keyboard, a stick, oral commands, or 
other means, the "reader" chooses, along the 
journey, a direction, a turn, or a destination. 
Let's imagine, in order to make things more 
concrete, a trip through Europe, by train. 

The matrix, or cohesive framework, is a 
stylized map, a blueprint, expressed in terms of 
the cardinal points of the compass, Pushing the 
stick forward sends us northward. The author may 
have dropped us, at the beginning, in a predeter
mined city (nucleus) or have left the locale to 
chance, according to his creative instincts, or 
we might have been given a choice. All possibil
ities can be latent within the microEurope of the 
program branches. 

We leave from, say Paris, and the screen and 
air fill with shapes, colors, and sounds 
psychically correlative to the French-Belgian 
countryside, (Pictures if you wish. I'd prefer 
visual metaphors, abstractions.) Then there 
appear, one after another, phrases, free images, 
combined randomly out of a limited set of fixed 
and carefully conceived lines that share a common 

112 

emotional and thematic base,* When we reach a 
nucleus/city, we elect to remain or not. We 
choose a place or an atmosphere--a cafe, club, 
museum, pension. With each choice, visual images 
and sounds attend the decision, accompanied by a 
flow of poetic lines appropriate to the module 
chosen. They play on, unfolding, turning back on 
themselves in continually varying repetitions 
until we decide to move on, and we continue our 
journey toward some new geographic or affective 
module, Every so often, chance makes us take the 
wrong train, and then we awaken surprised, in an 
unexpected world. The profile of such a poetic 
network might suggest, perhaps, something of the 
angular and cosmic geometry of Borgean chance. 

This outline is not entirely imaginary. 
Computer-generated music and graphic arts are 
commonplace and already part of the history of our 
times. The verbal arts, however, are still 
waiting in the wings. Early and generally 
unsuccessful efforts to produce poetry generated 
by computer led us somewhat astray and inclined us 
to overlook the real possibilities. With the 
arrival of the personal computer, writers now have 
at their complete and exclusive discretion a tool 
that combines, on one level, pen, brush, canvas 
and tape, and on another much broader scale, 
pages/book, screen/sound and the promise of their 
varied and perpetual regeneration, 

VERSE SET by Alan Davison 

100 ? "the room is full of smoke":GOTO 23 
101 ? "a policeman walks back and forth":GOTO 23 
102 ? "two drunks sleep in the corner":GOTO 2'3 
103 ? "stale bread for lunch":GOTO 23 
104 .; "the smell of oil":GOTO 23 
105 ? "four dar with out a bath": GOTO 23 
106 ? "you loo around.":GOTO 23 

~8~ 
? "a Frenlhman lleans hif nails":GOTO 23 
? "a Scan ar l ghts a c 3arette":GOTO 23 

109 ? " stomach growls":GOT 23 
110 ? "you have gas":GOTO 23 

111 ? "threy hours ti l the next train":GOTO 23 
? •~au oak at your watch":GOTO 23 

113 ? "a lady enters with four kids":GOTO 23 
114 ? "the benches are full ":GOTO 23 
~15 ? "you try to sleeo":GOTO 23 

16 ? "you rearrange your backoack":GOTO 23 
117 ? "you sit down on the floor":GOTO ?.3 
118 ? "the loudsoeaker rattles":GOTO 23 
119 ? " 'Tiene usted la hora?'":GOTO 23 
120 ? "the man next to you asks a question":GOTO 23 
121 ? "close your eyes":GOTO 23 
122 ? "you shrug and look away":GOTO 23 
123 ? " 'Tiene usted la hora?'":GOTO 23 
124 ? "a cigarette butt lands on the floor":GOTO 23 
125 ? "you write in your journal":GOTO 23 
126 ? "you think about home":GOTO 23 
127 ? " 9een waiting two hours!":GOTO 23 
128 '? "'So this is Eurooe? ":GOTO 2. 

* See my "Verse Weaving , . . " in the July '82 
issue of Creative Computing, pp. 166-172, as an 
example of an affective module, and also the 
sample verse-set and randomly generated stanzas at 
the end of this essay. 



129 ? 

130 ? 
131 ? 

132 ? 
133 ? 
134 ? 
135 ? 

136 ? 
137 ? 
138 ? 
139 ? 

140 ? 
141 ? 
142 ? 
143 ? 

144 ? 
145 ? 
146 ? 
147 ? 

14!1 ? 
149 ? 

150 ? 
151 ? 

152 ? 
153 ? 

154 ? 

"":GOTO 23 
"":GOTO 23 
"'':GOTO 23 
"":GOTO 23 
::y9u look at your watch":GOTO 23 

time oasses":GOTO 23 
"time oasses":GOTO 23 
"an ant crawls on your shoe":GOTO 23 
"indifferent":GOTO 23 
"tired":GOTO 23 
"slowlx":GOTO '3 
"uncomfortable":GOTO 23 
::without thinking":GOTO 23 
11
sel f consci~us":GOTO 23 

.,YOU wait... : GOTO 23 
11
the loudsoeaker rattles":GOTO 23 
nothing changes":GOTO 23 

"":GOTO 23 -
"":GOTO 23 
: 'Quelle heure est-il?'":GOTO 23 
11
an old man coughs":GOTO 23 

11
a beggar aoProaches":GOTO 23 

11
YOU oretend

11
not to notice":GOTO 23 

voices ••• :GOTO 23 
"feverish":GOTO 23 · 
"you yawn":GOTO 23 

time passes 
you sit rlown on the floor 

been waiting two hours, 
stomach growls· 

a Spaniard lights a cigarette 
the benches are full 
slowly 
you look at your watch 
indifferent 
you sit down on the floor 
the room is full of smoke 
the man next to you asks a question 
the loudsoeaker rattles 

voices ••• 
inrlifferent 
YOU wait ••• 

stale bread for lunch 
the loudspeaker rattles 
you think about home 
vou look at your watch 

been waiting two hours, 
voices ••• 

indifferent 
you shrug and look away 
you rearrange your backpack 
you have qas 
the room is full of smoke 
three hours til the next train 
you wait ••• 
indifferent 
the loudspeaker rattles 
a cigarette butt lands on the floor 

113 

you look around. 
the benches are full 
slowly 

stomach growls 
indifferent 

an old !!Ian coughs 
you look around. 
'So this is F.urooe?' 
you rearranqe your backoack 
the room is full of smoke 
the loudspeaker rattles 
the benches 
the room is 

stomach 

stomach 

feverish 
time oasses 

are full 
full of smoke 

growls 

growls 

a ooliceman walks back and forth 
the man next to you asks a question 
you look around. 

'Quelle heure est-il?' 
self conscious 
you look at your watch 
two drunks sleeo in the corner 
the room is full of smoke 
you try to sleeo 
you shruq and look away 
you look at your watch 
a lady enters with four kids 
time Passes 

stomach growls 
you wait •.• 





LASER SHOWS AND THE USE OF COMPUTERS 

by Alan Jackson 

Buffalo State Planetarium, Buffalo, New York 

Abstract 

Laser shows are described as they have 
developed over the last 20 years from the 
invention of the laser to present day machines. 
They may evolve to incorporate video projectors 
and theinset of computers will be greatly 
expanded. 

Laser shows came about because of the special 
properties of lasers. Before the laser, there was 
no comparable medium which could create an image 
as fluid or dynamic live and in real time. Hith 
the arrival of the microcomputer, these images 
could convey more precise and complex informa
tion according to artists ideas. 

An artist strives for control of his or 
her medium. The computer provides the graphics 
artist with an extensio~ of his or her own men
tal process that allows control over a much 
greater amount of information than would be 
possible if each image were individually made 
by hand. 

For a laser show, the artist gives a live 
performance drawing patterns according to his 
or her interpretation of the music that accom
panies the show. 

The beam of a laser is useful because 
it is so concentrated and does not diverge 
as it Passes through the air. A laser 
{Light Am lification by Stimulated Emitted 
Radiation consists of anar"fially reflectina 
and a fully reflecting mirror which are 
exactly parallel, with a tube filled with an 
inert gas mounted between them. Atoms of the 
gas may be in various states of excitation 
depending on what orbital level the electrons 
of the atoms may take. When an electron ab
sorbs energy, it jumps to a higher energy 
level. When an electron jumps from a high 
to a lm-ier energy level, due to a collision 
with a photon, it gives up energy in the 

82CH1831-7/82/0000/0115$00.75 © 1982 IEEE 
115 

form of a photon. That Emitted photon 
plus the original photon are an Amplification 
of the original photon. Light that is exactly 
perpendicular to the mirrors is reflected 
many times and each reflection is amolified. 
A small amount of this light passes through 
the partially reflecting mirror as a pencil 
thin laser beam. 

The invention of the laser supplied the 
world with the solution to a ''thousand unasked 
questions: although the laser soon found 
aPplications in many places in research, 
industry and entertainment. The first lasers 
shows were crude; usually the laser projector 
was a mirror glued to a piece of balloon that 
was attached to a loud speaker. When music 
was played the mirror would vibrate randomly. 
A laser beam reflected by the mirror onto a 
screen created a pattern that would pulsate 
to the beat of the music. 

The next innovation was the use of scanners 
specifically made to deflect a laser beam. A 
scanner is made of a small piece of iron and 
a mirror attached to a shaft mounted on instru
ment quality bearings. The iron is made to 
rotate by coils of wire surrounding it and is 
spring loaded so that it returns to a center 
position when no current is applied. A small 
variable capacitor mounted on the shaft feeds 
back the position of the mirror to a controller 
circuit. 

The scanner made possible the sophisti
cated laser shows that first appeared in the 
early seventies. These shows use a synthesizer 
similar to a music synthesizer to create var
ious frequencies and waveforms. These signals 
are fed to Pairs of scanners, the mirror of 
the first scanner deflecting the beam hori
zontally and the second scanner deflecting the 
beam vertically. The shape of the Patterns 
produced will depend on the two signals given 
respectively to each scanner and the relation
ship of the sianals to each other. The 
arrangement is an electromechanical version 
of an oscilloscope set up to produce Lisajous 
figures. For example, two sine waves which 
are of the same phase and amplitude will cause 
the scanners to trace a straight line. If they 



drift out of phase, the pattern will seem to 
be a slanted circle that slowly rotates. 

The major laser shows incorporate a wide 
variety of color and special effects. Most 
use an Arqon-Kryton laser as a light source. 
The beam of this laser is split into different 
wavelenqths by prism. Each of the most oower
ful of the resulting beams (usually green, 
blue, yellow and red) is sent throuqh a modulator 
and then to a pair of scanners. The modulator 
is able to turn the laser beam on and off at 
high speed to achieve a "spaghetti effect" in 
the patterns. It can also allow the scanners 
to draw separate patterns without a connect-
ing trace. 

The shows are controlled live by an 
ooerator or by a multitrack tape deck. Pre
recording a show allows a tape to be made at 
a remote computer qraphics facility where 
simple words and fiqures can be composed at . 
a terminal. Now that the cost of computers is 
coming down, some shows are using them as part 
of the live performance. Using the av~ilable 
input devices, such as joysticks and bit pads, 
the artist can draw words and figures quickly 
before a show or generate abstract patterns 
during a show which ~re nnt possible usina 
a synthesizer. 

The computer generates patterns as a series 
of one to several hundred points connected 
by straight lines. It uses a stored program 
plus data supplied to it through joysticks and 
switches to calculate the coordinates of each 
point in the pattern. 

After the coordinates of each point in the 
pattern is calculated they are sent to an 
external buffer memory as successful 8 bit 
bytes, each (x,y) coordinate pair occupying 
two bytes of memory. Data in the buffer 
memory is presented to digital to analog con
verters and the output of the D/A's is sent 
to the scanners,through the scanner controller 
amplifiers. In order to relieve the computer 
of excessive I/0 data handling, the buffer 
continuously cycles through to present the 
scanners with the same pattern thirty times per 
second. At this speed, the human eye cannot 
detect a single moving point of laser light 
but sees only a non-flickering continuous 
pattern. 

Although computer controlled laser shows 
are in their infancy,they have potentially an 
enormous advantage over hardwired devices 
because creating patterns is as simple as 
supplying data to a program. 

Future advances will allow television 
images to be presented to large ~udien:es as 
easily as films. Although relatively inexpen-

116 

sive conventional light source television pro
jectors are readily available, their image 
size and quality is too limited to be truly 
useful. High quality conventional and laser 
light source projectors exist but are prohibit
ively expensive. With the rapid development 
taking place, it seems only a matter of a few 
years before an economical high quality pro
jector comes into common usage. 

A system with great promise is the large 
area display which uses a laser beam to create 
a raster s i mi 1 a r to the raster created by the 
electron beam in a TV. The beam from an 
Argon-Kryton laser is split into the four pri
mary colors, passed through modulators and re
combined into a single beam. That beam is 
scanned in the horizontal direction by an 
octagonal mirror rotating at one hundred thousand 
rpm on an air bearing. The vertical is pro
vided by another slower mirror whose axis of 
rotation is perpendicular to the first. It 
seems reasonable to assume that television images 
with quality comparable to present day film will 
be possible with such a machine. 

Right around the corner may follow the 
showing of prerecorded tapes or live pre
sentations with special effects not possible in 
film. The actor(s)/artist(s) may act out 
scenes and then through the use of video 
processing the images may be changed for 
greater effect. 

Chroma-keying is one popular means of 
enhancing video. In one scene, a particular 
color (usually blue) is the key. Then another 
video image can be substituted wherever blue 
appears in that scene. For example, the weather 
map on the six o'clock news are viewed by 
separate cameras. The forecaster stands in front 
of a blank blue background and the map is super
imposed on the blue by a videoprocessor. This 
allows any map to be shown at will including mov
ing satellite films which would otherwise have to 
be shown behind the forecaster using rear screen 
projection. 

The movie Tron made extensive use of Chroma
keying. The actors were filmed on blank white 
stages and the rest of the scenery was filled in 
by computer graphics. The graphics in Tron were 
generated one frame at a time each oo~posed o'. 
well over 10 million pixels and sometimes taking 
hours to finish; for cmparison, a TV frame 
contains only a quarter million pixels. 

As computers become faster, it will be 
possible to generate these graphics in "real 
time". 

Plays could be presented with instan
taneous set changes. Scenery could move 
about the stage. Or, using a variation on 
chroma-keying, a computer could be programmed to 



respond to a person's motions. It would 
search a scene for "Key"col or or "key" shape 
such as a person's hand. It would extrapolate 
geometric data from the object and use it to 
generate figures. The actor/artist could drive 
a car, step off a plane, perform magician's 
tricks, move an animated puppet, all by the "wave 
of the hand". The actor/aritist will be able to 
spontaneously communicate with an audience, 
through a visual medium made possible by com
puter. 

117 





ASHCRAFT, A.C. 
COVITZ, F.H. 
DAVISON, N.J. 
DEWIT, T. 
DEWITT, T. 
DIETRICH, F. 
EDELSTEIN, P. 
FLYNN, A.C. 
GIANNITRAPANI, L. 
HUITRIC, H. 
JACKSON, A. 
JACOBSON, J. 

Author Index 

5 
5 

111 
61 
61 
71 
61 
35 

105 
95 

115 
47 

119 

KEITH, M. 
KOLOMYJEC, W.J. 
LORD, R.H. 
MAUCHLY, J.W. 
NAHAS, M. 
RICHMOND, W. 
RUBIN, S. 
SHORTESS, G.K. 
SPIEGEL, L. 
SPROUL, K.A. 
STADLER, C.M. 
WRIGHT, W. 

29 
39 

1 
23 
95 
87 
87 
75 
15 

5 
107 

79 







PPOCEEDINGS q■paiu■ ■n s■all 
DD■pUll!rS in lhl! arlll 

+ 

EEE-CAJALOG NO. 82CH183

1

·1-1 
LIBRARY OF CONGRESS NO. 81- 84728 
IEEE COMPUTER SOCIETY C,f. T ALOG NO. 455 

ffi~ 
I- ► 
::lt-1/1 
9'!!!1/1 
.2Uw 
OOII 

cUl/!D. 


