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HISTORTICAL NOTES

THE SYMPOSIUM ON SMALL COMPUTERS IN THE ARTS GREW OUT OF
A COMPUTER MUSIC CONCERT HELD IN DOWNTOWN. PHILADELPHIA IN
1978. IT WAS PLANNED AS PART OF THE PERSONAL COMPUTING '78
SHOW HELD AT THE CIVIC CENTER. JOHN DILKS, THE FOUNDER OF THE
SHOW, GRACIOUSLY BACKED THE IDEA AND PROVIDED A HOTEL BALLROOM
FOR THE EVENT. AS WORD OF THE UPCOMING CONCERT SPREAD, WE
RECEIVED CALLS FROM PEOPLE AS FAR AWAY AS THE WEST COAST
ASKING IF THEY COULD PARTICIPATE. ONE MUSICIAN FROM NEW YORK
ACTUALLY ARRANGED A PIECE FOR COMPUTER AND CLARINET ESPECIALLY
FOR THIS CONCERT. THE EVENING OF THE CONCERT OVER 500 PERSONS
SHOWED UP AND TRIED TO SQUEEZE INTO A ROOM THAT ONLY HELD 300.
THE CONCERT WAS RECORDED, AN ALBUM WAS MADE, AND IT IS NOW
SOLD BY CREATIVE COMPUTING.

THE SUCCESS OF THAT CONCERT LED THE ORGANIZERS TO FORM AN
INFORMAL GROUP TO PRODUCE SIMILAR EVENTS AND TO ACT AS A
CLEARINGHOUSE FOR THOSE INTERESTED IN COMPUTER APPLICATIONS IN
THE ARTS. THE 1979 PERSONAL COMPUTER MUSIC FESTIVAL, SPONSORED
BY THE GROUP, INCLUDED TALKS AND DEMONSTRATIONS DURING THE DAY
IN ADDITION TO THE EVENING CONCERT. IN 1980, A SEPARATE DAY OF
COMPUTER GRAPHICS TALXS AND DEMONSTRATIONS WAS ADDED TO MAKE
THE PERSONAL COMPUTER ARTS FESTIVAL. ALL THESE EVENTS WERE
HELD AT THE PERSONAL COMPUTING SHOWS IN PHILADELPHIA.

IT HAD ALWAYS BEEN OUR DESIRE TO SOME DAY ORGANIZE A
MAJOR MEETING SOLELY DEDICATED TO THE USE OF SMALL COMPUTERS
IN THE ARTS. THIS DREAM BECAME A REALITY WITH THE 1981
SYMPOSIUM, THANKS TO THE SUPPORT OF THE IEEE COMPUTER SOCIETY
AND THE IEEE PHILADELPHIA SECTION.

AT~ LAST YEAR'S SYMPOSIUM, HELD NOV 20-22, 1981, 150
COMPUTER ARTS ENTHUSIASTS DESCENDED UPON THE HOLIDAY INN ON
THE UNIVERSITY OF PENNYSLVANIA CAMPUS. AN INFORMAL AND VERY
INTERACTIVE ATMOSPHERE PREVAILED MAKING THE SYMPOSIUM A GREAT
SUCCESS WITH RESPECT TO ITS GOALS OF INCREASING THE
PARTICIPANTS' AWARENESS OF THE USES OF SMALL COMPUTERS IN THE
ARTS., RESPONSE TO THE SYMPOSIUM AND SUCCEEDING INTEREST LED
TO THE PUBLICATION OF 'SCAN', A MONTHLY NEWSLETTER ON SMALL
COMPUTERS IN THE ARTS.

THE PERSONAL COMPUTER ARTS GROUP, AS A VOLUNTEER NOT-
FOR-PROFIT-GROUP, CONTINUES TO PROMOTE THE USE OF COMPUTERS IN
THE ARTS THROUGH ITS NEWSLETTER 'SCAN', CONCERTS, AND OTHER
EVENTS. TO CONTACT THE GROUP, WRITE TO: PERSONAL COMPUTER ARTS
GROUP, BOX 1954, PHILADELPHIA, PA. 19105.



PREFACE

OVER THIS PAST YEAR WE HAVE SEEN THE USE OF
COMPUTERS IN THE ARTS POPULARIZED THROUGH MOVIES, TV
DOCUMENTARIES, AND MAJOR NEWS MAGAZINES. IT SEEMS
THAT MORE AND MORE ARTISTS AND MUSICIANS CAN'T HELP
QUESTIONING HOW THEY COULD USE COMPUTERS IN THEIR
OWN WORK, WHETHER IT BE A NEW WAY OF VISUALIZING
MUSIC OR A MEANS OF TESTING AN ANIMATION.

NEW SOPHISTICATED INTEGRATED CIRCUITS GEARED
FOR SPECIFIC SOUND/GRAPHICS FUNCTIONS HAVE DRIVEN
THE COST OF A PERSONAL COMPUTER DOWN AND THEIR
CAPABILITIES UP. MANUFACTURERS OF TRADITIONALLY SELF
CONTAINED, DEDICATED EQUIPMENT, SUCH AS CHARACTER
GENERATORS AND SYNTHESIZERS, HAVE BEEN DESIGNING
INTO THEIR PRODUCTS INTERFACES TO POPULAR MICRO-
COMPUTERS. SOFTWARE IS MORE AVAILABLE FOR A WIDER
RANGE OF APPLICATIONS AND ALLOWS FOR MORE DIRECT,
INTUITIVE USE. POWERFUL SOFTWARE DEVELOPMENT TOOLS
ARE IN TURN PERMITTING EVEN MORE SOPHISTICATED
APPLICATIONS TO BE DEVELOPED. THE GROWTH OF COMPUTER
NETWORKING IS PROVIDING ARTISTS WITH NEW MEANS OF
COMMUNICATION,

IN GENERAL, PEOPLE ARE FINDING MORE AND MORE
WAYS TO APPLY SMALL COMPUTERS IN THE CREATIVE ARTS.
NEW DEVELOPMENTS IN MACHINE INTELLIGENCE, PATTERN
RECOGNITION AND HUMAN-COMPUTER INTERFACES ALLOW FOR
MORE INTUITIVE AND INTERACTIVE USE OF THE COMPUTER.

THE PAPERS IN THIS YEAR'S PROCEEDINGS REFLECT
THESE TRENDS, BOTH DEMONSTRATING AND PROPOSING HOW
COMPUTERS CAN BE USED IN VIDEO, DANCE, WEAVING,
MUSIC COMPOSITION AND SYNTHESIS, LASER SHOWS,
INTERACTIVE SCULPTURE, VIDEOTEX, ANIMATION, AND
PAINTING.
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THE MICROCOMPUTER AS A MUSICAL INSTRUMENT

by Richard H. Lord

UPWARD CONCEPTS
Bennett Rd., Durham, NH 03824

ABSTRACT

This paper briefly surveys types of music
synthesizer hardware. It then examines plug-in
cards for the APPLE computer and explores the
Mountain Computer music system and its potential
as a performance instrument. Types of music
keyboards are briefly discussed.

INTRODUCTION

The recent evolution of microcomputer
technology has made many exciting ideas possible.
The synthesis of music has benefitted greatly from
these advances. Many commercial synthesizers
now employ digital circuitry in their design. Even
more exciting is the incorporation of the personal
computer into the synthesizer architecture, allowing
extensive control of every aspect of the synthesis
mechanism.

These new approaches permit anyone to
experiment with the quality and timbre of the
created sounds in very sophisticated ways, either
for the authentic imitation of conventional
instruments or the creation of entirely new sounds.

OVERVIEW

Before considering the nature of the newer
synthesizers, let us briefly review the traditional
approaches. This paper will not attempt o
detailed description of these techniques since
many sources of this information already exist.

The first real music synthesizers were pipe
organs, and their history goes back a few thousand
years. One cannot overlook the fact that the finer
examples of pipe organ design provide the
musician with a marvelous palette of tone color
which was not easily immitated by the electronic
counterparts. that began to appear in the 1950's.
The electronic organs did introduce some basic
concepts of electronic sound production which
provide the fundamentals of modern instruments.
Most early electronic organs provided a waveform
signal for each pitch the instrument could sound.
These waveforms were usually square or sawtooth
forms containing a rich family of harmonics. The
keyboard switched these outputs on or off and the
resulting output was filtered to create string or
flute sounds. The technique of starting with lots

82CH1831-7/82/0000/0001$00.75 © 1982 IEEE

of harmonics and filtering the output to get a
desired timbre is called subtractive synthesis.
This method appears in classical instruments as
well as electronic ones. The reed families, in
particular, generate a raw, raspy buzz which is
modified by filtration.

As electronic organs became more
sophisticated, the harsh keyboard switches were
replaced with simple envelope generators which
softened attack and created sustain after the key
was released. A need to control this envelope
more precisely, and the desire to modify pitch and
filter parameters as well, created the market for
the analog synthesizer. Of course, the economics
of creating a full andlog synthesizer for each key of
an organ was ( and still is ) prohibitive, so early
synthesizers did not play very many notes at one
time. Complex multi-track recording techniques
were used to painstakingly assemble full
orchestrations such as the work of Carlos or
Tomita. These instruments were frequently
provided with patch panels so that more exotic
sounds could be created by interconnecting the
oscillators, filters and envelope generators in
unusual combinations.

Meanwhile, another form of synthesis was
beginning to gain a foothold. Way back in the
1700's, mathematicians had discovered that complex
sounds could be broken down into a series of
sinusoidal waves. Adding these sine waves back
together would create the original waveform. The
Hammond organ made use of a limited form of this
additive synthesis. Attempts to imitate ( and thus
understand ) complex instruments such as the
trumpet, showed that a series of sine waves could
indeed reproduce these sounds. The trick was
that each sine wave had its own envelope, and
some of these changed pitch during the attack or
decay. This looked suspiciously like the earlier
problem of providing many channels of analog
synthesizers, except now each note would require
many channels. This clearly limited this technique
to academic music research labs, where complex
machines could be built,

As all this was happening, digital computers
started to become fast, efficient and available.
Some researchers recognized that both additive
and subtractive synthesis could be performed
mathematically by a digital computer. These
calculations were too complex to be used for direct
creation of sound, but an output file could be
created which could then be converted directly to
analog signals. All the complexities of multiple




notes of multiple sine waves could all be added
together into a single digital data stream. This is
the uvltimate technique for producing the most
subtle control of the final output. However, it
requires storage of at least a million bytes of
information for each minute of audio output. It
also takes a great deal of computer time to create
this file, so that live performance or interactive
control is impossible. The lack of interaction
tends to limit the usefulness of this method for
exploring new sounds. :

MICROCOMPUTER SYNTHESIS

Recent advances in large-scale circuit
integration have allowed both computers and
specialized controllers to be developed.
Manufacturers of electronic musical instruments
have begun to recognize this potential and start
incorporating these devices into their designs.

.

The PROPHET 5 analog synthesizer by
Sequential Circuits is an example of the adaptation
of an analog synthesizer. A Z-80 microcomputer
and battery-powered memory allow 120 complete
presets to be stored in this machine permanently
( or replaced with 120 more, stored on tape ).
The microcomputer sets up the envelope and filter
patches and sets up all the analog parameters, as
well as scanning the keyboard and providing
control voltages. Five complete channels are
supplied, and the microcomputer selects five of the
keys held down. The synthesizer itself, is entirely
analog with conventional voltage-controlied
oscillators, filters, amplifiers and envelope
generators. In this product, the microcomputer is
not really involved in the production of the sound.

An entirely different approach is employed by
instruments such as the CASIOTONE 202. Here,
custom integrated circuits generate the sound by
direct digital synthesis. The manufacturer carefully
created 59 different presets that can be selected
by the performer. No mixing or modification of
these voices is possible, but the variety and quality
of the presets is very suvitable for a performing
instrument. In this synthesizer, two channels are
provided to supply the transient and steady-state
aspects of the instrument sound. Each channel
has a special IC which scans the keyboard, selects
the eight most recently played keys, and provides
complete additive waveform synthesis and
envelope generation for these eight notes, summing
the result and sending the digital output to a l4-
bit digitai-to-analog converter ( DAC ). Each
channel then is passed through a simple analog
filter and then mixed to form the final output.
The manufacturer has not released much
information on these custom IC's, but they appear
to be doing some very powerful computation.

Suprisingly few high-quality synthesizers have
appeared for personal computers. There are 8-bit
DAC's available for most computers. Experimenters
like Hal Chamberlin have gotten surprising amounts
of music from these, but the dynamic range and
frequency response of this method are very limited
and the microcomputer is very busy creating
samples for the DAC and has no time to scan
keyboards.

The APPLE computer has fared better than the
others, with two rather interesting types of
synthesizer cards available. The ALF synthesizers
are programmable pitch generators with amplitude
controls. Two different cards are available. One
provides 9 channels with 16 amplitude levels and
the other produces 3 channels with a more precise
256 amplitude levels. Pitch is selected by
dividing the system clock by a programmable
number. The only waveform possible is a square
wave. This can be given different characteristics
by changing the envelope, but not much variety is
possible. This synthesizer does provide a
convenient note editing system that makes it
rather pleasant for conventional composing, where
the desire is to quickly hear examples of
counterpoint or harmony. The entry system is by
far the simplest to use. It cllows repeats and
transposed repeats and can create many
interesting effects. It is rather like programming a
player piano though, since no keyboard input or
tonal variation is provided.

The second synthesizer card for the APPLE is
the Mountain Computer l6-channel digital music
system. This is actually two cards that fit in
adjacent slots of the computer, The system is a
true digital additive synthesizer that allows
musical instruments to be precisely defined. Each
of ‘the |6 channels can have its own waveform and
envelope profile. In addition, pitch and amplitude
can be -given a complex attack profile. A single
instrument could use all 16 oscillators, though
usually two are assigned to each voice. The
system provides 30,000 samples per second for
each oscillator so that the sound quality is quite
high. Compositions can be entered and edited
separately from instrument definitions and new
orchestrations can be tried easily.

The software delivered with this synthesizer
does not allow input from a music keyboard. Two
manufacturers supply keyboards and software to
work with the Mountain Computer system. Both of
these systems allow the user to define preset
instruments to be played from the keyboard.
Sequences of notes can be recorded and played
back. The keyboard can be played in a different
voice while the recorded notes are played. Both
systems allow the selection of different tunings
than the equal-tempered. scale. The Passport
Designs systfem allows FM effects in the
instrument definitions.  The Alpha-Syntauri system
is available with a velocity-sensing keyboard that
can be linked tovarious parameters. Both systems
play up to eight notes at once .and assign two

oscillators to each note with simple ADSR
envelopes for each oscillator.

PROBLEMS

While this synthesizer and its-software can
provide much enjoyment and useful
experimentation, the present systems fall slightly
short of the mark., The size of the scores that can
be edited by the Mountain Computer software is
quite limited. Parts can be compiled and merged,
but even then, there are few complex scores that
can run more than a few minutes. It is not
presently possible to automatically bring in a new




movement from disk. In fact, the Mountain
Computer software ( written in a language called
XPL ) frequently pauses during simple editing
operations so that new pieces of the program can
be swapped into the APPLE's memory.

Instrument definition can also be a problem.
As mentioned earlier, the three different software
systems have somewhat different instrument
specifications. Also, the output filter of the
Mountain Computer card does not provide a very

satisfactory frequency response curve, limiting the’
quality of the instrument definitions. It is also

very difficult to generate random noise as a
component of the sound. It is simple to generate
a random wavetable which is periodically repeated,
but the ear has incredible ability in its power to
sense periodicity. The result is a harsh buzz, not
white noise.

The frequency response and noise generation
problems can be solved with hardware; A card
can be added to provide better output circuitry
and to generate random numbers when addressed
in ROM address space. ldeally, this card could
also perform keyboard scanning and provide a
digitally programmable analog filter for special
effects that cannot readily be created with digital
synthesis. Larger composition files could be
possible if someone were willing to code the
software more efficiently,

iIN CONCERT

The possibilities of digital synthesis for a
performance instrument are very exciting. Existing
software permits a performer to generate exotic
instruments and call them into action with the
touch of a single key. Bass line accompaniements
can be recorded and easily called in.

Much work needs to be done on the design of
keyboards. At present, velocity input ( from the
timing between switch closures ) is the only
parameter available on the Alpha-Syntauri. Some
commercial synthesizers are making use of key
pressure as well. So far, nothing approaches the
control of a piano. The subtlety of tone that a
violinist can impart to the string is very much over
the horizon. The pipe organist must be content
with on/off control, but pianists universally
complain of the insensitivity of synthesizer
keyboards. If each key could sense velocity,
position, and force in each of two directions and
these parameters could be linked into the
instrument definitions, many possibilities might
exist. |If authentic "feel" were part of the
requirement, it is even possible to provide force
feedback through solencids mounted under each key
and modulated by a keyboard micro-computer,

SOME CONCLUDING THOUGHTS

There appear to be at least three directions of
experimentation sugggested by the available
microcomputer synthesis systems. For those
interested in composition, these programs allow
scores to be entered and edited with some of the
flexibility of a word processor. The results can be
orchestrated and heard immediately. Runs of 64-
th notes beyond the dexterity of the most

accomplished musicians can be played on this
system. If your interests are centered on the
analysis and imitation of musical instruments,
these systems allow you to construct complex
instrument definitions and hear them as you
modify them. These instruments can be saved on
disk and called up at will. The performing
musician can create many new effects and can
record accompaniement to enhance the
performance.

The Mountain Computer synthesizer cards have
far more capability than has been exploited by the
present software. Sixteen oscillators may be a
limitation for performance with exotic instruments,
but much can be done with this hardware and
many more powerful digital synthesizers are likely
to become available. While performance
instruments may still be in their infancy, = anyone
interested in the design of keyboards, digital
hardware or software in connection with these new
instruments should find many stimulating
possibilities available.






NOISE IN REAL TIME DIGITAL SOUND GENERATION

A.C. Ashcraft, F.H.

ABSTRACT

This paper discusses the most
important software sources of digital
noise in sounds generated by the cyclic
table look up, Digital to Analog Converter
(DAC) method of sound synthesis. These
sources are: 1) Quantization, 2) Trun-
cation, and 3) Interpolation. The rela-
tive importances of these sources are
discussed as they are affected by system
parameters such as the number of bits
available to represent amplitudes in the
waveform tables, the number of bits which
can be converted by the DAC, the number of
entries in the waveform tables, whether or
not interpolation 1is possible, and the
accuracy of the interpolation if it |is
possible. In this paper we Ppropose a
partly hardware, partly software technique
for doing 1linear interpolation in real
time synthesis. We describe the residual
digital noise of this technique, as well
as the minimization of this noise by
trade-offs between quantization noise,
interpolation noise, memory usage and
sampling frequency.

SOUND SYNTHESIS

The digital sound synthesis procedure
which 1is the basis for the following
discussion is the cyclic table look-up/DAC
method. Our first implementation was with
a 6502 machine 1language program which
pre-computes sets of 256 byte waveform
tables by additive Fourier synthesis. It
then wuses these tables for real time
generation of waveform amplitudes by
cyclic table look-up. A double precision
frequency increment is added to a double
precision table pointer for each voice in
order to maintain pitch accuracy, however
only the integer part of the table pointer
is used to look up the waveform amplitudes
(ie, no interpolation). An 8-bit DAC, a
low pass filter, and an audio  amplifier
are the only sound generation hardware
required. This program plays four part
instrumental music with a sampling
frequency of 8.8 khz. The program and its
evolution have been described in detail in
references 1-3.

An improved implementation 1is de-
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Covitz and K.A. Sproul

scribed in the present article. It
consists of a 680680 machine language
program which runs on the MTU-1390 computer
equipped with MTU's 256k memory board
containing a Motorola 68000 l6-bit
microprocessor. The -‘added hardware for
sound synthesis consists of two 12-bit
multiplying DAC's, two 8-bit DAC's and a
low pass filter. This new system will
also play four part instrumental music in
real time, however, it has a sampling
frequency of 22 khz and does  linear
interpolation, resulting in a greatly
improved high frequency response and
signal to noise ratio compared with our
earlier implementation.

DIGITAL NOISE
1) Quantization

The most fundamental software source
of noise in digital sound synthesis is due
to quantization. This noise results from
the representation of a continuous analog
variable, such as a waveform amplitude, by
a binary integer having a precision
limited by the number of bits. Quan-
tization noise is guite serious in real
time sound synthesis using the cyclic
table look-up procedure because time and
memory constraints generally make multiple
precision operations out of the question.
Until recently, all microcomputers in
general use had an 8-bit data bus.: This
has limited single precision operations to
an accuracy of +-1/2 part in 256. The
signal to noise ratio expected from this
inaccuracy is 512:1. Expressed in 4B this
is:

s/n = 2p*log(512) = 54.2 dB
In general, the signal to noise ratio
due to quantization 1is given by the
formula:
s/n = 2@%(n+1)*log(2)
Or approximately:

s/n = 6n+6

where n is the number of bits used to rep-
resent the number.




2) Truncation

The noise figures arrived at 1in the
foregoing discussion are misleading if one
goes no further with the analysis. Even
if individual wvalues in the waveform
tables are accurate to the specified
number of bits, and the DAC .used has
sufficient precision to reproduce these
values as analog signals, the final result
will be inaccurate if the fractional part
of the table pointer is ignored. This
error, called truncation error, results
because successive entries in the tables
can easily differ by more than one unit,
particularly if higher partials are
present. If one ignores the fractional
part of the pointer and takes the lower of
the two table entries on either side of
the true pointer 1location, an erroneous
waveform amplitude can result which
differs from the true value by many times
the quantization error.

Consider the rather brief 8-bit sine
wave in table I and its graphical
representation in figure 1. This table
consists of sixteen equally spaced values
scaled to cover the full amplitude range
of # to 255. The amplitude returned from
this table as a result of ignoring the
fractional part of a table pointer having
the value of #.4 is 128 (as if the pointer
had been @.9), rather than the correct
value of 148. This is the maximum error
which can result from the use of this
table. If the pointer had been 4.4, a
value of 255 would have been returned
rather than the correct value of 253.

Table I
Pointer Amplitude Pointer Amplitude
[} 128 8 128
1 177 9 79
2 218 10 38
3 245 11 11
4 255 12 1
5 245 13 11
6 218 14 38
7 177 15 79

The calculated RMS signal to noise
ratio (s/n) resulting from truncation of
the fractional part of the pointer is 19
dB for this size sine wave table, a far
cry from the 54 aB expected from
quantization at the 8-bit level. If the
table had contained a more realistic
number of entries, say 256, the s/n would
have been 43 dB. A sine table with 1924
entries results in an s/n due to
truncation of 55 dB, which when combined
with 8-bit gquantization results in an
overall s/n of 48.5 dB. Table II shows
that each quadrupling of the table size
results in . an improvement of the s/n due
to truncation by about 12 dB.

Table II

Number of Truncation Overall
Table Entries s/n, 4B s/n, dB
16 19.2 19.1
64 31.1 30.5
256 43.90 490.9
1k - 5541 48.6
4k 67.2 52.5
16k 79.1 53.7
infinite infinite 54.2

However, the overall effect, including
quantization noise, approaches one of
rapidly diminishing returns for increased
use of memory for waveform tables 1larger
than lk. These RMS s/n calculations were
done using a BASIC program published by H.
Chamberlin on p. 394 of reference ([4].
The program is also capable of RMS s/n
calculations on arbitrary waveforms
calculated by Fourier synthesis. In the
reference, results are given for a sine
wave as well as a complex wave containing
2nd, 3rd, 5th, 8th, 1lith, 1l4th, and 17th
partials of equal intensity. For this
report, we have used four representative
waveform types to cover a wider range of
timbre effects: :

Type 1:
Coom
A= Sin(nx)
n=1
Type 2:
m
A= ) 1/n Sin(nx)
n=1
Type 3:
_7—m+1)/2( 1 )
A= 2: Sin([2n-1]x)
n=1 2n-1
Type 4:
(m+l)/2( 1 2
A= 2: Sin({2n-1]x)
n=1 2n-1

where n is the partial number and m is the
maximum partial number. Figure 2  shows
the appearance of a few waveforms from
each type.

The type-1 waveforms are the richest
in timbre and the hardest to generate ac-
curately if one ignores the fractional
part of the wave table pointer. The
type-4 waveforms have the softest  timbre
and are the easiest to approximate.
Type-~3 waveforms approach the square wave
as n becomes large and type-2 waveforms
approach the sawtooth waveform. The
type-2 waveforms are probably the most
typical of those needed to create musical
instrument sounds, and are used exten-
sively in the discussion and examples to
follow.




Figure 3 shows how truncation noise
varies with the table size and timbre of
the waveform. The results for the type-2
waveform are fairly accurately fit by the

equation:
s/n = 19.9 log(size) -7 log(m) -4.7 (4B)

The s/n frequency response of the type-4
waveforms is almost flat, and that of the
type-1 waveforms rolls off more rapidly
than that of the type-2 and -3 waveforms,
between 3 and 5 dB/octave. The type-3
waveform response (not shown) 1is very
similar to that of the type-2, about 2
dB/octave roll-off.

Figure 4 shows the combined effects
of 8-bit quantization and truncation noise
for the type-2 type waveforms as a
function of table size and maximum partial
number in the Fourier series. We are
faced with diminishing returns for

building larger and larger waveform
tables. Note that the 256 byte example
represents the performance of the program

of reference [3].
3) Interpolation

The only way out of this difficulty
is to face up to the necessity of
interpolation between successive entries
in the waveform tables, making use of the

fractional part of the waveform table
pointer. For the sake of computational
simplicity, let us consider linear

interpolation.

If amplitudes Al and A2 are
successive table entries in a waveform
table, and the table pointer is between
them, ie, the integer part points to Al
and thé fractional part of the pointer, F,
is not zZero, then the linearly
interpolated amplitude A is:

A = Al + F(A2-Al)

Implicit in this formula are two table
look-up operations (with an index
increment between them) to get Al and A2,
a subtraction, a multiplication, and
finally an addition rather than the single
table look-up required for the truncation
procedure used in the computer program of
reference [3]. The subtraction may be
avoided if a separate table of delta A
values (D) is precomputed and stored in
memory for access by the same index wused

for Al:
D = A2 - Al ,precomputed
A = Al + F-D

This operation still requires two table
look-up operations, a multipication and an
addition. Let us assume for the moment,
however, that the computations can be

accomplished quickly enough for real time
music synthesis. What is the gain in s/n
as a result of linear interpolation?

The RMS noise calculation program in
ref. [4] was modified to return waveform
amplitude values obtained by simple linear
interpolation rather than truncation. The
results obtained for a type-2 waveform set
are shown in figure 5. 8-bit quantization
noise corresponding to a s/n of 54.2 dB
has been added to the calculated values to
make easy comparison with figure 4
possible. Note that if linear
interpolation in a table of only 256
entries is used, the results are as fully
accurate as if a table of 16k entries had
been used with truncation. Similar
results quantized for a 12-bit amplitude
are also shown. The results of 1linear
interpolation in waveform tables of
reasonable size are obviously good enough
for 12-bit audio purposes. Quadratic and
higher forms of interpolation are not
necessary.

SOFTWARE INTERPOLATION

1) 65082 Software

If a 6502 microprocessor is used, the
additional indexed table look up can be
combined with the addition and requires
only 5 psec. However the multiplication
in a machine code algorithm could take as
more than 109 usec, and worse yet, the
time would be variable, depending upon the
bit pattern of the factors. For a four
voice system the sample time will
therefore 1increase from the reasonably
effective 114 psec of the program of ref.
[3] (which has a Nyquist frequency of 4.4
kHz) up to a ponderous 508 psec or So.
This would result in a decidedly 1lo-fi
Nyquist frequency of 1 kHz even if the
variable loop time were fixed using a FIFO
buffer to give a stable sampling rate.
The high frequency response could be
partially restored by going to a single
voice system, but this is not musically
interesting enough to support the effort
it would entail.

For delayed playback systems, neither
the variability nor the reduced speed are
of consequence, and just this approach was
used for the demonstration given by H.
Chamberlin at the IEEE sponsored 1981
Symposium on Small Computers in the Arts
[5]. A 6502 machine language program
running in a 1 mHz Rockwell AIM was used
to calculate 12-bit samples at a rate of
about 5¢@/sec on the average. At this
rate, time was available for not only
interpolation between table entries, but
also interpolation between waveforms, and
other effects such as reverberation. The
samples were stored on floppy discs  as
they were generated for. later playback



with a very fast disc operating system, a
FIFO, and low pass filter at a sample rate
of 25 kHz.

Although the performance of the above
system was excellent, the challenge still
remained: could the improved s/n which
results from interpolation be realized in
a real time music synthesis system in a
small computer? A member of the new
generation of 16-bit microprocessors may
provide the increase in computing power
necessary: the Motorola 68804.

2) 68000 Software

The 68080 is fast. Consider a
typical software operation such as "look
up a value from a table, and store it to a
port®. It 1looks 1like this in 6502
assembler code:

LDA (Pointer),Y "Pointer"™ is low byte
of 16 bit zero page
pointer, ¥ = 9@
Absolute address of
output port is used

STA Port

e we W %o wp

and takes 9 microseconds in an ordinary 1
mHz 6502. The same operation in 68000
assembler code takes only one instruction:

"Pointer" is stored
in register Ag,
"Port" in Al

MOVE.W (Agd), (Al)

~ w W

This instruction takes 1.5 microseconds in
an "ordinary" 8 mHz 68000. Note also that
the 68000 MOVE.W instruction moves a
16-bit word from a table of 16-bit values
to the port, not an 8-bit byte (as was the
case for the 658#2). A MOVE.L instruction
would have moved a 32-bit long word from
the table to a 32-bit port in 2.5
microseconds. In addition to this
speed-up of ordinary operations, the 68000
has a multiply instruction which takes a
maximum of 8.5 microseconds to multiply
two 16-bit numbers and generate a 32-bit
product, and a divide instruction which
takes 17 microseconds. Unfortunately, the
exact timing of these instructions 1is a
function of the bit pattern in their
operands.

The following code fragment 1is an

example of what might be written in 68000
assembler language to implement linear
interpolation in a sound generation

program. The program assumes the existence
of 256 entry tables of 32 bit long-words,
each entry having the waveform amplitude
in the high order word and the difference
to the next entry amplitude 1in the 1low
order word.- INCR is a frequency increment
which is added to the permanent voice
pointer in Dl. The integer part of the
waveform pointer eventually ends up in Ag.
D@ and D7 are used as scratch pad
registers, and A9 is used as an indirect

address register for the

Both the amplitude and the
the next entry are moved to D@ by this
operation. After the fractional part of
the pointer (bits 1¢-18) is moved into D7,
it can be multiplied by the difference
contained in the low order word of D@, and
finally added to the amplitude for storage
to the 12-bit DAC. The cycles given are
8-mHz clock cycles. Each voice requires a
maximum of 198/8 or 24.75 psec. per sam-
ple.

table look-up.
difference to

ADDI.L #INCR, D1 ;Advance pointer 16
ANDI.L #FBFFFFFF,D1 ;Mask off bit 26 16
MOVE.L D1, D@ ;Put in Scratch-pad 4
ANDI.L #03FC9Q0F,D@ ;Mask off fract. i6
SWAP D@ ;Swap words in D@ 4

MOVE.L D@, AQ
MOVE.L DISP(AQ),D@

;Put pointer in A9 4
;Ampl.,slope in D@ 16
MOVE.L D1, D7 ;Frac. in D7 4
ASR.L $#2, D7 ;8hift to lo-word 12
ANDI.L #0000FFp@,D7 ;Mask off lo-byte 16

MULS D@, D7 ;Multiply <78
ADD.L D@, D7 ;Get corr. Ampl. 8
MOVE.L D7, (Al) ;STORE TO PORT 12

Total cycles/voice=<198

A 4-voice program using the above
fragment would have a Nyquist frequency of
SkHz, not much higher than the 6502
program of ref.{3]. However a more
serious flaw is the lack of predictability
of the cycle time caused by the MULS
instruction. Such a program could only be
used in a delayed playback system or in a
system equipped with a First In First Out
(FIFO) buffer having enough capacity to
smooth out the timing irregularities of
the program.

HARDWARE INTERPOLATION

1) Software Considerations

Since additional hardware seems to be
inevitable, what about the possibility of
doing the interpolation itself in
hardware? 1In the 68008 program of the
preceding section, all of the quantities
needed for interpolation appeared in
registers or in a memory move operation.
The fractional part of the table pointer
was in data register D@, and both the
waveform amplitude and the difference were
retrieved together with the "MOVE.L
DISP(A@), D@" instruction. Suppose that
the MOVE.L instruction were directed to
store the 32-bit long word directly out to
a port rather than to D@, and that the
fractional part of the pointer were
similarly moved out to another port.
Latch hardware could 1insure simultaneous
delivery of all the information to a group
of multiplying DAC's and op-amps designed
to perform the interpolation math. The
68009 program fragment accomplishing this




is considerably simpler than the earlier
one, and much faster. In this progr am,
each voice would require only 18 psec. per
sample with an 8 mHz 68¢068. A four voice
play loop based upon this fragment would
have a sampling frequency of 24.39 kHz:

ADDI.L #INCR, D1 ;Advance pointer 16
ANDI.L D7, D1 ;Mask off bit 18 8
MOVE.L D1, (A2) ;Frac. to PortA 12
MOVE.L D1, D9 ;Pointer in Scratch 4
ANDI.L D6, D9 ;Mask off Frac. 8
SWAP D9 ;Swap words in D9 4

MOVE.L D@, AgQ ;Put Pointer in Ag 4
MOVE.L DISP(AQ), (Al) ;Amp,Slope to PortB 24
;Total cycles/voice=89

2) Interpolation in the Presence of
Several Sources of Quantization Noise

Before considering the hardware
requirements for interpolation in detail,
let us first consider the s/n ratio
consequences of analog interpolation based
upon signals each of which contain
quantization noise. Both the amplitudes
in the waveform tables and their
associated differences are limited in
precision to 16 bits by the 68680 and
probably to 12 bits by considerations of
cost and practicality. Similarly, the
fractional part of the waveform pointer
has a limited precision, possibly as 1low
as 8-bits. If the program used earlier
for analysis of s/n due to the
inaccuracies of linear interpolation were
modified to round off all values to their
expected accuracy, the RMS s/n could be
directly determined. The BASIC program
listed in the appendix was designed to do
this. Note that 1¢8 trials were used in
most of the results reported here rather
than 1060 trials as recommended in ref
[4]. A comparison of selected results
based on 1909 trials showed that 1¢¢ was
adequate. See Figure 6.

The program allows easy study of the
trade-offs which must be made between
table size and the number of bits
allocated to the parameters which are to
be brought together in the DAC circuitry.
In the figures the table size and number
of bits allocated to the parameters are
given in the form S/a/d/f, where "S" |is
the number of entries in the waveform
tables, "a" is the number of bits in the
amplitude, "d" bits in the difference, and
"f" bits in the fractional part. Thus
256/12/12/8 means a 256 entry table of
12-bit amplitudes and differences, with an
8~bit fractional part.

Note that if the sum of a
16, then the table can be made up of
composite 16-bit words, taking only half
the space for given number of entries, and
the MOVE.L DISP(Al), (Ad) can be changed to

and d is

a MOVE.W instruction, saving 1 psec. per
voice. If d < a, the program assumes that
the least significant bit (LSB) of each
number has the same significance 1level.
When differences between two successive
table entries exceeds the range of a
number having b bits, the table value of
the difference is limited at the value 2
raised to the power d-1l. This introduces
noise, but only for waveforms containing
harmonigs above a certain point. The
alternative procedure (scaling the
difference values so that they could cover
the full range of amplitude differences,

even though with less precision), results
in the quantization noise of the
difference values dominating the overall

s/n. The latter procedure results in more
noise over the whole sound spectrum and is
thus less desirable. '

Let us investigate this space saving
possibility first. Figure 7 shows a
graphical comparison of the s/n
performance of three members of the
256/n/16-n/8 family. The 256/8/8/8 has
the best overall performance, although for
waveforms containing only the 1lst, 2nd and
3rd partials, the 256/106/6/8 system is
better, 1limited only by the 10 bit
quantization. The 256/12/4/8 system is
useless, even worse than the
256/8-truncation case. It fails because
of the insufficient range of a 4 bit
number (+-8) to represent successive
differences in a 12 bit table of waveform
amplitudes.

Figures 8 and 9 show the corre-
sponding members of the 512 and 1024 entry
families. 19-Bit performance can be
obtained from the 512/10/6/8 system up to

the 9th partial in type-2 waveforms
(sawtooth). The 1024/19/6/8 system |is
even better, showing almost flat s/n

response out to the 17th partial for the
sawtooth waveform. Neither the 512/12/4/8
nor the 1024/12/4/8 systems are useful.
12-Bit performance is unattainable until
table size is much bigger, at least 8k.

If we abandon the hope of
16-bit tables, we find that
performance is easy to achieve with
numbers of table entries, and that 12-bit
performance is possible. Figure 19 shows
the results of our analysis of the
n/12/12/12 cases where n = 256, 512, 1824,

using
19-bit
small

and 2048. For clarity's sake only the
results for the type 2 (sawtooth)
waveforms are shown. Also shown for

comparison purposes are the 256/8/8/8 and
the 256/8-truncation cases. Note that the
256/12/12/12 system does better than
19-bit quantization out to the 7th
partial. The s/n rolls off at about 8
dB/octave above that. The 512 entry case
does as well out to the 206th partial, and
the frequency response of the 1024 entry
case is practically flat, approaching




12-bit quantization out to the  2@th
partial
The 256/12/12/12 case is a very

attractive one to consider for an improved
digital sound generation system based on a
68000 processor on the MTU 256k memory
board:

Each
Memory.
to each

a) It is conservative of memory
waveform requires 1924. bytes of
If 32 waveforms were allocated
instrument for dynamic timbre effects,
256k allows 7 complete instruments with
32k left over for program and song data
files. The 512 entry system would
significantly  restrict the range of
" instrumental effects which could be
achieved while only resulting in a modest
incremental improvement in s/n.

b) It represents a significant improve-

ment in performance The 15 to 30 dB
improvement 1In s/n. and the threefold
improvement in Nyquist frequency is a very
significant improvement in musical
capability compared with our earlier
efforts [3].

A few additional runs on the s/n
program showed that 8 bits of information
was sufficient for the fractional part.
The 256/12/12/8 system is cheaper to
implement, needing one less 12 bit DAC,
and the performance shown in figure 11 is
more than adequate. This is the system we
decided to try.

3) Interpolation DAC Circuit Design

The circuit is designed around a set
of memory mapped latches feeding data to
12-bit multiplying DAC's (AD7541) for the
waveform amplitudes and table difference
values (Al and D), and 8-bit multiplying
DAC's (AD7523) for the fractional part of
the waveform pointer and overall gain

_control (F and G). Operational amplifiers
are used to convert the 12-bit DAC outputs
to bipolar voltages and to convert the
8-bit DAC outputs to unipolar voltages for
the fractional part of the waveform
pointer and the gain control. One of the
12-bit DAC's forms the product of the
fractional part and the table difference,

using thé analog voltage derived from the
8-bit fractional part DAC as its
reference. The reference voltage of the
8-bit fractional part DAC in turn is
supplied by the unipolar analog output of
the 8-bit gain DAC, which also supplies

the reference to the 12-bit amplitude DAC.
- Another op.amp. sums the analog voltages
corresponding to the waveform amplitude
and the product of the fractional part and

the table difference, giving the
interpolated amplitude. The voltage
emerging from the summing amplifier

depends upon the digital outputs Al, D, F,

and G from the 68008 program in the
following way:
L4

(Al-2048)<G (D-2048). F-G

V= -.5 - *+ Vr
20484256 2048256256

Except for the minus sign between the
terms, the above formula has the correct
form for interpolation. 1If, when the
waveform tables are computed, one calcu-

lates the value stored in the low order 16

bits of each 32-bit table entry by
subtracting the next higher table
amplitude from the current one (let D' =
Al-A2 rather than A2-Al), the resulting
difference, D'= -D, will give correct
interpolation using the above. formula.

The circuit diagram for the
interpolation DAC is shown in figure 12.
The output of the final summing amplifier

is fed into a sharp low pass filter having
a flat response out to 9.5 kHz. This
filter is described on p 377 of reference
[4].
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APPENDIX
BASIC Program for Calculation of Signal

to Noise Ratio In the Presence of
Multiple Sources of Quantization Error

10 REM INTERFOLATION ERROR
20 DIM J(4)sQ(4)

25 DIM D(4,21)

30 REM WAVE TYFE DEFINITIONS
32 LET J(1)=1

33 LET Q(1)=0

34 LET J(2)=1

35 LET Q<2)=1

36 LET J(3)=2




37 LET Q(3)=1 1470 LET V1=V1+(S-M1)¥(S-M1)

38 LET J(4)=2 1480 LET $1=8§

3% LET Qt4)=2 1481 GOSUE 3000

110 REM  #TRIALS 1510 LET V2=VUZ+((81-8)-H2)"2

112 LET R=100 1520 NEXT 1

120 REM  $#ENTRIES IN TABLE =N 1600 LET D(WsH1)=4,3429%(LOG(V1)-LOG(YV2))
122 FOR E=8 TD 12 1605 LET D(WsHI)=INTCL1OXD(W I H1)4.5)/10
124 LET N=2"K 1800 NEXT H1

130 REM EKITS T0 DAC =DAC 1810 NEXT W

132 FOR D1 =8 7O 12 STEF 2 1812 FOR W=1 TO 4

134 LET X1=27(D1-1) 1813 FRINT Wij

140 REM EBITS TO SLOFE =DI2 1814 FOR Hi=1 TO 21 STEF 4

141 LET D2=16-I1 1815 FRINT D(WsH1)j

142 LET Xx2=2"(p2-1) 18146 NEXT Hi

142 REM EITS TO FRACT. FART = D3 1817 PRINT

144 LET D3=8 1818 NEXT W

150 FRINT N#*/°3D13°/"3025°/°3D3 1820 NEXT D1

155 LET UI3=03-8 1830 NEXT B

700 LET F1=2%2,14159 19998T0F

800 LET FD=.314159 2000 REM COMFLEX WAVEFORM GENERATOR
1005 REM SELECT WAVE-TYFE ' 2050 LET A=F1XT

1006 FOR W=1 70 4 2060 LET 8=0

1010 LET Ji=Ja) 2100 FOR H=1 TO H1 STEF J1

1011 LET Q1=Q(W) 2110 LET §=8+(1/H)"Q1XSIN(H%A)

1012 LET Wis=UWs (W) 2120 NEXT H

1020 FOR H1=1 TO 21 STEF 4 2200 RETURN

1028 REM FIND MAXIMUM VALUE OF WAVEFORM 3000 LET T=(INT(NXT1)/N)

1030 LET 81=0 3010 LET T2=INT(NXT141)/N

1033 LET Ni1=.5 30620 LET T3=INT(.S5+D3%(T1-T)/(T2-T))/D3
1034 LET N2=2/N 3040 GOSUR 2000

1025 FOR T=0 TO N1 STEF N2 050 LET S2=INT(.S5+S%F)

1040 GOSUE 2000 3040 LET T=T2

1042 LET S=ABS(S) 3070 GOSUB 2000

1050 IF G§<=81 THEN 1055 3075 LET S=INT(.5+S¥F)

1051 LET §1=85 Z08¢ LET D9=5-82

1055 NEXT T 3090 IF D9<~X2 THEN3I115

1060 F=X1/61 3100 IF 0D9<X2 THEN 3120

1110 REM Mi=MEAN OF ILEAL 3110 LET D9=X2

1120 LET M1=0 3112 60 TO 2120

1121 LET M2=0 3115 LET D9=-X2

1122 LET T1=0 3120 LET S=§2+T3%D9

1120 FOR I=1 TO R 3130 RETURN

1140 LET T1=T14F2 _ 3140 GOSUR 2000

1150 IF T1<1 THEN 1160 7999 ENI

1158 LET Ti=Ti-1 Some Results for the S/n/l6-n/8 Cases
11460 LET T=T1 for S5=256

1161 GOSUR 2000 and for n=8,19 and 12

1170 L FT S=8%F

1180 LET M1=M14S 56 /87 8/ 8

1190 LET 81=8 52.1 44.2 44 41.4 38.5 36.4
1191 REM S1 IS IDEAL AMFLITULE 52.1 S0.7 47.5 48.9 49,3 47.1
1195 REM LINEARLY INTERFOLATED AMFLITUDE 52,1 S$3.3 52,2 53.% 50.8 S50.9
1200 GOSUE 3000 2.1 51,3 52,3 53 58.7 52.6
1210 LET M2=M24(S51-S) 96 / 10 7/ 6 / 8

1220 NEXT I 63,2 40.1 28,7 23.1 19.4 17.4

63.2 49.3 36,2 32 29.7 28.1

63,2 S51.5 392.3 35.6 33.% 32.1

63.2 6642 64,7 63.4 63.8 63.5
56 /12 /7 4 /7 8

39 27.1 22,5 18.7 16 14.3

39 31.9 29 27.3 26 25.1

39 33.% 31.8 30.6 29.7 29

39 38 37.9 37.9 38 38

1300 LET M1=M1/1000
1310 LET M2=M2/1000
1400 REM V1 [S SIGNAL FOWER, V2 IS NOISE
1410 LET V1=0

1411 LET v2=0

1412 LET T1=0

1420 FORI=1 TO R

1430 LET Ti=T1+F2

1440 IF Ti<1 THEN 1450
1445 LET T1=T1-1

1450 LET T=T1.

1460 GOSUE 2000

1461 LET S=SXF

B RI D G D LR
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Figure 2b) Type-2 Waveforms, m=3,20
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SONIC SET THECRY: A TONAL MUSIC THEORY FOR COMPUTERS

Tools for Algorithsic Comrosition

With an Aldorithe for Chord Selection for Dessert

by Laurie Sriedel
175 Duane St,s NYCy HY 10613
Audusts 1982

For millenias humans have wanied to be shle to lisien
to the music of numbers, Puthadorasy with his "music
of the srheres”s and Kerler» in his "harmons of ithe
rlanets” ides are the tuwe intellectusl sdventurers
who have mosi insrired us to this ideal. With
comrulerss we can st last listen to number as music:
create music as number made sudible. Butl desritle
these long soushi and newlw arrived rleasuress we
also want to use the tools of maih and losic to
create music meanindful in the same wsws that
traditional music has beens We wish to do so in
order to exerand the resim of music in an evolutionary
mannery to make the rleasure of il's creation easier
and accessable to more peorles and Lo studw and
better comrrehend ils effect on usy» Lo heishien our
self-auareness and self-undersianding.

Aldorithmic music

We can serarate aidorithmic smusic into four m2in
tendencies, The firsi of these is the sonic
esbodinent of extra-musically derived relationshirs
(mathemeticaly visualy or rhusical).  Kerler’s ideas
and translations into sound of mathematical series
{rrige numbers modulo 12y elc.) furnish dood examries
of this first-mentioned irend.

The second tendency consisis of aitemeis Lo extend
the boudaries of whal we Know as nusicy to extend the
areas of the imadinztion and ils sroducts which we
are able to exrerience in common, This can be
enemrlified bs Xenakis's stochastic technisues,

The third is the descrirtion and comrosition bw rule
of siructures derived from the sludy of traditional
musicy such as Hiller’s ILIAC suile,  Such work would
include sipulation rrodrams which mighi do such
things 5 create melodies adainsi given chordss or
converselus or denerzle music in 3 particular siuie
from nothing bul rules. One gosl here is the
develorment of easiery more economical waus of
describing larde numbers of musical events.

The fourth trend in zlgorithmic comrosition would be
the musicsl anzlos of artificizl intelledence
research,  Musical "AI” might Lry Lo generate all the
musical possibilities for 2 diven situstion and then
*filter” out (bw logical constraints) everwthing that
won’i{ "work" musicaily, Sustems of such rules and

82CH1831-7/82/0000/0015%$00.75 © 1982 IEEE
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conotrzints would evelver dradualivy 3s embodiments
of our self-understandings and mighi {ie in closelw
wilh research in cogniltiensy percerbions informstion
theorys communicslions or game theorw, I distinguish
these somewhat overlapred third and fourth tendencies
chiefls on the basis of itheir doslss Lhe former
rredominantly desiring Lo create rerertoire and Lo
understand music as we have Known it in the pasis and
the latter predeminantls wishing o add to our
self-knowledse and caeabililies,

A Comruler Music Theors

Music is subtle and mysterious in its wass of working
on uss but - ur to 2 roint 35 wel to be areroached -
it's workings can be comrrehended and described.
Different reriods have had different music theories
and conceriual toclssy intended to be useful to
comrosers in cresting werksy and to rlawers ang
listeners in interpretiing them., Srecies
counterroints solfesdioy Rameau’s theories on harmony
and figured bass are among the mosi significant of
such toocis for Eurcrean music., As comrulers lead us
into new rezims of crestive work in musicr erroviding
us with new comrositionals elaboratives analwlicals
and descrirdive tools for ausicr we may be able to
benefit from 2 new model or theors of wusic which
relaztes better ‘to the concesis we use in working with
these new tocis than do the music theories of the
rast,

It is the purrose of this rarer to bedin to furnish
such concertuzl toolss to al least scralch the
surface. of 8 variant of wmusic theorw {tonal to siart)
which will fit more easils inio the concert al
vocabulary of srogreaming than those alreads in use.
This bedinning theorelical revision contains litile
that is new, It consisiss insteadr of z wew of
organizing what we zlready understend so thet it will
becomer horefullyr 2 bit easier io describe musical
relationshirs in comruter terms, The two concerls
which il introduces io music are sel theorw and the
idez levels of indirecltion. (The idez of hierarchy
already exisls in traditionsl music theorwus
particularis in the domain of lime,)




Musical Freeuency Fatierning is Unsterwise

The was thal freeuency is meaningful in music is not
well rerresented bs 8 liner scheme of ordanization.
You can compose soundrieces within the equea. temrered
scale by tresting it like 2 uniforms ordereds and
unweighied set of inteders 1 to 12y but the
structures of such works will not fit easily to the
way the ear makes sense of mpusic, Music denerslly
moves in unils which consist of unesual pumbers of
scale slers, _IL soves amons recosnizabie pallerns by
common toness common harmonic content of toness and
by intervals which occur within estsblished palterns
{such as chords), In zddition, some scale nembers
{for examrles Lonic and dominant) occur with much
higher freeuency than do others,

In our cuitures dominant ratterns consisting of
uneaual intervals include tonzl scalesy triadic and
other chordse and Lhe ratlerns of movesent of the
rootls of chords (which tend to be in fifths or
thirds). &An arbitrary mailhemslicallys derived number
seauence in base 12 mav be interesiing to the mindy
but it will be unliKely Lo be 3 highly controllable
was to rouse the emotions throush the manirulation of
exrectation in timer or by harmony or melods.
Eaual-ster guantizetion within the ceclave is nol how
our music is sel up,

Host music meaningful to us is tonal in its
patterninds not chromatic {using 211 12 tones within
the eauzl temrered oclave). The closesi harmoniclw
related chords to C msJdor sre nol C~share or B ma.ors
but A minor and G maJdor. Harmonic content (internal
freauency ratios)s nol the erodisily of freauenciess
is what counts,

The suestion posed is this! How can we beiler deal
wilth music’s coarlex non-uniform non-scalar
pelierning with cosruter/mathenatical logic? Bw
"better" I mean bolh the zbandonment of sethods which
are ineffectual in 2 comruter landusge conlexts and
the adoriion or ortimization of melhods and conceris
which rermil us to make full ausical use of the
compuler’s uniaue carabilities.

Sets and Subseis in Musical Freauencw

Tonzl ritch collectionsy such as chordss scaless or
modess can be viewed as temrlates which can be laid
over the eauzl temrered scale., Such temrlales as we
are sboul to look al for the tonal/modal collection
could be tried (found or invented) for any sceale
{wmicrotongly etc,)s or any drour or cluster of
ritches, Howevers for rurrpses of simplicily and
claritys we’ll restrict the arrlication of this idea
in this article to the conventional uses of the
conventional equzl tenrered scale.

A Lexrlate can aise be redarded as 2 waw of
referencing 2 subset» of including and excluding set
members by virtue of their relationshir with each
other rather than on the basis of their srecific
characteristics, Tonal music can therefore be
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considered in terms of sels and subsetss mars and
submarsy or lemrlates on tearlates (seauencial lavers
of piteh fillers).,

On the firsi levels thal of the mos! inclusive or
deneral sety we rosit continuous freeuencu. Discrete
ritch colleciions can be viewed 35 subseis of
continuous frecuency, As we select smailer subsets,
we comse to the eaual temrered scale, The nexl most
reanindful and denerzl subsels inciude scales andg
modes {maJors harmonic or melodic minors dorians
rhrusians ludian, mixoludians 20liany rentatonics, and
other more exolic modes’). If we’re dezling with
aodal musicr we might do to the telrachord as the
next most zenerzlly meaningful subset. For tonal
musicy we do Lo the iriad,

Triads 2re easy temrlates which can be deali with
even without 2 more deneral ional tesplale. There
are 4 Kindss which are easily stored 25 arraus of
offsels fros the tonic of 2 chord, Once wou Know the
rool (or tonic) of the triads vou add these offseis»
which are counted in terms of our standard sminimal
units the semitone, A maJjor triad’s 2 urrer noles
are at offsets of 4 and 7 semilones from the tonic
ainor 2t 3 and 7+ diminished at 3 and &r and
sudgmenied al 4 and 8, Any of these addends rlus a
sultirle of 12 (io offsel Lhe rattern to other
octaves) will dive wou 2 note that is in the iriad.

Here's 2 simrle examrle of how Lhis ides can be used?!

REM Arredgizle chords

REM minor then mador on each

REM ster of 2 risind bassline.

REM Works musically by Keering

REM comnmon tones atross bass movement,

Dimension Eiscale(12 ¥ number of oclaves)
REM fill with Eoual Temrered scale values
REM for sending Lo particular hardware

Dimension MaJdor{4)r Minor{4)s Bass{13)

REM create rising bassline

REY (or wou could comrose one)
Fer I =0 Lo 12

Bass({I) = I

Next I

Minor( 0 )=0
#inor{ 1)=3
Hinor({ 2)=7
Minor{ 3)=12

Mador{ 0)=0
MaJor(1)=4
Major( 2)=7
Hador{ 3)=12

REM for each scale desree
For B = 0 {0 12

REM arredsiale minor chord

For I =0 to 3

Note = EtsceleibassiB) + Minor{1))
REM rlaw nole here

Neut I




REM arredsiate maJjor chord

For I =0+t03

Note = Elscale(Bass{B) + Majort1))
REM #lav note here

Next I

REM move o next bass note
Next B

End

Triads aren’l sufficient for tonalitu, thoush,
Chords move by two main meihdds., The first iure of
chordal movesent is to another chord whose rool or
"tonic” is a fifth awas fros the current one. To
create this Kind of rool novesent, we mishi
substitule some Kinds of movement throush the
following arraus consistind of 2 cucle of fifths for
our rising baseline in the sbove exasrle!

Dia Cucled(12)

REM £ill it with

REMO7 29411461 83 10 8
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The second mosi useful ture of chord movement is by
common Loness such a2s to 2 perzllel or relative
ainor, In both these casess 2 notes of a2 triad
renain cosmon while Lhe third one changes. C mador
is "parallel” to C minory the C and G beinsg coamon to
both while oniw the E and E-~flat differ, C sador and
A minor 2re "relative” madjor and ainor chordss the C
ang E being cosmon Lo both. Parallel chords are
easily interchanded by defining thew 25 duads 3
rerfect fifth ararts and then algorithmicly filling
in the maJor or winor third of Lhe chord.

Relative maJor and minor chords cen easily be deazit
with bs using an array which consisls of the union of
the maJor and minor traids (AsCrEsG) and sisrly using
a slarting index of 1 for maJdor and O for minor when
reading 3 consecutive offsets frosx this arraws, (The
array would not have the note names in ity bul would
contain offsetls from the tonic in semitonessy which
would be usable in ans Kew and for anw chord in the
Kes, Use them by adding them to sour ionic’s offsel
into the e.t, scale array,) Another way of dealing -
with relative maJor and minor chords is by using
duadss sels consisting of 2 noles a third erarts and
takind the union of 2 intersectind duad sels &s &
triads but because there are 2 tures of "thirds” this
is not practical until we have the following tonal
set to index into.

Tonality as 2 Greal Siarlifier

The above already drows wore comelex than. is
desirable, One reaily wants the simrlestr most
deneraly and most internally consistent scheme of
organizalion possibles so 25 to think as litile as
rossible aboul "bookkeepindg” and as much as rossible
zbout music. Therefores to most simply.do tonal
musics we’ll start with the tonzi ritch collection
itself as our basic worKindg sety ralher than the
12-tone scale.
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The tonal sei can be viewed as 2 subsei ofs or
temrlate fors the 12-ione eaual temrered rilch
collection, It’s internzl intervals (offsels between
adJjacent meabers of the eaual temrered surerset ) are
2¢291+2:292s(1)s  The interval of each tonal pitch as
an offsel from the tonic of the Keu are
0r29455¢799911¢+12), These are slored in a2n array
which will be used Lo index into the 12~tone surerset
array,

This reduces our basic worKind set of pitches to 7.
(The word "octave” suddenls has meaning asain.)
Pitch manirulation numericzliv bu octaves is done
modulo 8y and il becomes rossible to deal with
pitches as an ordered sel of contisuous intesers

without heving to abandon 2 widely sccessable musicel
vocabulary,

To sum upr (and €0 3 bit further)s here is = list of
freauency selsy each beindg @ subeal of the set
immediaiely sbove il.}

1. Continuous frecuency! theoreticals actualy or
anzlod!

0« )

2. Audible freauencyr discrele but rerceived as
continuous as it areroaches or malches the resolution
of our ®ers’ discrete freeuency sensing aechanisas!

> 30 Hz ¢

) £ 20 Khz

3, fOuantized eaual temrered scalest (Rereat all
ratierns from here on down over addilionazl octaves by
a2dding or sublraciing mullirles of 12)
Seacings
crop e e )
Conventicnal note nases:
(c c¥d dbe f f#¢s dba adb)
Interval from last note in semitones:
(1 1111811 111 1)
Interval from tonic in semilones:

(0 1 2 3 45 67 8 9 1011




4, Tonal subsei of the esual tesrered setl
As paliern or temrlate for zbove:
(! -1 - 1 1 - o=

Conveniional note nages!

{¢gc - d - e f - &8 - 8 -b)
interval from last nole in semitones!

(12 21 2 2 0D
Dffset from Lonic in semilones

to 2 485 7 9 1D

Condensed version of zbove as il would arprear
in an array of scale desree intervals?

Note names {(cdefgab)
Interval from last member (0221 2221)
gffset from tonic (02457 9 1)
Index within scaie (0123456

The common Gredorisn modes can be generztied from the
shove sebsets of the emuzl lemrered scale by rotating
the starting index.within the tonal sel modulo 12y or
by creatind a londer arraw which rereals the above
offset cycle adding successive muliirles of 12 for
successive oclaves!

{e~d-ef-g~a~bc-d-ef-g-z-b)
Hador (i-i=ti-1-1-11)
Dorian (l=1i-t-1-11-1)
Phrugian ( b=t=l-tiet-1)
Ludian (l=lmtallef=il)
Munoludian {l1=-l=il-l=1i-~1)
Aeolian (l-li-i-ii-1-1)
Locrian {Hi=t-ti=l-i-1)

Puiting this in olher terms usable with arraus!

Hode Interval Offset

Mador 2212221 or0245791112
Borian 2122212 02357 91012
Fhrudian 1222122, 0135781012
Ludizn 2221221 02467 91112
Muxolwdian 221221 2 024587 %1012
Aeclian 2122122 02357 81012
Locrian 1221222 0135681012

5. Triadic subsets pf the tonzl set (From here down
use module 8 arithmetic.)!

#s paliern or temriaie for the major scaele:

Tonzi szet {cdefgabc)
Names {c-e~-48--¢c)
Intervals (¢ -2~-2--3}
Offsels (0 ~2-4-~-17)
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Chord suelity is automelicly tonzlly correct
when chords are described as rolations
within this ordered subset or arrayl

cde fgab
(1 -1 -1 =-=) C(I} mador
{(~t -1t -1 =) B{ii) wminor
{~ =1 -1 =1) E{iii) minor
(L = =1 -1 =) F(IV) mador
(=l -=14 =193 (V) mador
(-1 - =1 =) Alvi) minor
(-~ 4§ -1 -« 1) B{vii) disinished

or to make the ratiern more visible!

cdefgabedefgabe

012345501234560
oty hest I maJor
Folylysd ii minor
Podody i iii  minor
Folody,! v maJor
RSN I v mador
Loy byl iv minor

Podotel vii diminished

AL this roinls when we maKe trisdss we no londer have
to Keer irack what Kind of chord suzlities thew have
(maJjory minors diminished)s or of the differing
nusbers of semitones in the intern2l intervals of
these different tonzl chords, All triads consist of
offsets of 0 2y and 4 added Lo zny nusber within the
tonal pitch set (O to 7)s that nusber indicaiins the
root of the chord. The triadic raliern moved as 3
tearlate throush the ordered tonal set automaticallu
results in 2 triad of Lhe rrorer chord auzlity when
the tonal array in its turn is used 25 a Lemrlate for
indexind into the emual lemrered scele zrrav,

This concertuzl ordgsnizaetion makes il much essier io
comrute musicel malerial by sldoriths without
gbandoning the harmonic vecazbulars in which
non-coeruter music has most effectivels reached us,

The zbove in less absiraet and more useful form?

More coeruterishlw puts this Set Theorw of Musical
Pitch includes these tsres of sets {Continuas
Contiduar Collectionsy Chords (including Clusters)s
and Cucles)?

#1, Conlinuum - Freauencu!
comruters,

Not zrrlicable to

2. Contiduum - Audible fresuency., Lirited bw
hardware for sound denerationy by wordsizer and bw
the rphusiolody of hearind, (1 errorose Lhe term
*eontiduun” for seis of discrele contisguous
elements)?

$3, Contidguum - Quantiized scale:. An array
contzining velues to outrut to escillator hardware.

. These can be eaually auaniized (temrereds microtonals

or macroion2l scales)r or much more bizarre.




¥4, Collection - Tonzl set! An arrav of indices
inte the ecuzl temrered scale in #3 zbove as follows!:
Qr29428972958100 s

$5, Chord - Triadic subsel!}
#4 zbove (mador = 0r2¢4¢7,40 )0

Arraw of indices into

Other musicelly useful arraws which can be exrressed
a8s subsets of the {onzl collection!

$4, Collection - Pentatonic (Or1+2+4+3) (=
CyIyEvGsA), This collection is @ subset of the mador
scale which excludes the two single-semilone
intervals and the tritone (an intervai of &
semi-toness or 3 tones)r leaving only intervals of 2
wholetone or larder.,

#7. Chord - Fourth chords (0s152+495) {= CsDrGeA)s
which #re wrar-zrounds of the cucle of fifths, (I
use the lerm "wrzr-zround” in fros comruler drarhics
to indicale # folding in modulo some finiteé rander in
this case the octave.)

#8, Cucle - of fifths., The subsel of the full cucle
of fifihs which falls within 2 sindle Kew sidnatures
without adding sharps or flatsy is (as offsels
wrarred zround into one octavel 3:10:s5:2448) (=
FsCeGsDsAsErB)r is 2lso useful. (These can be added
to the index into the emual temrered scale arrays for
modulation to related Keus in tonal rieces.)

39, Cucles'- Eaual divisions of the octlave:

2, Bs 1/12 = eguzl tesrered sczle.

b, By 176 = whole tone sczle.

c. Bu 1/4 = diminished seventh chord,
dv By /3 = ausgmented chord,

e, By 1/2 = the tritone {and octave).

310, Cucle - Alternave maJor and manor thirds)

cedbdfdachesdsdbdl ¥ ...

311, Cucle - Dovelailed ninor seventh chords
{couriess of Ron Evereti in Toronite). These consist
of 3 rereating cucle of a2 maJor third followed by two
wrinor thirds:

cedb-flat d ¥ a~flat c e-flat s-flat ...

$12, Cosrosed - Those I°11 leave to 2ii of our
inaginations. :
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Levels of Indirection in Musiczi Prodression

The above is 2ll good useful stuff for aldorithmic
comrositions but concertuzl mechsnisms for

referencing 2nd assembling scalers triadicsy and other
ratierns ara still insufficient for Lhe comrosition
of tonal prodressions. For the crezition of chord
rrodgressionss I have found il useful to conceive of
them 2s series of levels of indirection {rewmovzl)
from @ destination chord (denerzlly Lhe tonic).

These can 2lso be conceived of 2s nested loorsy
concentric circlesy or in 2 tree confiduration.

As 2 tree-1iKe structurer 211 branches connect 2l
nodes where selecticn is doner such that we nove iny
laser by lawer towasrd the sindle central tree trunk.
The difference bhetween the standard binarw iree model
end what I describe here is ilwofoid,

Firsts the rurrose of this Lree is not findinsg
something which hass been storedy not for searchind.
Its purrose is to provide 2 means of structuring
paths of movement. Music is erocessr progression,
{Arpival in music maw threaten Lo stor the music,
Nete how Bach elides cadencess sg thet 2z chord which
is heard as @ strondg arrivals or endingr is set ur to
be simuitaneously heard 2s the beginning of 2 new
rhrase, )

Seconds the direction of movemenl is orrosite to that
of 2 tree search. Instead of starting al a central
known rlace and selecting where (o braach to nexts we
ray find ourselves .Just anwwhere ve in the branchess
in the structure of rossibililies of @ given poments
and we Know we zlways want to move one level down
toward the trunk, We don‘t care vhel branch we’re
currently iny bul musi Know how manu levels out we
are from the trunk so we Know by what means to select
where to do in the next level down. We wish to do
this in some aestheticly effective mannersy somehow
not too obvious or exrecteds nol consistent or
rredictabler but nol too skocKkinds awKwards or
unpredictable either, There must be underlvindg
feelinds of 2 sense of direction and that where we’'ve
arriveds thoush unexrecteds makes sense.,

fAs a2n exenrler here is zn zlgoritha for a simrle

‘chord seauence dsenerztor based on the idez of levels

of indirection from 2 chord of harmonic resolutions
using freauency subsels (exrressed a2s zrraus of
indices into other arrawsr as rer the above)!




Tree of Levels of Indireclion from Tonic chord!

Arrays used inciude Lhe esual tesrered scale
{"etscale®)r our 7 tonzl intervalic offseis from the

toqic ("tonality” )r and the 3 offsels to the tonic
which define & chord (*iriazd®).

4 - Leaves}
iii chord (can do o other rlaces besides the 2

chords on the next level downs bui let’s start
simrly),

REN plaw zrredsiatled Lriad

tonic = 3

for i =0 to 3

note = elscalel Lonalitu(lonic + triadii)))
next i

REM select nexl chord by weishied Probabxl1ts
REM or use olher means)

which = random mod 25
if which < ¢ then tonic = 1
else tonic = 4

3 - Tuids}

1 chord or vi chord (can do to either chord on
next level down),

(Rereat 2 sters zbover with currentl values.)

2 - Branches!

IV or ii chords (can do0 to either chord on next
ievel down).

(Rerezt 2 sters aboves with current values, )

1 - Boughs!}

V or vii chords (can do to either chord on next
level down), :

{Rereal 2 slers zbovesy with current values.)

0 - Trunk?

e o

I (tonic) or vi (tonic of relstive minor Kew)

'REN Keep going even thoush we dol here.
level = random mod S
doto level

In case it isn’t utlerly and comrletely obviouss the
gbove is siarly 2 statemeni of lodicy and will have
to be coded for whatever machines landuades and
oscillator hardware sou may use. (I have 2 more
extensive version of this z2ldoriitha rusnind on my
Arrle II and Mountain Hardware oscillator boardss as
rart of sy PASCAL comrosing sustess "ANO" (A Musical
Offering)s Rather then including a2 erintouts thoushs
1 thousht it would be clearer to siate lhis idea in
general formr s0 that it maw be belter undersioods
more widely tried ouls rlaved withs and aderied to
different susic sustems.)

Though the 2 possible chords on each level of this
tree have roots 2 third araris I chose nol o
describe them 2s sindle arraws containing the union
of the 2 triadss to select them bs chosing 2 startindg
index of either 0 or 1 into each urion arraw (vi-Is
ii-IVy V-vii) because that would have limited the
varizbilils and denerglits of the algorithm.

The aestheties of this zlgorithms liKe manu others
which are rossibler ils rersonslizabiltiv and the
nature of ils exrressions lie in the choice of which
chords {clusterss modess etc,) mas be moved betweeny
and in whal orders znd in the desisn of the aethod of
decision m3Kindg (in Lhis case the siagrle weighting of
the rrobebilities). I susdgest siartiingr if wou do
decide to irs running ity with the chords I have
selecteds 2nd with 50-50 probabilities on 21l levelss
before truing to vary it, (To make sure this
prodression aldorithm reallyw worked musiclyy I wanied
to first test it within 2 harmonic stule derived from
J.S. Bachs which accounts for the chords used and
their rositions.)

As it stands sboves variables available to play with
include probabililiess the nusber of levels useds and
the chords or lone clusterss sodes or scales which
are entered in the arraus, Among the variables not
dealt with in the above are iemros timprer stereo
locations densily (number of simulianeous voices)s
range in octavess and envelore rparamelers.
Elsborative processes which could be added include
the introduction of olher shares of arredgios» the
generation of melodic lines from lhe chordss instead
of arreddioss bw use of lears and ressind toness or
the substitution of r2iterns (irillss tremelos, and
other ornasenissy or of motives or selodies) for
notes,

Generzlizing Lo Other Musicel Dimensions

The structure arrlied sbove to chord erosression can
be used as s model for software which can dgenerate
routings through other areas of our freauency mar as
well, This can be done within anv single level (for
exasrley amondg scales instead of among chords)s or Lo
structure moveseni from one level of our sel asr (one
arez of our sonic subset theoru) to 2nrothers that is
to be used Lo redefine the actuzl worKing Pret1ses of
our musicel realily during s riece.

The same rprincirles of organization cen also be
aprlied to other dimensions of music. Rhulhs
furnishes 2 dood examerler as it can easily be viewed
a2s hierarchicel {(8s @ braenching iree), The
architecture of Lime can be hierarchically describeds
from 32 Lo 16 measure unilssy Lo 8 bar rhrasess and on
down to beal to beat rhuthms. Progressions of
haraony and rhuthm merde in the concerl of "harmonic
rhytha" (the nuaber of bezts between regularls seaced
chord chandes)s which can also be manirulated
algoritheicly, Rhutheic meter can be viewed as 2
branchins irees in which esch beat-level can be
subdivided in @ variely of seleciable waus. (4
auarter nole cen be divided into 2 eighih nolesy 3 3
eighinote trirlets 4 siuteenth notess etc. ).




Whats Whus and Whither Aldorithmic Music?

Aldorilhms mav be viewed as denerzl cosrositionzl
Frocessesy as are canon and fusuer or a2s unieue
susical comrositionsy or 2s f3lling somerlace between
those 2 exiremes., Berending on their dedree of
interaciivits (whether variables are read in fros
Knobsy switchess Keuboardss or other devices durind a
rrodrak runy or whether thew are denerated or siored
within the sofiware)s such aldorithms mau be placed
anuwhere 2lond the axis beiween "intellident
instruments® and "automated comrosition,”

Alforithes mey becose @ dominant musicazl form in the
futlure for 2 nuaber of ressons. Thew can be highlw
user interactive vias resltime access Lo variables
{anuwhere from sudio dame Lo virluoso’s instrument).
Thes are naturzls for the rowerful musical
instrusents of the fulure which will rermit saximsl
musicel exeression with minimal inputs by the use of
an increasindly smally selecls and sesthetlicly
roverful grour of variables, Thew will be aitractive
to use by virlue of their overcosming the mechanical
limitations of traditional instrumenis whereby Lhe
ratio of the nuaber of notes plzued by the rerson to
the nuaber of notes rlased by the insirument is
rarely belter than one-to-one. Musical epattern
deneraliony manirulations and editing prosrams will
greatly facilitate comrosiltionr 2s well 2s havins
wide grrlication in music education.

Aldorithmic music maw turn out Lo be mosi desirable
{so such so thal economics msu ensure its
rroliferation @s 2 new musical cosson practise)
because sldorithas involving relalivelu smzll nusbers
of relatively rowerful variables are extremely
econonic2l in teras of the 2mount of storade srece
necessars io describe 2 riece of susic. In other
vordss the amouni of stored (or telecommuniceled)
data necessary "rer thousand” of susical noles plaved
is small, Because z small nuaber of varisbles can
control the nature of 2 musical fabrice there is zlso
@ dgreal polentizl for musical resronse to other
technologically inlerfacable phenomemas such as
temrorzl visual comrositions.

The surersel of high level varisbles can include
dlobal musical dimensions such 2s randesy iures of
interrolstion or iransition (most ezsilu done by
selecling one of 2 drour of 2 precomrosed Lables)s
rztes {(of accelerations crescendor or harmonic
change). I{ may also include the selection or
conditionzl use of such musicel transformstions as I
deseribed in my article of last wear for this same
Semrosiun and rublicalion, The aldorithmic selection
and variation of musical decision making rrocesses
thesselves is an obvious and interesting recursion,
Other imrortant rarzselerss processess and erincirles
will be derived from theories of rercertiony
codnitions damess informalions and communicazlions and
aay include densitlys level of "conirasl” azmond sonic
coweonentss recentade of redundencys desree of
continuitys ture of organizetionsl siructures and
others.

fldorithmic comrosilion is & concerl arrlicable to
other aris besides musicy one exawrle being the "dame
of life" in compuler graphics, Aldorithmic
interfaces of asudible and visuzl susics will becose
increasingly meaningful a5 varisbles become more
rowerful and more cosnitively orienied (zbove the
level of any sindle sensory modalitw),

The ultieate zlgorithmic artworks mas hore Lo
describes by rules based on undersisndings all the
characleristics of siisuli which are most meaningful
to our consciousnesss esternallu emboduing the mirrer
reflection of the siructure of thal consciousness and
its mechanisms of finding such meaning, Alsorithms
may evenluslly simulate the iransformations which
sound and imade underso in our imedinalionsy which
have been so difficult Lo carture by conventional
methods of ausical and artislic exeression,

The basic Lools above are only a msost sisrlistic

bedinninds designed to facilitale broader
rarticiralion in 21l thal wails to be exrlored.

- Laurie Sriedel
NYCy Aud, 1982
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MERGING EVENT LISTS
IN REAL-TIME

J. William Mauchly
Personal Computer Arts Group

Box 1954 Philadelphia, Pa.

This paper describes the data structures
and the processing algorithms for a
program to perform real-time control of
a music synthesis system. The program
can combine multiple lists of notes or
other timed events while servicing a
performer's input device.

The computer has opened up new modes of
interaction between musician and musical
instrument. Besides the tonal palette
that digital synthesis offers, time
itself is a dimension we can control in
fresh ways. Many computer-based music
systems now offer the ability to record
and playback musical passages that are
performed on a keyboard. A musical score
can be created from such a performance,
and edited or manipulated in various
ways.

When approaching the task of creating
software that will perform functions
like these, the choice of data
structures is important. Two useful
structures will be discussed here:
linked lists and ring buffers. Linked
lists can represent musical units like
envelopes, melodies, and chords. However
the job of processing lists can be
time-consuming when several lists must
be simultaneously traversed in
real-time. The ring buffer is a data
structure which simplifies output
processing and eliminates sorting
parallel event lists.

A TYPICAL MICROCOMPUTER MUSIC SYSTEM

A microcomputer can control a variety of
music-generating devices. Many of the
software concepts are the same whether
the sound comes from a player piano or. a
digital synthesizer. The synthesizer
could be an analog voltage-controlled
type which is linked to the computer
with some digital-to analog converters.
It could be a digital waveform generator
like the Mountain Computer MusicSystem
or the Casheab S-100 Synthesizer.

82CH1831-7/82/0000/0023$00.75 © 1982 IEEE
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Let's assume for now that the
music-generating device has some sort of
hardware ramp generator or envelope .
generator. We need to tell it when notes
start and stop, and of course the
pitches, envelopes, and waveforms to
use. {(On some systems it is necessary
for the computer to supply every
amplitude change for the oscillators).

A typical software system will need to
simultaneously play back a recorded
performance and allow a performer to
play along on a music keyboard; often
some graphics are also live on the
screen., The job of monitoring the
keyboard, reading a score, and
controlling some sort of synthesizer is
handled by a microcomputer running a
very quick program.

Usually many other features are desired
which can be treated as seperate
functions. A recorded performance can
be converted to a graphic score and
edited. The software can also provide
facilities for the control of the
synthesizer "patches", which are
specific to each type of sound-
generating hardware. We will only

be discussing the real-time performance
program which must do "note-processing"
on-the-fly.

Lets look at the tasks which must be
accomplished simultaneously:

1)Determine what new keys have been
pressed or released on the keyboard.

2)Find all notes in the active scores
which should sound.

3)Translate keys or notes into synthesis
parameter information: pitches,
amplitudes, waveforms, and envelopes.

4)Send to the synthesizer the selected
parameters at the exact time they are
required. -

5)In addition we may ask the computer to
monitor the alpha-numeric keyboard
and analog input devices, and to
update a display screen.



To understand this complex task we must
first consider the types of data we will
be dealing with.

REPRESENTING MUSICAL STRUCTURES

NOTES

The fallacy that all music is composed
of elemental units called notes has
pervaded computer music. Early
composers had to create a punch card for
every note in a piece. It was the
smallest and largest entity for building
a score. -Other ways of representing
music have grown out of a desire for the
structure of the music to be reflected
in the score. For example, bar lines
mark off measures in conventional
notation. They aid in conceptualizing
the music. A long list of notes becomes
a phrase; a series of phrases can be
repeated inside a passage, etc.
Meanwhile, a single note has been broken
into pieces: attack, decay, and so on.
All these descriptions of musical events
are efforts to express analytically what
our ear knows intuitively.

MUSICAL SENSE

Good music carries emotional content or
meaning, but also must make "sense" in
an abstract way. The sense is in terms
of organization or structure. As we
listen, we look for patterns. The
patterns which we recognize help us to
predict what will happen next. It is
the balance of the expected and the
unexpected which keeps us interested or
involved in listening. We are matching
patterns, looking for repetitions in
pitch, rhythm, and all kinds of shapes
described by the music. The patterns
may be very long or very very short. The
complexity of this mental feat is
staggering. Fortunately, a listener
needn't understand the process to
perform it; we do it quite naturally.

what we will
representing
structure

What we would like, and
never have, is a way of
music which reveals its
~completely. That is a goal which we
can individually strive for; there is
one way to solve the problem.

no

There are some basic data structures
which can serve as a foudation for a
very flexible music system. They can
support higher level musical
abstractions for those interested in
exploring them.
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INPUT EVENTS

A music keyboard is the typical input
device. We would like the keyboard to
be preprocessed, either in software or
hardware, so that we only receive data
when some key goes up or down. (That is,
we don't have to interrogate every key
to find out if it moved.) We will
receive asynchronous key movements and
perhaps some velocity value. So we can
expect packets of data: the key's
identification number, whether it was
just pressed or just released, and
perhaps a scaler value for its velocity.
No time information is present; when a
packet appears, it has just occurred.

We can generalize the motion of a key as
an "event". An event is a discrete
motion occurring at some descrete time.
When a key goes down, that is an event;
when that key is lifted again, that is a
seperate event. If there are analog
inputs from footpedals or joysticks,
they may be expressed as events also.

Every event has three parts: the thing
that moved, its new position, and the
time that it occurred. For a keypress
on a musical keyboard the position may
be only a binary (up,down) value or it
may contain some velocity or position
information. As input data comes in
from our performer, we will associate
the present "time-of-day" to it,
creating a series or sequence of events.

OUTPUT EVENTS

The real work that is critical to the
music system is to feed the right
parameters to the synthesizer at the
right time.

At the lowest level we are just sending
out numbers to some peripheral device.
This is just like a poke from BASIC; we
supply an address and a piece of data to
put there. The address will be the
identification number of some parameter
we wish to supply ( not necessarily the
physical address in memory) and the data
is the value we wish to change it to.
The output too, then, can be seen as a
series of events.

EVENT STRINGS

When a series of events are recorded,
there are a number of ways to store the
information. The time of an event can
either be referenced to some absolute
"start time" of the sequence, or it may
represent the time since the preceding
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event., Both ways have advantages. How
the events are strung together is more
important. For simplicity and economy
of space, seqential storage of events
seems appropriate.

A simple EVENT STRING has two parts.

The event-count and the actual events.
The events are stored sequentially in
memory. When a performance is recorded,
an event string can be created quite
efficiently.

EVENT STRING

1) Number of events
2) event #1

event #2

event #3

Event strings can serve as a basic
building block for all kinds of musical
structures, like chords, melodies, drum
rhythms, etc. As we start trying to edit
event strings we notice their
deficiencies. To insert a single event
we must rewrite all the data following
the edit point. If we wish to repeat a
passage we need twice as much memory
space. It's the same old problem
programmers have had with text
processing and disk storage. The answer
is just as old: linked lists.

A linked list uses pointers to connect
the elements in the list. A pointer is
really a nice name for a memory address.
Every element in a linked list has a
special variable associated with it
which points to (holds the address of)
the next element in the list. The
elements are chained together, each
pointing to the next. the last element
in the list has a "nil" pointer (a zero
where the pointer should be).

We would like to link together event
strings into a new structure; we'll call
it a sequence. (The ambitious should
allow for lists of lists of lists).

A sequence is a linked list, where each
element in the list has two parts.

\
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SEQUENCE ELEMENT

1) pointer to next element
2) pointer to an event string

A detailed discussion of linked lists
and list processing can be found in most
texts on data structures. They seem to
be very useful for expressing musical
structures of many sorts.

SCORES

One other activity we should consider is
the interpretation of scores. Perhaps
the cleanest way of dealing with
conventional scores is to pre-process
them into a sequence of events. It is
akin to compiling a program; the
processing can be very sophisticated
because we are not trying to do it
"on-the-fly" while the program is
running. That leaves the compiler all
the time in the world to read graphic
scores, interpret chord symbols,
generate random elements and all those
nice things we dream about.

But a score can be any number of things,
depending on its purpose. Generally, it
is a description of a musical
performance in some language. But it can
also be a description of a musical
PROCESS. If we want the computer to
take a performer's input and use it in
some particular way, that is a kind of
score. In computer terms, we need an
interpreter, not a compiler.

REAL-TIME PROGRAMMING

Now we can see more clearly the type of
job that needs to be done. Inputs are
coming in real-time., We have to expand
them into commands which the synthesizer
will understand. We need to record the
exact time of the input, and dump out
from other lists other events at -
specific times. In addition special

programs of our own devise ("interactive

scores”) are somehow running at the same
time.

The only practical way to accomplish
these concurrent tasks to to try to
average the work over time. When a
finger comes down on a key, there can be
no perceptable delay before the sound
emerges from the other end of the
system. That task becomes a high
priority. Anything else that has to
occur at that moment must be ready to
go; we should try to get as much stuff
done ahead-of-time as possible.
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Interrupt driven input and output
provides just the "think-ahead" time we
need.

First, an element common to all music
systems must be defined: the "tick."

The clock in a computer music system is
an absolute time-base against which all
events are scheduled. For our purposes
we will assume that the clock "ticks" at
the smallest resolvable time increment
desired. For example, the Mountain
Computer MusicSytem for the Apple II
produces an 8 millisecond interrupt.
(125 times a second). When an interrupt
occurs, the computer starts executing an
interrupt service routine. This program
looks at the scheduled events; if one is
scheduled for the present time, it is




enacted. Thus the closest that two
events can occur in time is 8
milliseconds apart. The tempo of the
music can then be defined in terms of
ticks, or the ticks can be counted in
software to produce a slower,
dynamically variable time unit. If all
notes are defined in terms of a 64th
note, for example, then varying the
number of ticks per 64th note will vary
the tempo.

In the simplest case, the whole program
is executed once every tick. If it has
work to do, it will do it; if not, it
will wait until the next tick.
Unfortunately, music often contains
great flurries of activity. A program
must be very quick indeed if it is to
keep up with the performer. We can
seperate the work into those things
that are time-critical (input and
output) and the things which we average
out a little, as long as they get done.
We will divide the task into three
jobs, and find people to fill them:

1) follow any event lists and/
or scores being played back
2) translate input events
into output events
3) get data in and out on-time

THE EXECUTIVE

The EXECUTIVE will be the guy

that decides what has to be done. He's
the main program thats running all the
time. He can follow up complicated
scores and linked lists; and show
quarterly reports on you monitor screen.
He also controls all the lists and
tables that usually hang around inside a

synthesizer, like what waveforms or
tunings are to be used. The executive
can get interrupted by other more urgent
programs., As input, he takes the

prerecorded sequences and scores. He

looks through them, and comes up with a
bunch of notes (input events) that are
to occur within the next second or two.
He sends them to the secretary to
expedite.

THE SECRETARY

The secretary has the most work to do.
She takes input events, either from the
performer or from the executive, and
turns them into output events. That
involves taking a key number, and
determining what "voice" it will take.
That tells her what tables to look at to
get pitch, octave, envelope, waveform,
loudness, and any other relevent
parameters. Depending on the
architecture of the synthesizer, some of
this information may have schedules
associated will it. (use this number,
wait 2 seconds, use that number). She
has the job of writing all such OUTPUT
EVENTS into an "datebook" of things to
happen in the future.

THE STOCKBOY

The STOCKBOY makes sure everything gets
shipped out right on schedule. He may
have a lot to do so we will try to make
it simple for him. When awakened, (a
"tick" occurs) he checks the clock to
see what time it is. Then he looks in
his date book to see what he has to do.
It's 9:00; its time to send some new
numbers to the synthesizer. He looks
them up and sends them out. Now he can
go back to sleep until the next

SCCRETARY LEAVES L\STS OF
APPOINTMENTS'

DATEROOK
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interruption., Usually his date book is
almost empty; occassionally he has so
much to do that another clock tick comes
before he's done. That's why he has to
be fast. There's no time to go
searching through lists for things that
might happen today.

THE DATEBOOK

That leave one more structure to be
cleared up. There are two ways to keep
track of timing. The first is the alarm
clock method. Suppose that an event
sequence is being played back, and the
next event is to occur 122 clock ticks
from now. We set up a software counter
in memory, and initialize it to 122.
This counter/timer must be decremented
once each tick. That means extra work
for the interrupt service routine (the
stockboy) and gets him involved in
executive affairs which are really none
of his business.

The second approach is the datebook.

The datebook is simply a buffer for the
things which are to be output in the
near future. Two people use it: the
stockboy is reading it at a very regular
rate; the secretary is writing in it in
an eratic, non-sequential fashion. Each
place in the datebook represents one
tick of the clock. Instead of holding
the actual data, each entry is a pointer
to a linked list (remember them?) of
output events.

The stockboy keeps track of what time it
is, in other words, which entry in the
datebook is "now". If the entry at
"now" is a nil pointer, then evidently
nothing needs to be done. On the other
hand, he could find a pointer to an
output event or a whole list of output
events., All he has to do is shovel them
out to the synthesizer. :

The secretary's job is also simple
thanks to the ring-buffer. As a pointer
each entry in the datebook is a fixed
size. (One word of memory, for example.)
That means that any time in the future

can easily be located in the datebook by
its address. When she needs to schedule
an event to occur in the future, whether
its a new note sent by the executive or
a continuation of some "voice"
definition, she can insert it quite
easily. She just uses the date of "now"
and counts ahead so-many ticks. Without
doing any searching to compare it with
other scheduled events, she can insert
the new event at the head of the list
attached to that position in the buffer.
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We can implement a datebook with an
infinite storage capacity by letting it
wrap around on itself. That turns it
into a circular type of calender or, to
computer programmers, a ring-buffer.
This is nothing more than an array which
is addressed MOD some number.

The ring-buffer, too, is not a new
concept. Like linked lists, it can make
a program run more efficiently. Most
importantly, it loosens the constraints
on the music software by allowing the
Secretary to "look ahead". .

Obviously, this is just a rough sketch
of some elements of a music system in
terms of data objects and .flow.

I have tried to show how knowledge of
data structures can affect the structure
and the performance of a music software
system.

As more musicians delve into the job of
creating enviroments for music
composition, they should realize that
many of their problems have already been
solved. One of the interesting things
about music is how its structure
reflects so much of the world around us.




Automatic Computer Composition of Bluegrass Tunes

Michael Keith
D46 Abbington Drive
Hightstoum, NJ 08520

introduction

This paper describes a program written in
BASIC for the Apple II microcomputer that
composes traditional bluegrass tunes,
intended for playing by 5-string banjo and
ensemble. Because of its instrumental
orientation, 1 call the program BANJO, for
"Bluegrass Algorithm for Note Juxtaposition
& Organization.” (besides, what’s a program
without a good acronym?). Briefly, the
program combines a harmonic analysis of
many existing bluegrass tunes with a fairly
realistic note-generating algorithm. The
output of the program is displayed in music
tablature with chord markings. I will discuss
some general philosophy of computer
composition as well as the specific algorithm
used in this program. Many pieces have
been composed using the program; one
example will be presented.

Background

The problem of composing music with a
computer is not an easy one. Basically, as in
other artificial-intelligence-type probiems,
the task is one of finding rules, hopefully
relatively simple ones, that govern the
structure of the program's output. In the
case of music, both the melodic structure
(the sequence of notes forming the main

melody) and the harmonic structure (chord
progressions) are important. Some types of
music for which computer composition rules
have been devised include two-part
counterpoint {1}, canons [2], and certain
types of jazz [3]. Being a banjo player
myself, bluegrass naturally suggested itself
as another possibility.

The composing philosophy followed in this

program relies heavily on automating chord
progressions. | believe harmonic rules are

82CH1831~7/82/0000/0029$00.75 © 1982 IEEE
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very important in producing acceptable
music, on the grounds that as a musician I
usually "think"” in terms of chord
progressions while playing (improvisation
often is governed exclusively by harmonic
progressions).

Automating chord progressions is simplified
considerably by the following combinatorial
fact of the 12-tone music scale: If we
exclude chords containing edjacent semi-
tones ("'clashes”), then there are exactly 30
essentially different chords. "Essentially
different” here 'means that every chord
possible can be reduced by transposition or
removing octaves to one of these 30 chords,
which 1 call fundamental chords. More
details on this can be found in [4]. Each of
these 30 chords corresponds to a chord type
(major, minor, augmented, ninth, etc).

It is easy, then, to analyze a selection of
musical pieces of a certain type and make a
list of the frequency of occurrence of
chords. Each time we encounter a chord, we
note its tonic (1 of 12 values) and its type (1
of 30 values). This is the basic idea of the
analysis program - a bunch of of bluegrass
tunes are fed in and out comes a harmonic
analysis. However, in addition to a
frequency count, a much more important
statistic which is calculated is the transition
probability for each chord. The transition
probability (A,B) is the probability that,
given that the current chord is A, the next
chord in the piece will be B.

It turns out that, in bluegrass, 99% of all
chords are either major or minor. Thus,
there are only two chord types to consider
and 12 tonics, for a total of 24 chords. If we
arrange these 24 chords conceptually along
the X and Y axes of a graph, then the Z
coordinate will graphically show us the
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1: Sample chord transilion probability graph,

generated

gutomatically by analyzing a number of bluegrass tunes, The enalysis is
stored on disk for later use by the composition program.

transition probability distribution. Figure 1
is such a graph for one particular analysis.

The first part of the composition algorithm,
then, is to compute the chord progressions.
This is done by simply using the analysis
information in reverse (with a random
number generator used to choose between
the transition alternatives at each step).
For simplicity, chords are only changed at
measure boundaries. The particular analysis
used in a composition is one of the
parameters that can be specified by the
user at run-time; thus, pieces of different
harmonic structure can be easily generated.

Melody Algorithm

Once a chord progression has been 'laid
down' by the previous algorithm, the last
step in producing a tune is to compose the
melody. In order to understand the melody
algorithm used in this program, some basics
of bluegrass melody, and banjo playing in
particular, must be understood.

The 5-string banjo, being a stringed
instrument, was originally played by
strumming and picking a few melody notes
here and there. A major revolution in
playing style occurred when Earl Scruggs
popularized the "3-finger” style of playing in
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the 1950's. This method involves no
strumming at all, but consists of picking
individual strings with three fingers of the
right hand. The particular style used by
Scruggs involves interspersing melody notes
with “rolls” - arpeggios of notes in the
current chord. Since the 5-string banjo uses
an open G major tuning, and most songs are
in G major, many of the rolls occur on open
strings, which adds to the fullness of the
sound of the instrument. Melody notes are
distinguished from the background notes by

‘emnphasizing them in some way (playing

them louder, with a different timbre, etc).

During the late '60s and through the '70s,
another style came into widespread use. In
this style, known as the melodic style,
almost every note played is a melody note,
and there are very few “filler” notes (which
is what rolls are, essentially). The melodic
style was originally used to imitate fiddle
tunes on the banjo, but has since evolved
into a sophisticated style incorporating
elements of blues, jazz, and classical music.
Melodic melodies often incorporate scales,
for which a clever method of playing on the
banjo with limited left hand movement
exists. Sample Scruggs style and melodic
style melody fragments are shown in Figure




Scruggs
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Figure 2: Sample melodies in Scruggs style
and melodic style.

Our melody algorithm incorporates elements
of both of these two predominant bluegrass
styles. Each measure of the piece is
randomly chosen as a Scruggs or melodic
fragment, and a separate algorithm for each
style is used to compute the actual notes.
The percentage of each style is one of the
parameters that can be changed by the
user. This scheme is quite similar to that
actually used by many modern bluegrass
players, and hence is quite realistic. 1 will
now briefly describe the complete
composition program.

The Program

A bluegrass tune traditionally consists of one
or more sections ("A" section, "B" section,
etc). The BANJO program composes each
section independently and then
concatenates them to form a multi-section
piece. This is not unrealistic, since the
sections of a bluegrass piece do not usually
have much interdependency.

The complete algorithm for one section of a
piece is shown in Listing 1. The parameters
labelled p2, p3 p4, and so on, are the
various parameters (real numbers between 0
and 1, representing probabilities) that can
be specified by the user on each run. Files
of parameter sets can be stored for later
use; thus, if a particularly ''nice” set of
parameters is discovered, these parameters
can be easily recalled during a composition.
A typical parameter set is shown in Figure 3.

Also visible in Listing 1 are the details of the
melody-generating algorithms. As
mentioned earlier, the Scruggs algorithm is

|
|
i
1

Number of measures = 2n+1 (n=random integer)

Choose chords using transition p;!;obabilities.
(force measures 1 and NM to G major).

Choose rhythms randomly for each measure.
Rhythms are chosen from 3 different sets:
First measure (pickup notes), middle measure,
and last measure (no more than 3 beats).

For each measure, choose notes using this algorithm:

if rnd<p? then measure=scruggs measure
else measure=melodic measure

if measure=scruggs then
t
note = last note

+ single roll step (if rnd<p3)

+ double roll step (if rnd>p4)

+ backward roll step (otherwise)

+ whole /half step perturbation (if rnd<p5)

(whole step if rnd<p8, half otherwise)

!
if measure=melodic then
¢

note = last note
+ single scale step (if rnd<p9)
+ double scale step (otherwise)

if rnd<p8 then change direction of scale
if rnd<p7 then restart melody on a new note.

]

Listing 1: The bluegrass composition algorithm (in structured
English). rnd is a random-number-generating function

based on rolls, and the melodic algorithm is
based '~ around scales. Note that both
algorithms use "first order” dependencies;
that is, each note depends to some extent on
the previous melody note. This is necessary
to avoid the "random sound’ that is present
in some computer-composed music in which
each note is computed independently of the
surrounding notes. This is a small step
toward the realization of recognizable
melodies, motifs, and higher-order musical
ideas.

Figure 4 shows a piece generated by the
program, both printed in banjo tablature
and regular music notation. This is a
"typical” piece - neither the best nor worst
that the program has composed - but it
illustrates a typical piece's quality fairly
well. It is particularly striking to notice
several typical melodic-banjo fragments
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CURRENT PARAMETERS:

HARMONIC FILENAME ANFILE1
PROB OF MELODIC MELODY . 8
PROB OF SINGLE STEP (8M) .5
PROB OF BACX STEP (8SM). .1
PROB OF PERTURBATION (8M) .08
PROB OF WHOLE STEP PERTURB (SM) .8
PROB OF S8EQUENCE RESTART (MM) .2
PROB OF DIR CHANGE (MM) .3
PROB OF 2 HALF-STEPS (MM) .2

Figure 3: Example parameter list used by the
composition program. By varying the
parameters, pieces of different varieties are
produced.
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Figure 4: Sample piece composed by the BANJO program. The piece is
here shown both in tablature and in regular music notation.
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appearing (such as the first five notes of the
fifth measure), when no information of this
type is explicitly included in the algorithm.
All in all, I consider this piece, while not a
masterpiece, quite pleasant and playable,
and not obviously distinguishable from a
piece that might have been composed by a
person.

Finally, a few statistics on the program
itself. It is  written in  Applesoft
(interpretive) BASIC, occupies 4K of
memory, and composes a piece the length of
the above example in 20 seconds. 1 believe
this program is another indication of the
potential of the small computer in music
composition and other areas of music
research.
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GRAPHICS SOFTWARE INTERACTION USING THE APPLE* COMPUTER

by Ame Choate Flynn

TechniGraphics
_111 Hicks Street
Brooklyn, NY 11201

ABSTRACT

A drawing or painting goes through many stages
stages before its completion. Different tools or
implements are used for different effects. In
this paper I will show how the creation of compu-
ter art using separate pieces of software is
similar to the traditional method using traditio-
nal tools.

INTRODUCTION

As more "paper and print" artists transfer
to the world of computer graphics, programmers are
recognizing the need for better and easier-to-use
software. Hardware peripherals and software
utilities mimic traditional tools and also bring
new freedom to art and artists.

One of my graphics or illustrations can go
through eight or more stages. I use software
written for the Apple II Plus to create and en-
hance my graphics. Certain software utilities may
be used for only one purpose, but they may be the
best tool for a specific job.

The objective is to know which utility to use
when. Just as an artist may prefer oils to water-—
colors, a computer artist may favor one package
over another. The more pieces of software an
artist knows, the easier it will be to complete a
picture or achieve a desired effect. Using these
tools interactively, by bringing the software to
the graphic saved on disk, mistakes can be over-
come. If a picture is saved at regular intervals,
it need never be irretrievably lost. It is always
available for another update or enhancement.

SOFTWARE OVERVIEW

APPLE GRAPHICS TABLET

The Apple Graphics Tablet1 is comparable to
the traditional 'sketch" process. I use this
peripheral to lay out the rough elements of my
‘drawings and may then 'work into' them with other
pieces of software.

The Apple Graphics Tablet comes with a soft~
ware package containing various routines. Perhaps
the finest available 'quickdraw" routine is

* Apple and Apple II Plus are registered trademarks
of Apple Computer Inc., Cupertino, Calif.
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included; the line drawn on the screen keep up
with the users' hand movements on the tablet. The
stylus feels comfortable; it is held and moved like
a brush or pencil. 'Mountain' - Figure 1, was
created .entirely with the Apple Graphics Tablet.

o ﬁ#?"“ ;;;? “ ‘ ﬁ

Other utilities are included on the disk.
Some of them, and their uses, are:

Line, a point-to-point line drawing routine.
Frame makes an open rectangle. Box creates a
‘filled' frame which is useful as an erase function
if the box is the same color as the background.
Circle creates a circle based upon your midpoint
and a radius specification. Slide will move a pic-
ture around the screen. To effect a slide you
specify a beginning point and the move point.

The Tablet uses the eight Apple colors. Soon
these eight colors begin to pall. The ability to
fill in large areas with color will seem necessary.
Other software utilities now come into play.

MICRO-PAINTER

I use Micro-Painter2 to fill in an enclosed
area with any of 21 colors or color-patterns.
Taking a sketch created on the tablet (Windsurfer -
Figure 2) and saved to disk, I can then make the
sky light blue, the sea dark blue, and the sail
areas various colors. I save the image again and
take it back to the tablet - Figure 3 ~ working
into the picture to create waves and rounded
shapes.




Figure 3.

Micro-Painter uses paddles or a joystick to
move the cursor, and the keyboard to enter com-—
mands. Black can be changed to white, or green to
blue, etc. with the use of the Negative function
to change Apple colors to their complements.

A magnified view of the screen is achieved
with the Microscope mode. This is a very handy
feature when cleaning up text or making miniscule
changes.

TEXT

Character Generators and Font Editors reach
their intended use in the hands of an artist/
designer. In the print or graphics world, text is
as important as the design or illustration. The
type style should fit the content and be legible.

Character Generators allow you to "type" your
text directly on the high-resolution screen, or
add it to a previously saved image.

Text or Font Editors let you create new type
styles or modify existing ones. Some of the best
known text generators and/or font editors are:

E-Z DRAW3 includes many fonts which can be
displayed in different sizes, weights and widths.
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HIGHER TEXT4 has many fouts and an editor
which lets you see your font-in-progress in a
variety of styles.

THE COMPLETE GRAPHICS SYSTEM5 has both a
character generator and an editor. It can use
fonts from other packages. It incorporates a kern-—
ing feature (for tightening up letters) and a lead-
ing feature (space between lines) to mimic profes-
sional typesetting systems. Figure 4 shows a
variety of type styles that have been typed or
created using the above software.

Reened Oly €ngligh
Aon-Rerned
Gountdown-Higher Texi
Working Font by
Michael Callery

Anne RcKay Font by
Amz Flynn

TABLET-DRIVEN SOFTWARE

Figure 4.

The Graphics Tablet is considered the easiest
peripheral for use by the artist. In the past year
several packages have appeared utilizing the
Graphics Tablet. Existing packages have also been
modified for use with the tablet.

Artists now have the freedom to choose a
'brush', pick up a color and 'paint' with it
directly on the screen. They are no longer
restricted to filling within lines. Color can now
be put next to color for more dramatic and
painterly effects.

SPECIAL EFFECTS6 includes a Brush Module for
painting with a selection of 96 different brushes.
Add these brush options to a choice of 1¢8 colors
and color patterns and the possiblities are
endless. 'Storm' - Figure 5 was created in this

manner.




Other packages for the tablet are THE COMPLETE

. GRAPHICS SYSTEM, UTOPIA7, GRAPHICS PROFESSIONAL

SYSTEMS, and EDU-PAINT. All packages should be

welghed equally when starting a graphic. Just be-
cause a package is mentioned in this paper does
not imply a recommendation. These happen to be
software packages I have used. There are other
good graphics packages on the market that I have
not mentioned due to space considerations.

CUMBERLAND GAP TO DONNER PASS

An example of this interactive-software
process is provided with Figures 6, 7 and 8. These
illustrations were produced for educational soft-
ware (c) KG Productions. I turned the Cumberland
Gap into the Donner Pass.

Figure 6 depicts the Cumberland Gap as drawn
using the Graphics Tablet. 1In Figure 7, it has
been 'flipped' (left is now right) using the
Tricks Module of Special Effects. I then saved
the picture, and used the Brush Module of Special
Effects to add snow. I again saved the graphic
and went back to the Graphics Tablet to create the
final Donner Pass illustration. I worked into
the snow, modified the mountains and added snow—
covered pine trees. Starting this picture from
scratch would have taken more time than was
available. With the knowledge of what software
could do, and when to use it, I saved much
repetitive work.

Acknowledgement

Thanks to KG Productions for their per-
mission to reproduce "Cumberland Gap” and
"Donner Pass".
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MICROCOMPUTER DRAWING

by William J. Kolomyjec, Ph.D., M.F.A.

Department of Engineering Graphics
The Ohio State University, Columbus, Ohio

Abstract

This paper presents graphics software which
will enable an Apple II P]usTM microcomputer to

draw in an aesthetic manner. The palette consists
of the fundamentals of lines, rectangles, circles,
arcs, and spline curves. A joystick or paddle
driven cursor is used to locate visual components
on the screen. A clipping algorithm makes the
screen boundaries a viewport for large shapes that
exceed the screen limits. This program illus-
trates the potential of using a small computer as
a medium for individual expression.

Introduction

Drawing with the microcomputer is easy if one
has the appropriate graphics software. Presently,
individuals who seek to do computer drawing must
either buy drawing packages or write their own.
Ideally, individuals should put together their own
graphics package but not everyone has the desire
nor, more often, the expertise. The computer art
movement examplified by organizations such as Small
Computers in the Arts, should strive to make soft-
ware available to the potential electronic artist.
Consider this an installment for establishment of
a new direction in small computer arts practice.

The software presented here incorporates what
I feel are the essential components of computer
drawing. It is not a commercial package. However,
it will present a point of departure for the dis-
cussion of arts software.

The overall program design is original. It
is comprised of graphic algorithms that are my own,
obtained from friends, from public domain (maga-
zines), or from textbooks. A description of the
program and each subroutine will be given which will
cite specific references. The program will allow
the user to make visual statements. The computer
becomes a tool in the hands of the user in a manner
similar to image-creating tools in other aesthetic
media.

Hardware

A standard Apple 1I P]usTM microcomputer with

at least 48K of memory is required. An X-Y joy-
stick with two buttons or two game paddles with
buttons is necessary.

82CH1831-7/82/0000/0039%00.75 © 1982 IEEE

Operation

Upon running the program a text menu is dis-

played. The following FUNCTION OPTIONS are pro-
vided:

# = ERASE SCREEN

1 = LINE (END POINTS)

2 = LINE ( CONTINUOUS)

3 = RECTANGLES (OPPOSITE CORNERS)

4 = CIRCLE (CENTER & RADIUS)

5 = ARC (THRU THREE POINTS)

6 = SPLINE (UP TO 15 POINTS)

7 = EXIT

The user selects an option and presses RETURN.
Only option @ erases the drawing, entering modes
1-6 will not erase the screen. Option 7 will exit
the program.

In each of the drawing modes (1-6) depressing
paddle button @ will perform the function, depress-
ing paddle button 1 will return to the function
option menu. Spline is an exception: Pushing @'s
will define the curve, pushing 1 will draw it. The
mode is not exited until 1 is pushed again after
the curve is complete, i.e., twice. That's all
there is to it.

Main Program

The main program, lines 100-999, typifies
good graphics style. Line 120 keeps the program

above the graphics portion of memory.] Line 130
Jjumps to a subroutine that performs initialization
of clipping and joystick routines as well as other
program variables. Line 140 jumps to the TEXT MENU
subroutine.

After the user enters the option, Tine 150,
it is checked for being in the appropriate accept-
able response range. Line 170 branches to the
chosen function. Each function is a subroutine in
itself. A branch to each function entails: 1)
switching into graphics without screen erasure, 2)
performing the function, and 3) upon return, the
menu is re-displayed and control is transferred to
Tine 150 once again. The exceptions are clear
screen and exit.

Subroutines

CPLOTSUB, 1000-1070. This subroutine converts
X, Y, P plot codes into X1,Y1,X2,Y2 vectors. It




checks for valid pen control values, line 1020.
Once a vector or line segment is obtained the
clipping routine is called, line 1040. Clipping
works as follows: If the line segment is off the
screen, nothing happens. If the line segment is
partially off the screen, clipping is performed
and it is plotted. If the Tine is totally on the
screen, it is plotted.

DON'T ERASE, 1250-1260. A series of soft
switches are POKE'd to re-enter graphics without

clearing screen memory.2

RECTANGLE SUB, 1500-1550. This general rec-
tangle drawing algorithm generates the plotcodes
for a rectangle given a starting location and a
height and width. The source of this routine and

others like it is Computer Graphics,3 a fine com-
puter graphics primer/workbook.

ARC SUB, 1700-1800. This is a general arc
drawing subroutine that requires 6 parameters: X
and Y coordinates of the center, a radius, a be-
ginning and final angle (in degrees) and a flag
to indicate drawing direction, clockwise or
counter clockwise. The sampling rate varies and
is determined by the radius.

DELAY, 2000-2010. This is a short sub-
routine that does nothing more than waste time.
It acts as an adjustment to paddle button sensi-
tivity (the heavier your touch - the longer the
delay). The variable determining the duration of
this Toop is Tocated in line 8020.

LINE1, 3000-3080. This is the first func-
tion option subroutine. The cursor is displayed
(line 3010). Depressing button P will continually
define the respective end points of lines. After
the first end point is entered that pixcel (dis-
crete screen coordinate) is turned on (line 3030},
after the second location is entered, the line
segment is drawn (line 3060). Depressing button
1 will exit the routine and consequently return
to the main menu.

LINE2, 3500-3590. This routine is similar
to the LINET subroutine with the exception that
every time a location is entered after the
second location, the 1ine is connected to the
previous location producing a continuous line.
Depressing button 1 will exit the routine and
return to the menu.

CURSOR RECTANGLES, 4000-4120. Two locations
are entered via positioning the cursor defining
opposite corners of a rectangle. These locations
are momentarily displayed. The computer checks
the coordinates of these locations, determines
the smallest X and Y, switching them if necessary,
and calculates the height and width of the rec-
tangle (lines 4070-4090). With this data the
RECTANGLE subroutine is called (line 4100). This
process continues until button 1 is depressed.

CIRCLE, 4500-4620.
uses the ARC SUB and hence the variables:

This function routine
FANG,

40

LANG and IDIR% are immediately defined. The re-
maining variables, XCT, YCT, and R are defined
after a center location and a point on the cir-
cumference are provided, using the cursor. The
radius is computed using the Pythagorean Theorem
in line 4600. Note that before the circle is

drawn the center location pixcel is turned off,
line 4590. This is a clue for "selective erasure."
T?e point is simply drawn over in black (HCOLOR =
4).

With all six parameters required by the ARC
subroutine defined, a circle can be plotted. Note
that it is possible for part of the circle to lie
off the visible screen or outside the viewport.
Fortunately CPLOTSUB in conjunction with CLIP
takes care of these occurrences. This function
routine, like the others, will continue in this
mode until button 1 is depressed.

ARC THRU THREE POINTS, 5000-5220. The logic
in this routine is by far the most complex to this
point, save the spline algorithm. Once three
locations are defined using the cursor, an arc of
a circle will be drawn through those points in
the order that they are provided. Clearly, use
of the existing ARC subroutine is appropriate
but this tends to add to the complexity of this
routine. There are probably easier ways to do
this but I haven't found anything else that will
work as well.

The key to this routine is the use of the

THETA function which réturns the angle (in radians)
formed between a point in a plane and the plus
X-axis vector of that coordinate system. But this
is only half the problem. Based on the parameters
required by the ARC subroutine a starting angle,
FANG, ending angle, LANG, and a direction are re-
quired. This is accomplished in 1lines 5140-5190.
Incidentally, MANG is the middle angle between
FANG and LANG which determines the appropriate
arc (and not its complement) that is required.

SPLINE, 5500-5670 and CURVE COORD FINDER,
6500-6560. These two routines need not be separ-
ate but are in order to make the code easier to
understand. This algorithm was given to me by a
friend, Christopher Scussel. Anyway, I'm not
sure where he got it, or why it works, but it
does.

The routine gathers screen locations into
an array, plotting and storing them until button
1 is pushed. Note: this is the one exception to
exiting from a function routine. The algorithm
then takes over and plots a smooth curve or spline
curve through the points. Truly amazing: The
cursor reappears when the curve is complete and,
unless button 1 is depressed to exit, another
curve may be defined and plotted.

CURSOR2SUB, 7000-7070. This is the heart of
the interactive graphics capability of this soft-
ware. The cursor, which is a high-resolution
shape, is controlled using the analog inputs (joy-
stick or paddles). The location of the center of
the cursor at any time it appears on the screen is




X%, Y%5. The cursor is deliberately confined to
the Page2 graphics screen (280 X 192) and hence X%
can only be in the range @ to 279 and Y% from 9§ to
191. The loop on Tine 7030 controls the blinking
quality of the cursor and must be performed an even
number of times or little cursors get left behind.

See the Applesoft manua]4 or Apple II User's Guide5
for more about XDRAW. The two IF statements, Tines

7040-7050, check the paddle button status.® If
either button is depressed the button flag variable,
F1%, is redefined and the routine is exited.

INITCURSORSUB, 7500-7560. This routine is
only used once at the beginning of the program. It
POKE's a shape (the cursor) into an obscure part
of memory ($3@@ - $3@F). This shape can then be
used by the XDRAW function in the cursor routine.

COMPUTE CENTER AND RADIUS, 8500-8570.
algorithm was taken from a book of BASIC

a]gorithms.7 Once the errors it was published
with were removed, it was implemented to calculate
the center and radius of a circle given three
points. It has also been improved to prevent
divide-by-zero errors (by adding 0.00001 in ap-
propriate places) when three points get too close
to coinciding with a straight line where, of
course, there is no answer.

This

THETA FUNCTION, 8750-8850. This subroutine
returns an angle when given a coordinate location.
Its function was previously discussed in the ARC
THRU THREE POINTS subroutine narrative. The credit
here again goes to C. Scussel.

TEXT MENU, 9000-9110. The main menu is
provided by this routine. Upon its execution the
text screen is cleared and the function options
list is printed. Control is then transferred
back to the main program. I have found that a
graphics menu works better, that is, using the key-
board is too visually distracting. A graphics menu
allows the cursor position to "pick" the function
option. This version of the program will not be
given.

CLIPPING INIT, 10000-10030. Like INITCUR-
SORSUB this routine is only used once by the pro-
gram. It performs a little housekeeping and sets
the string variables used by the clipping routine
to the null string, Tine 10010. Line 10020 de-
fines the boundaries of the viewport which exactly
coincides with the screen limits.

CLIP SUBROUTINE, 20000-20430. This is the

famous Cohen-Sutherland clipping a]gorithm.8 It
is somewhat i11-suited to BASIC but works well
enough. This particular adaptation was brought to

my attention via a magazine artic]e.9 I have
modified it to work more efficiently in conjunction
with CPLOTSUB but it slows the program down and
takes a lot of program memory. Without clipping,
fatal errors would occur any time the screen boun-
daries were exceeded causing the program to halt
prematurely. Clipping is a must for the majority
of interactive graphics programs.
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Conclusion

Computer software is what gives intelligence
to the computer enabling it to function as a tool.
The program given at the end of this article will
enable an Apple IITM microcomputer to perform 1ike

an aesthetic tool. In keeping with my phﬂosophy]0
the mind which is the source of inspiration is
facilitated by the hand using the computer with
appropriate software to generate or create a vis-

- clear for me.

ual statement. Software can be art too!

This program was written by me in my own
style. I like to use mnemonic variable names and
I tend to write in a manner that makes things
Programming style, 1ike aesthetics,
is very personal. Individual style is revealed in
programs because people write them. The Walt
Disney film, TRON, presented programs as personif-
ications which emphasize this point.

A final word about the Applesoft code that
follows. It had to be compressed. The majority
of the REM statements were removed and multiple
statements per line had to be used extensive]y;]]
This technique saves space and makes the program
fit into memory but makes it less readable and for

this I apologise. Compiling really improves the
speed but requires expensive compiler software.

Take the time to enter it into an Apple.
Learn from it: Make beautiful pictures with it
and, most of all, enjoy it. Any art making ex-
perience should be positive. Try computer drawing
as a medium for your personal expression.
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Program Listing

188 REM <<<C<<<<< COMPUTER DRAWING >333>

3>

118 REM <<< COPYRIGHT 1982 W.J.KOLOMYJEC
>

120 LOMEM: 24576

138 GOSUB 8000

148 GOSUB 9888

158 PRINT : INPUT "ENTER OPTION:® ;0%

168 IF 0X < 6 OR O% > 7 THEN 148

176 ON 0% + 1 GOTO 188,190,200,218,220,23
8,246,250

188 HGR2 : GOTO 146: REM ERASE

192 GOSUB 1256: GOSUB 3988: GOTO 140

208 GOSUB 1256: GOSUB 3566: GOTO 146

216 GOSUB 1258: GOSUB 4600: GOTO 140

226 GOSUB 12%8: GOSUB 4580: GOTO 148

230 GOSUB 1250: GOSUB 5080: GOTO 140

248 GOSUB 1258: GOSUB 5508: GOTO 148

258 HOME : UTAB 10: PRINT “END COMPUTER D

RAWING*

999 END

1888 REM <<<<< CPLOTSUB >>>3>

1818 IF P = 2 THEN X1 = X:Y1 = Y: RETURN

1628 IF P < > 1 THEN STOP

1038 X2 = X:Y2 = Y

1846 GOSUB 28668: REM CLIPSUB

1856 IF OUT = 1 THEN 1870

1868 HPLOT X1,Yt TO X2,Y2

1878 X1 = X:Y1 = Y: RETURN

1258 REM <<<<< DON’T ERASE 3333

1268 POKE 49232,0: POKE 49239,8: POKE 492
37,8: RETURN

1588 REM <<<<< RECTANGLE SUB >>>>>

1518 X = XR:Y = YR:P = 2: GOSUB 1609

1526 X = XR + W:Y = YR:P = 1: GOSUB 1008
1538 X = XR + W:¥Y = YR + H:P = 1: GOSUB 1@
1

1548 X = XR:Y = YR + H:F = 1: GOSUB 10068
1559 X = XR:¥ = YR:P = 1: GOSUB 1980: RETU
RN

17686 REM. {<{{< ARC SUB >>3>>

1718 IF R { = 8 THEN NS = 181 GOTO 1740
1728 IF R > = 9 AND R { 146 THEN NS = 2@:
GOTO 1740

1738 IF R > = 17 AND R { 32 THEN N5 = 38
: GOTO 17480

1746 IF R > = 33 AND R ¢ 64 THEN NS = 45
t GOTO 1748

1756 IF R > 65 THEN NS = 90

1768 AL = ABS (LANG - FANG) :N = INT (<AL
/ 368) X NS + 8.5
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1778
5779
1760
1798
18ae
igie

F = FANG /7 $57.293779:L = LANG / 57.2%

FOR J = § TON

PCT = (J - 1) / (N - 1 + B.0060081)

IF IDIRY < @ THEN PCT
AN = (L - F) ¥ PCT + F

1.8

- PCT

1828 X = INT (R ¥ CO0OS (AN) + XCT + 6.5):
Y = INT (R ¥ SIN (AN + YCT + 8.5
18386 IF J ¢ > § THEN 18%6
1848 P = 21 GOSUB 16680: GOTO 1846
1858 P = {1 GOSUB 1008
1868 NEXT J3 RETURN
2688 REM << DELAY 33022
2010 FOR D8 = 1 TO DL: NEXT D8: RETURN
3088 REM <({{<< LINE1L >33
3010 GOSUB 7008: REM CURSOR
3020 IF Fi1Z = 1 THEN 390886
3838 X1 = X/1¥1 = YZs HPLOT Xi,Ydl
3848 GOSUB 2686: GOSUB 7600
3858 IF F1X = | THEN 3086
3068 X2 = XA:1¥2 = YA ﬂPLOT X1,Y1 TO X2,Y2
3672 GOSUB 2066: GOTO 3616
38686 RETURN
T
e \‘*h‘\\‘:&
3568 REM <{{{<C LINEZ 25332
3318 GOSUB 7866
35286 IF F1/Z = 1 THEN 35986
3538 X1 = XX:Y1 = Y¥: HPLOT Xi,Y1
3546 GOSUB 2880
35586 GOSUB 7@0a
3568 IF FiZ = | THEN 3598
3578 X2 = XA:1Y2 = Y/: HPLOT Xi,Y1 TO X2,Y2
3588 GOSUB 26@8:1X1 = X2:Y1 = Y2: GOTO 355
a
3598 RETURN




L]

4608 REM <{<{{(<{ CURSOR RECTANGLES >>>5>
4018 GOSUB 7000

4028 IF F1%Z = | THEN 4120

4836 XR = X/1YR = Y%: HPLOT XR,YR

4648 GOSUB 2600: GOSUB 7006

4050 IF F1Z & 1 THEN 4120

4048 X8 = X/1YS = Yx: HPLOT XS,YS

4078 IF X8 ¢ XR THEN T = XRiXR = X8:XS =
T

4888 IF YS < YR THEN T = YRIYR = YS:YS =
T

4698 H = ABS (Y8 - YRt = ABS (X§ - XR)
4180 GOSUB 156@8: REM RECTSUB

4118 GOSUB 2008: GOTO 4016

41280 RETURN

REM  ({<<< CIRCLE >303
FANG = 0:1LANG = 3461IDIRV = - 1
GOSUB 7000
IF Fi4 = § THEN 4420
X1 = Xx3Y1 = YZA: HPLOT X1,Y1
GOSUB 2600: GOSUB 7608
IF FiX = 1 THEN 4620
X2 = X/:1¥Y2 = Y/ HPLOT X2,Y2
4588 GOSUB 2000
4598 HCOLOR= 4: HPLOT Xi,Y1: HCOLOR= 3: R
EM REMOVE CENTER
4408 XD = ABS8 (X2 - X1D):¥D =
)R = SOR (XD X XD + YD % YD)
4410 XCT = X1:YCT = Yi: GOSUB 1708: GOTO 4
520
446286 RETURN

4500
4510
4526
4530
4540
4550
4548
4576

ABS (Y2 - Y
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- G180

REM <{<{<C ARC THRU THREE POINTS >>>

Seie8 GOSuUB 7eqe

58280 IF Fi1X = 1 THEN 5220

5636 X1 = XX:Y1 = YX%: HPLOT Xi,Y1
5848 (GOSUB 2068: GOSUB 76086

5056 IF FiX = | THEN 5220

3060 X2 = XN:1Y2 = YZ: HPLOT X2,Y2
5678 GOSUB 2008: GOSUB 7808

5080 IF F1Y = { THEN 5226

5098 X3 = X/:Y3 = YX: HPLOT X3,Y3
5166 GOSUB 2008: GOSUB 835060: REM
0,Y0,R

5110 XCT = X01YCT = YO:XX = Xi - XCT:i:YY =
Y1 - YCT: GOSUB 87303FANG = THETA % S57.295
779

5128 XX = X2 - XCTaYY = Y2 -~ YCT: GOSUB 87
S0:MANG = THETA % 57.293779

51380 XX = X3 - XCTi1YY = Y3 - YCT: BGOSUB 87
S8:LANG = THETA X $7.295779
5148 IF FANG < MANG AND MANG <
IDIR, = 13 BGOTO 35200

5158 IF FANG ¢ LANG AND LANG <
IDIRYZ. = - 1:TEMP = LANG:LANG =
tFANG = TEMP: 60TO S2a0

5140 IF MANG < FANG AND FANG <
IDIRA = — {:TEMP = LANGILANG =
tMANG = MANG + 380:1FANG = TEMP: GOTO 5200
5178 1IF MANG ¢ LANG AND LANG ¢ FANG THEN
IDIRYZ = 1:iMANG = MANG + 34B8:1LANG = LANG +
346: GOTO SZ2aa

IF LANG ¢ FANG AND FANG ¢ MANG THEN
IDIRY. = 1:LANG = LANG + 348: GOTO 5260
5198 IDIRA = ~ 11 TEMP = LANG:LANG = FANG:
FANG = TEMP

5208 GOSUB (700

S218 GOTO So1ia

G228 RETURN

CALC X

LANG THEN

MANG
FANG

THEN
+ 360

THEN
+ 360

LANG
FANG




5508  REM <<<<< SPLINE >>>>>
5518 K = 1

5528 GOSUB 7600: GOSUB 2000
5538 IF Fi% = 1 THEN 5590
5548 HPLOT X%,Y%

5588 C(K,1) = X/X:C(K,2) = Y%
5560 K = K + 1

5578 IF K > NP%Z THEN K = NP%: REM LIMIT
CHECK
55688 GOTO 5526

85980 KNT = K — 1:NS = IRS X KNT:P = 2

5406 FOR J = 1 TO NS

5618 T = (J - 1D / (NS - 1) ¥ (KNT - 1) ¢+
1

5620 GOSUB 6500

8438 IF J ¢ > 1 THENP = 1|

5640 GOSUB 1000

5656 NEXT J

5440 GOSUB 70081 IF FiX = 1 THEN RETURN
5676 GOSUB 2008:K = 131 GOTO 35546

4588 REM <(<{<{< CURVE COORD FINDER >3>>3>

6518 X = 0:Y¥ = 8:0 = 0:8 = - |
43528 FOR I = 1 TO KNT

6530 F = EXP (T - 1 ¢ 8.801)1F = 2 / (F -
1/ B

6548 X = X + 8 X C(1,1) X FiY = Y + 8 ¥ €«

1,20 %X F

4558 D= D + § X FtS= -8

8568 NEXT 1:X = X 7 DY =Y 7/ D: RETURN
7608 REM <<<{<{ CURSOR2SUB >>>3>

7818 XP = PDL (@) / 255:YP = PDL (1) / 2
55

7020 X/ = 279 X XP + 8.5/ = {91 ¥ YP + 8
.5

7630 FOR J = 1 TO LOOP3 XDRAW 1 AT XX,Y4:
NEXT J

78648 IF PEEK (P8) > 127 THEN F14 = 8: GO
TO 7876

7658 IF PEEK (P1) > 127 THEN F1X = 1: RE
TURN

78608 GOTO 76186

78786 RETURN

7566 REM <<<<{< INITCURSORSUB >>>>>

7518 ROT= @: SCALE= 2:L00P = &

7528 DATA 1,0,4,8,36,76,145,58

7538 DATA 43,63,23,82,9,36,4,0

7546 FOR J = 748 TO 783: READ D: POKE J,D
: NEXT J

7556 POKE 232,8: POKE 233,3
75468 RETURN

geee
2>
8816 HGR : HGRZ : HCOLOR= 3

86286 DL = 50:P8 = 49249:P1 = 49250:F1/ = 0

REM <(<{<<< INIT PROGRAM VARIABLES >>

8638 GOSUB 75606: REM INIT CURSOR

8048 GOSUB 160080: REM CLIPPING INIT

8656 IRS = S:NPX = 15: DIM C(NFX,2)

8668 RETURN

8966 REM (<< COMPUTE CENTER & RADIUS >
>35>

8510 T1 = (Y2 - Y1) / (X2 - X1 + 6.08881):

T2 = (Y3 - Y1) / (X3 - X1 + 9.08081)

8528 T3 = ((X2 - XI) ¥ (X2 + X)) + (Y2 ~
Y1) % (Y2 + Y1))

8536 T4 = T3 v (2 ¥ (X2 - X1) + 8.06808681)
8540 TS = ((X3 - X1) ¥ (X3 + X1)) + (Y3 -
Y1y % (Y3 + Y1))

8550 Té = TS / (2 ¥ (X3 - X1) + 0.60001)
8548 YO = (Té - T4 / (T2 - TD1XO0 = T ~
(T2 ¥ YOO

8576 R = SOR ((X3 -~ X0 ~ 2 + (Y3 - YOO *
2) 1 RETURN
8758 REM <(<{<<{ THETA FUNCTION 3>>33>

8768 PI = 4 ¥ ATN (1.):UNDF = @
87786 IF XX < 8 THEN THETA = Pl +
/ XX)>: RETURN

ATN . (YY

8788 IF XX = 6 THEN 8806

8796 GOTO 8830

8888 IF YY ¢ @ THEN THETA = Pl ¥ 1.5: RET
URN

8818 IF YY = @ THEN THETA = UNDF: RETURN

8828 THETA = PI / 2: RETURN
8838 IF YY < 8 THEN THETA = 2 X Pl + ATN
YY /7 XX

8846 IF YY = 8 THEN THETA = @83 RETURN

8850 THETA = ATN (YY / XX): RETURN

9086 REM << TEXT MENU >3350

9018 HOME : TEXT : UTAB 5

98286 PRINT "FUNCTION OPTIONS:"

9838 PRINT : PRINT * 8=ERASE SCREEN®

9848 PRINT * 1=LINE (END POINTS)"

20586 PRINT " 2=LINE <(CONTINUOUS) *

9648 PRINT * 3=RECTANGLE (OPPOSITE CORN

ERS) "

ya7e6 PRINT * 4=CIRCLE (CENTER & RADIUS)

9888 PRINT * 5=ARC (THRU THREE POINTS)*

9898 PRINT * &=SPLINE (UP TO 135 POINTS)

9166 PRINT * 7=EXIT"

2110 RETURN

16600 REM {<<<C CLIPPING INIT >333>
18018 X = FRE (@) :EH® = “"“:ET¢ = ""i1E1$ =
uLEDg = W

16828 VL = @:VUR = 279:VUB = B:VT = 191
10836 RETURN




26088 REM <{<{<{{ CLIP SUBROUTINE >>>>>

20818 GOSUB 20256: GOSUB 286359

28028 IF Eis = “66006" AND E2$ = "6666" TH

EN OUT = 8: RETURN

26638 ET$ = LEFT® (Ei$,1): IF ET$ = LEFT

$ (E2%,1) AND ET$ ¢ > "8" THEN OUT = 1: R
ETURN

26646 ET$ = MID$ (Ei1$,2,1>: IF ET$ = MID

% (E2%,2,1) AND ET$ ¢ > "@" THEN OUT = 1:
RETURN

28856 ET$ = MID$ (E1$,3,1): IF ET$ = MID

$ (E2%,3,1) AND ET$ < > "@" THEN OUT = 1:
RETURN

28848 ET$ = RIGHTS (El$,1): IF ET$ = RIG
HT$ (E2%,1) AND ET$ ¢ > "@" THEN OUT = 1:
RETURN

268676 EH¢ = Ei$: IF EHt = "060606" THEN EH$

= E2¢%

260686 IF LEFT$ (EH$,1) = "@" THEN 2z81i1la

26898 Y3 = Y1 + (Y2 - YD) ¥%
2 - X1):X3 = UL

20100 GOTO 28190

20116 IF MID$ (EH$,2,1) =

(VL - XD /7 X

8" THEN 2z@1i40
20128 Y3 = Yi + (Y2 - Y1) ¥
2 - X1):1X3 = UR

28136 GOTO 2819e

20148 IF MID$® (EH%,3,1) =

(VR - X1) 7 (X

"8" THEN 286178

20156 X3 = X1 + (X2 - X1) ¥ (VB - Y1) / (¥

2 - YD:1¥3 = VUB

28166 GOTO 20190
28178 IF RIGHT$® (EH$,1> = "@" THEN 20198
268188 X3 = X1 + (X2 - X1) ¥ (UT - YD / (Y

2 -YD:¥3 = VT

2861986 IF EH$ = E1$ THEN Za226
20280 X2 = X3:Y2 = Y3: GOSUB 28340
202186 GOTO 26020
20220 X1 = X3:Y1 = Y¥3:
28238 GOTO 200626

GOsSUB 28256

45

282449

20259 Ei$ = "
28248 IF X1 { VL
80

202786 E1$ = "@"
26286 IF X1 > UR
TO 283080

28290 E1% = Ei$ +
28308 IF Y1 < VB
TG 28320

20310 E1$ = El1$ +
263286 IF Y1 > VT
TURN

28336 Ei$¢ = El% +
28348

28358 E2% = "
28366 IF X2 < UL
88

283706 E2% = "8*"
26388 IF X2 > UR
TO 20490

20398 E2¢ = E2¢ +
20488 IF Y2 < VB
TO 284286

20410 E2% = E2% +
28426 IF Y2 > VT
TURN

26430 E2% = E2% +

22222 REM <KL
>>

REM ENDPOINT CODES

THEN Et¢ =

THEN Efi$ =

ngn
THEN El1% =

l‘al
THEN Ei%

THEN E2% =

THEN E2% =

la.
THEN E2%

I‘a"
THEN E2%

age

RETURN
REM ENDPOINT CODES X2,Y2

RETURN

X1,Y1

*1%: GOTO 282
Ei$ + "1¥: GO
Ei¢ + =1": GO

Ets + *"1": RE

“1": GOTO Z2Z@3
E2¢ + "1": GO
E2¢ + "1":

GO

E2¢ + "1":

RE

END COMPUTER DRAWING 33>







ANALYTICAL COMPUTER ART

Joe Jacobson

675 E. Street Road, Apt. 1009
Warminster,PA 18974

Abstract

Analytical computer art,consisting of geomet-
ric designs based on explicit mathematical funct-
ions, is discussed in terms of 3 fundamental types
of algorithms. An example is given of each type,
with sample output patterns included.

Introduction

One of the oldest forms of visual computer -art
is the geometric design, or "'line drawing;'" pictures
of this type have been generated ever since the
first plotting peripherals became available. The
field is still lively and today a great deal of
experimentation and innovation has been done, in an
attempt to exploit the potential of the high-speed,
high-resolution graphics systems that are currently
available. While most home computer CRT monitor sys-
tems do not fall under this category, it is possible
to achieve high spatial resolution with a personal
computer system if it includes a good mechanical
plotter. In addition, an increasing number of artists
are gaining access to high-performance laboratory-
quality systems.

I create geometric designs on a Tektronix 4054
computer terminal, which contains a 16-bit micro-
processor and can be used in "stand-alone" mode
without involving a larger, remote computer. I use
the Tektronix "PLOT 50" software system, which inc-
ludes a version of BASIC language and some machine-

specific graphics commandsl.

Types of Computer Art Programs

My computer art is "analytical in the sense
that it is based on explicit mathematical functions
expressed in either rectangular or polar coordin-
ates. These functions are typically algebraic, trig-
onometric, or exponential in nature. The resulting
computer programs fall into one of three classes.

The first type of program is custom~designed to
generate a specific, pre-conceived geometric pat-
tern. The second type allows the user to prescribe
valu®s for a set of input parameters, with each
specific combination of inputs resulting in a unique
output pattern. The third type of program is a comb-
ination of the first two; a particular output patt-
ern is selected that resulted from a program of the
second type, and a new program (of the third type)
is written to deliberately improve this pattern in
some way. As an example, the visual contrast of the

82HC1831-7/82/0000/0047$00.75 © 1982 IEEE
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picture may be enhanced.

Examples of outputs from all three types of
programs will be presented here. BASIC listings will
be given for two of the programs.

An Example of the First Type of Program

A program of the first type resulted in the
pattern shown in figure 1. This picture is a 3-D
perspective plot of the surface generated by a
function of 2 variables. This function, which has
the form z= f(x,y) , is given by the following
expression:

z = 5xe_X,sin(60yﬂ
2
+0.9e-10(x—0.95)2[E—10(y-l .5) +e—10(y—4.5)2] (1

where the argument of the sine function is interp-
reted in units of degrees (not radians) and the
surface is plotted over the domain 02x36, 0%y%6.
While this complicated function may seem somewhat
abstract, the resulting pattern, shown in figure 1,
will probably remind most viewers of a certain
biological form. I "tailor-made" the function
expressed in equation (1) to generate this pattern.
The particular combination of elementary functions
used, as well as the values of all constants, were
selected accordingly.

In this program the numerical parameter values
can, in fact, be varied slightly in order to effect
desired changes in the pattern. An example would be
selection of a value larger, or smaller, than 0.9
for the coefficient of the gaussian "fine structure"
term, which can have an interesting psychological
effect on male viewer response to the pattern. How-
ever, the overall pattern shown in figure 1 is
basically the only output of the particular comput-
er program used.

It might be noted in passing that this program
did not use hidden-line suppression techniques;
instead, the viewing angle was chosen to minimize
the effects of hidden lines. The program was trans—
literated into BASIC from a low-level calculator
language and a listing is not given here because it
would take up several pages. However, if the 3-D
perspective transformation equations had been coded
directly into BASIC, the program would probably be
no more than a tenth as long.




An Example of the Second Type of Program

An example of the second type of program is
the "Composite Loop" program, for which a listing
is included here.

h-. :EAEECMHE LOOP PROGRAMN
150 PRINT “ENTER L TO GENERATE A PARTICULAR PICTURE."
L
“ENTER D TO ADJUST SPACING"
"BETVEEN ANGULAR SVEEPS . *
BSELECT A VALUE BETVEEN 38 AND 38 FOR 0.
YENTER G TO ADJUST ANGULAR INCREMENT.*
“ENTER ANGULAR FREOUENCY K.°
[
“ENTER INTERNAL VEIGHTS. U1, U2 .°
ul,
“ENTER EXTERNAL VEICHTS. Wi w2 .
vi,
“ENTER T1*
™

gidt
3
z

ot
®
3
2
-1

REREN
333
L

SET_DEGREES

IF _T1s2 THEN 380
VIEWPORT 22,108, 14,108
G0 10 319

VIEWPORT 15,115,0.100
FOR B=8 T0 368 STEP D
FOR As=@ 70 360 STEP C
S=AINIVI/V2)

CEERTE R

”
-
®

320

400

418 T=36D.915(VITSINISI+V2SC0S(S)) |

420 VINDON -1.7,-T,

815 Z=RS(PI/2)3{UIISINILSA)I+U2SCOSILBA))

528 R=O3(VWIFSINIZ)Y+W2COG(2))

748 XaR3COSIA)

750 YsRESINIA)

760 IF A>B TMEN

778 MOVE x,Y

708 CO T0O 909

700 ORAVY X.Y

000 NEXT A

0180 NEXT B

828 IF Tisl THEN 048

938 E)O

948 VINDOVY 0.130.9. 1080

988 VIEVPORT 0,138.8,188

968 MOVE 0,18

679 PRINT * COMPOSITE LODP PROGRAN PARAMETERS®
988 MOVE 0.5

900 PRINY “(L.0,G.K) = €°;L;%,":D;*,":6:",.":R;")"
081 PRINT “(U1,U2,Wt,¥2) o (";U1;%, “;U2;",%;¥wi,;",";W2;“)"
088 INPUT Jo

919 T1=2

-
-]

This program prompts the user to select values
for eight input parameters. The output pattern is
very sensitive to these input values and a large
variety of pictures, of varying aesthetic appeal,
can result from the use of this program. Once a
program of this type is written, the artist tries
to exploit its potential by repeated selection of
sets of input values. This can be done at random,
but better results are achieved if the user applies
mathematical and artistic intuition tempered by a
knowledge of how the program works. Some sample
output patterns, with the corresponding input
values displayed as annotations, are shown in
figures 2 through 9.

Programs of this second type illustrate a
practical paradox associated with computers. In
principle, computers function in a totally determi-
nistic manner; a given algorithm will, for a
certain set of jnputs, always yield the same
output pattern. (The set of inputs may include
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seed inputs to a random number generator; if all
the inputs are known, the output is repeatable.)
However, from a practical standpoint, the results
can seem Qquite random and unpredictable; there is
no way of predicting the exact output that will
result from previously untried combinations of
input parameters, except by cranking through the
calculation manually--which in many cases would
take a human lifetime to do. However, in using
programs like Composite Loop, intuition has a
definite place; it is a trans-logical process that
can help the artist increase the frequency of
appearance of aesthetically desirable outputs.

An Example of the Third Type of Program

A program of the third type is typified by
the "Gear" algorithm, for which a listing is
included here.

RER GEAR
" IFILE 420

i
E-R
:

ES
NDOV_-581.581 ., -881,501
EWPORT 15,115.0,100

__,-_

et
"
28w
am

nNVPr|<x
L
v

1
-8

70 488 STEP &
C 3680 STEP S

N 158

ahze
<§iz§

L 2 2 4

BA8Eg=g

4
28
N

IO?A?UMISIN“JM 1B}
INTA)

YO L STEP 0.3
1108/L)

COSI(T)
*SINIT)

- . > D —h ot - ot D b kb

8BASBBISSEER

rbL DR P
i
i

SSINIT+100)
¥ } P ¢

LA

8_———--—_:§
DONDRLWN B
z

3
8

This routine had its origins in an earlier
program, called "Sinusoidal Loop No. 2," which is
of the second type. This program will be described

in detail elsewhere? . Selection of a particular
set of input parameters with "Sinusoidal Loop No.
2" resulted in the pattern shown in figure 10. I
then wrote the "Gear" routine to incorporate these
inputs as program constants and to include modific-
ations that would increase the visual contrast. The
resulting pattern is shown in figure 11.

Acknowledgment

I would 1like. to point out that the "Composite




Loop," Sinusoidal Loop No. 2" and "Gear" programs

all make use of a procedure originated by a
fellow computer artist and former co-worker,
Woodrow Europa. Woodrow conceived the idea of
incrementing the radius by a constant fer success-
ive angular sweeps in a polar coordinate plot. He
used this algorithm to generate iterated, "concen-
tric" versions of traditional polar coordinate
curves. Somewhat later, I realized that use of
finite angular increments and high angular freq-
uencies with this algorithm would make possible
the generation, using various polar coordinate
functions, of patterns radically different from
classical polar coordinate curves. Such patterns
include those displayed in figures 2 through 11.

Conclusion

I am currently exploring the possibilities
inherent in the abovementioned process. A wide
variety of polar functions can be formulated,
and each yields a large set of possible output
patterns(which result from different combina-
tions of input parameter values). This is but
one small instance of the current expansion of
analytic computer art techniques into new
mathematical and aesthetic domains. The near-
term future should prove to be an exciting time
in the development of geometric design as an art
form, as mom artists obtain access to high-
performance computers and develop new tech-
niques.
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COMPOSITE LOOP PROGRAM PARAMETERS

{(L,D,.G,K) = 116,6,5,1)
ful,uU2,W1,W2) = (1,1,1, 1)

Figure 3
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COMPOSITE LOOP PROGRAM PARAMETERS

(L.D,G,K) = (456,38,5,6.3)
(U1,u2,w1,¥2) = (1,1,2,2)

Figure 5
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COMPOSITE LOOP PROGRAM PARAMETERS

.5,48.3)

21,1,1)

75,38
= ()

(
)

(LIch‘Kl
(ut,u2,wt, w2

Figure 6
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COMPOSITE LOOP PROGRAM

{L,0.G,K) = (1549,30,6, 34.25)
(ui,u2,W1,¥w2) = (1,31,1,1)

Figure 7
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Figure 8
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COMPOSITE LOOP PROGRAM PARAMETERS
tL.D,G,K) = (450,75,6,7.5)
(Ui,u2,¥W1,¥W2) = (1,1,2,1)

Figure 9
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Figure 10
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PANTOMATION

A SYSTEM FOR POSITION TRACKING

by Tom DeWitt and Phil Edelstein

Electronic Body Arts, Inc., Albany, N.Y.

Pantomation is a tracking chroma key system.

It is similar to a light pen interface for a
computer but uses a color video source and chroma
keyer to detect positional information. The
system operates on the principle of tagging
objects with colors of unique hue which can be
masked out by chroma keying. Pantomation uses a
computer and has an operating system which can
process positional information in a variety of
ways. Included are algorithms to remove spurious
key occurrences, calculate velocity, record time
of occurrence of tracked points, and output
derived data as control voltages. As currently
implemented, the system tracks up to four colors.
It can be used to reposition juxtaposed images in
a composite scene so that their movement is
correlated. Research is underway to track the
depth co-ordinate in the expectation of combining
Pantomation with three dimensional computer
graphics,

GLOSSARY TERMS: Blanking, Chroma Key, Key,
NTSC color encoding, Raster, Re-entry Special
Effects Generator, Vertical Interval, Wipe

Conception

Pantomation is a system for the corelation
of scenes recorded by a camera with images
created by electronic graphic synthesis. The need
for such a tool became evident during productions
by the authors in 1974 at the WNET TV Laboratory,
a studio that housed video synthesis instruments
and a re-entry svitcher with chroma key.
Significant production delays were encountered
when foreground and background images had to be
manually repositioned to provide a sense of
realistic relationship between them. An example
is illustrated by a sequence in which a mime
creates the illusion of opening a box wipe (fig.
1). The scene had a background image of a
stylized battlefield and a foreground image of
the mime. The mime's movements were matched to
the box wipe by manual controls on the wipe
generator, Although the effect contributed to an
award winning tape (1), the expense of producing

such effects inhibited their further exploration.

Corelation between background and foreground
images has been achieved by using computer
controlled camera mounts {2). In these systems,
camera movements are carefully controlled so that
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separate scenes are recorded in registration for
subsequent recombination as composite images.
Typically, these systems impart movement to
static objects such as miniature models by moving
the camera, Complex scenes are created when a
series of shots are combined in a motion picture
optical printer,

Pantomation takes the approach of analyzing the
picture itself to bring different images together
in the proper positional relationship. Based on
the principle of ''tags" suggested by Leonard (3),
small color chips are placed on objects in a
scene to mark the positions of the objects. For
the system to work, the color selected to
identify each object must be unique to the tag.
To facilitate precise color detection, a chroma
keyer called the Window Keyer was designed. The
Window Keyer discriminates colors precisely and
can be set by computer to detect any of the tag
colors being tracked. Chroma keyed video of a
tagged object is converted from raster scan form
to a set of digital words containing the
Cartesean co-ordinates within the raster of each
tag. Typical tags are small objects, and the
co-ordinates describing them represent just a few

Fig. 1} A manually controlled box wipe
synchronized with the movement of a mime.
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points out of the video raster's quarter of a
million pixels. As a result, the acquisition of
data is compatible with computer processing
speeds which are a fraction of the pixel to pixel
data rate of the actual video. The computer has a
bank of digital to analog convertors (DACs) as
outputs which are patch programmed to voltage
controlled audio and video synthesizers, When the
system is operated the synthesizers are
essentially controlled by the positions of the
color tags.

System Description

Pantomation is achieved through the system
illustrated in fig, 2. The head end consists of a
color video source containing red, green, blue
and encoded NTSC color signals. The R,G,B signals
are routed to a voltage controlled window chroma
keyer (fig. 3).The keyer consists of six
comparators and associated logic to derive a
combined key signal pulse. The "window" is
created by setting limits on both the upper and
lower levels of each of the three color signals.
This requires a total of six reference voltages
which are provided by the analog programmer., This
device is a sequential voltage source typical of
voltage controlled audio synthesizers, In the
analog programmer, a mattrix of potentiometers is
preset to store reference voltages. Pulse lines
from the computer set the sequencer to the preset
values that define a color. In the current
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implementation of the keyer, four different
colors can be tracked.In normal operation a
different color is keyed each video field.

Key Positioner

The Key Positioner provides the means to
extract horizontal and vertical position
information from a key signal and make that
information available to the computer system.
This device (fig.4) resembles a light pen
interface for a computer system.It reports the
position of a tag in a fashion similar to a photo
cell reporting the position of a light pen "hit".
At the beginning of the vertical interval of
video, the horizontal and vertical counters on
the key positioner board are reset, and a one
microsecond pulse is sent on the interrupt line
of the computer bus. This event triggers a set of
interrupt service routines which are described
below in the description of the system software.

On the Key Positioner device, an interrupt
is generated by the occurrence of the vertical
interval or a key pulse, When a key pulse occurs,
the current values of the horizontal and vertical
counters are transferred to storage latches. In
the Key Interrupt Service Routine that follows,
the values in the latches are sent to the
computer via the computer bus. The vertical
counter is clocked by horizontal sync, and the
horizontal counter is clocked by color subcarrier
(3.58 MHz). The counters are reset to zero by
vertical sync and horizontal sync respectively.
Although eight bit counters are used,
approximately 180 horizontal and 190 vertical
lines are resolved due to limiting factors such
as video blanking and tag size.

Central Processing Unit (CPU)

The CPU is used to provide computer software
control, storage, and routing of the position
information extracted from the tracked tag. The
current implementation of the system is built
around a PDP-8 mini-computer manufactured by
Digital Equipment Corporation. The computer has
an instruction cycle time of 1.5 microseconds
and a memory size of 4096 twelve bit words of
core. A teletype terminal is used as a console,
and the computer's front panel switch registers
are also used for operator communications.

Analog and Digital Input/Output (I1/0)

The 1/0 system includes four digital to
analog convertors (DACs) and three software
programmable pulse outputs. The DACs are
generalized in their use and can be patched to a
variety of voltage controlled devices in the
system. Of the programmable pulses, two are used
to control the sequencer in the chroma keyer.
There is a reset pulse that zeroes the sequencer
at its first position and a clock pulse that
steps the sequencer to the group of six preset
voltages defining a particular color. This
‘process takes no more than 200 microseconds and
occurs during the vertical blanking interval. The
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third programmable pulse is for display

blanking. A final input device is an external
clock input that synchronizes the computer to the
timing of outside devices. Each cycle of the
external clock triggers an interrupt service
routine which transfers data to the DACs.

key vo HD 358MHz
clear
count® up ¥
clear —_— 9 52&23—22
8 bit 8 bit
Counter Counter
load
t
Ga&e load v I_ H
Cntr} Latch Latch

Computer Bus

Fig. 4) Key positioner

Analog Synthesis Modules

The analog portion of the Pantomation system
is used to create and modify video and audio
signals. Two of the components in the block
diagram in figure 2 are labelled "SERGE". These
are combinations of analog devices manufactured
by Serge Modular Music Systems of San Francisco,
California. Pantomation includes the following
modules: oscillators, amplifiers, filters,
mixers, sequencers; comparators. These modules
are voltage controlled and patch programmable.
They are designed for synthesis and processing of
waveforms in the audio frequency spectrum and are
comparable to Moog, Buchla, and other audio
synthesizer components (4). A Videolab special
effects generator designed by Bill Hearn of
Electronic Associates of Berkeley, Ca. is also
used in Pantomation. The Videolab is used for
processing functions such as re-entry keying,
colorization, wipe and cursor synthesis. (5)

Qutput Subsystem

The output display system is based on a
Rutt/Etra CRT and control unit manufactured by
Rutt Electrophysics of New York City. The display
controller has manual and voltage controlled
inputs for altering the height, width, depth,
rotation, intensity, and position of a video
image. The display itself is a black and white
CRT and is rescanned by a black and white
television camera, The display yokes can deflect
the CRT beam the entire screen width at
frequencies up to 50 KHz. The CRT beam can be
blanked at video bandwidth. The voltage control
functions operate at approximately the same
bandwidth as the SERGE modules, hence the
selection of audio synthesis technology in a
video synthesis application. ’




There are twp different modes of operation for
the output display: Raster and Stroke. A raster
display consists of a television image taken from
a composite video source., This image is displayed
on the Rutt/Etra CRT in raster format, but is
repositioned according to the position of the
tracked tag. The rescanned version of the image
is then available for insertion in a composite
image through the re-entry special effects
generator. In Stroke operation the display is
used much like an oscilloscope -to produce
synthesized images. These are images created by
movement of the CRT beam. Unlike raster based
images which depend on changes in light
amplitude, stroke displays can produce images
with no change in beam brightness but simply with
changes in beam position. In Pantomation, the
only brightness change used during stroke display
is a blanking pulse taken from the third
programmable I/0 pulse, It is used to turn off
the display when it is not being refreshed.
Stroke displays are used in Pantomation when the
repositioned image can be synthesized from vector
lists,

Software Operating System.

Much of Pantomation exists as computer
programs. The Pantomation Operating System (POS)
performs initialization during startup and
services interrupts originating from the hardware
interface. Other areas of memory are used to
store positional information, system variables,
and a program called Octal Debugging Technique
(onT).

Initialization Routine

When POS first begins, the initialization
program resets memory locations used for system
variables, normals the chroma keyer to the first
color in the sequence, enables all interrupt
flags, and enters a wait state until an interrupt
occurs, When an interrupt is asserted, the
hardware interface is polled to determine which
interrupt has occurred, and the appropriate
interrupt service routine is entered. The program
returns to the wait loop in the initialization
routine after all requested interrupts are
serviced.

Keyer Interrupt Service Routine

A flow chart of the key interrupt service
routine appears in fig. 5. When the computer
senses a key interrupt pulse on its bus, the most
recent values stored from the horizontal and
vertical counters on the Key Positioner are
transferred to the CPU. If the vertical position
is less than a variable called TOPLINE, the key
interrupt routine aborts and the computer returns
to its wait state. The TOPLINE software function
was implemented to eliminate accidental or
spurious key interrupts that occurred at the top
of the frame from overhanging studio lights., If
a key occurs below the TOPLINE variable, the
horizontal and vertical position is stored in a

pair of words in memory.

If a second key occurs in the same video
field, it is tested to determine how close it is
vertically to the previous key in that field.
This test, called SOLID, compares the vertical
offset between keys by subtracting their vertical
positions and comparing the results to a
constant, This value is initialized as 7 vertical
lines but can be changed by the operator. If the
key has occurred no more than the tested number
of lines from the previous key, it is assumed to
be part of the same "solid" object. The purpose
of separating "solid" keys from isolated key
interrupts is to eliminate occasional key pulses
that are artifacts of the video system such as
color camera mis-alignments or signal noise. If
the key pulses test as solid, the computer stores
the vertical value of the first key occurrence
and the horizontal value of the second key. This
format of determining the position of the key
source was found to be necessary because of large
amounts of dither in the horizontal position of
the first line of a keyed area.
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The key interrupt routine also has a
provision to reject spurious "solid" key sources
as might occur if a color in the video is
identical to a tag color. As keys occur during
the field, their position is compared to the
position of the tag during the last field during
which that tag was sampled. The change in
position between the samples is stored as the
difference between current and past horizontal
and vertical positions. If more than one "solid"
key is detected within a frame, the key which was
closest to the position of the previous key is
accepted, and key points occurring elsewhere in
the frame are ignored. Pantomation has been able
to separately track two objects of identical
color provided they did not touch. Running on the
PDP-8, the key interrupt service routine is
performed within 200 microseconds, allowing a new
key to be tested every four video lines.

Vertical Interrupt Service Routine

At the beginning of the vertical interval,
an interrupt triggers a service routine (fig. 6)
which further processes the key position
information obtained during the previous field.
Two tests are run, both similar to TOPLINE. The
first test, designated DEFAULT WINDOW, tests the
position of the key to determine if it is within
boundaries at the borders of the frame., These’
boundaries are TOP, BOTTOM, LEFT, and RIGHT (fig.
7). Their values are stored on page zero of POS,

Left Right

Top

Jitter Box

Bottom

Fig. 7

If the key is in the DEFAULT WINDOW, the
positional information from the actual tag is
replaced by preset horizontal and vertical
values, typically 0,0. The DEFAULT WINDOW is
useful for creating the illusion that a tag
carried to edge of the camera field has been
carried out of view of the camera. Another test
made during the vertical interrupt routine is
called JITTER BOX. If the position of the latest
sampled key position is within a pre-assigned
distance from the position of the previously
acquired key, the latest key position is ignored,
and the position of the previous key is used.
This inhibits occassional dither in values coming
from the key positioner. The effect of this
technique is observed vwhen a tag is virtually
stationary, As soon as the tag moves outside the
JITTER BOX the full 8 bit resolution of the key
positioner is used.




After the value of the position of the tag
has been established, the information can be
deposited in several locations in memory. In
VECTOR DUMP mode, the data is stored as one entry
in a software implemented First-In-First-Out
(FIFO) buffer. This buffer can be likened to a
software function generator that produces the
position versus time function for a selected tag.
This feature is useful for creating patterns from
the path of movement of the tag (fig. 8). A
special use of VECTOR DUMP is reading a formatted
graph from a video camera into the FIFO buffer.
This technique requires that the computer
generate an analogue ramp wave from one of its
DACs to move a voltage controlled cursor. As the
cursor increments, it acquires the next value of
a graph scanned by a video camera., The technique
allows the operator to load handdrawn waveforms
into the software function generator.

In DOTS mode, the position of the tracked
tag is loaded into a pair of registers associated
with the color being tracked. The number of
colors corresponds to the preset values on the
analog programmer and is set by the operator for
each production situation. The POS software has
been written to keep track of up to eight colors.
Finally, the vertical interrupt service routine
calculates the velocity of the tracked tag. This
calculation averages the change in position of
the tag over several fields to allow for the
measurement of the velocity of slowly moving
objects,

External Clock Service Routine

Most output functions of the computer are
associated with the External Clock Interrupt
Sexrvice Routine. This program is initiated
wheriever a pulse is sent to a patch programmable
input on the I/0 intetrface. Typically the pulse
comes from an oscillator., Each pulse
triggers an output cycle consisting of a transfer
of data from the computer memory to the DACs. In
DOTS mode DAC assignment for the routing of the
data is determined by the operator before startup
and establishes which tag positions will appear
at which DACs. The VECTOR DUMP FIFO buffers are
preassigned, one to each DAC, and they are
enabled or disabled by computer console faceplate
toggle switches.

Applications

Conventionally, a chroma key opens an area
of a picture for insertion of another image. Such
effects allow combinations of images by dividing
a picture into foreground and background planes.
Ordinarily, the background is keyed out of an
image by placing the camera subject in a setting
of unique and uniform monochromatic color such as
blue or green. Pantomation alters an assumption
of chroma key technique in that the tags it
follows by chroma key masking are primarily
foreground objects. Unlike the large areas of
nopochromatic background in the typical chroma
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Fig. 8) "Drawing with Cheerios," a mime
traces a space using a colored ball., 128
sequential positions are shown in Vector Dump
mode.

key studio, these foreground objects are small,
Conceptually they represent the center points of
images that will be inserted over them. The
foregrounds that will be inserted are not the
same size or shape as the tags. The tags may
never be seen in the final composite picture,
because they are in the hidden portion of the
background plane.

Pantomation, as currently implemented, can
track up to four colors. There are conventional
chroma key studios that use multiple chroma keys.
As more than two images are combined, foreground
and background distinctions must be extended to a
series of planes that exist in a conceptual third
dimension. Even in simple two plane chroma keys,
depth information is important if the camera
moves, If a pan over the foreground moves the
foreground figure, the background being inserted
must also move and at a rate which is
proportional to its assumed distance from the
foreground. Pantomation can be used to
automatically move a background in
synchronization with camera movement on the
foreground object. As the position of a tag
changes, the position of the second plane in the
image is repositioned by a proportional amount.
This technique does not actually determine the
true depth of the tracked object.

Depth Detection

Some commercially available equipment can
detect the size of a chroma key object (6). Size
is proportional to the distance of the object
from the camera, so this facility could be used
to calculate the depth coordinate, In Pantomation
this measurement is accomplished by placing tags
at the edges of the object being tracked. The
distance between the tags, calculated by
subtracting the left tag position from the right



tag position, is proportional to the distance:of
the object from the camera. Another method for
determining the depth plane position of tracked
objects is to use more than one camera to detect
position (fig. 9). A scene recording camera looks
at the subject front-on, and another camera is
placed at an orthogonal angle to the subject. The
horizontal axis of the image in the orthogonal
camera corresponds to the -depth axis of the front-
on camera. With multiple cameras set at
orthogonal angles to a subject, Pantomation can
derive the horizontal, vertical and depth co-
ordinates of tracked tags. Depth detection would
be useful in applying computer graphics to
television production. Computers can manipulate
images in three dimensions. Television systems
interfaced to computer graphics systems will need
methods for addressing three dimensional co-
ordinate space.

Animation

One approach contemplated by the authors for
television controlled computer graphics is based
on the art of marionettes. A puppet is a three
dimensional object which is manufactured a single
time for subsequent manipulation in a performance
environment. If a three dimensional model of an
object is stored in a computer, it can be
displayed in a wide variety of translational,
rotational, and scaled configurations. Creating
such models forms the analogy to making the
puppet. '

There are many methods being explored for
building mathematical models of objects.
Pantomation can be used in at least two
approaches to the problem. Artists normally draw
on a two dimensional surface such as paper. The
Pantograph would allow an artist to draw "on air"
in a three dimensional space. In this
application, the artist handles a baton with a
color tagged tip. If the baton tip is tracked in
three dimensions, its spatial co-ordinates can be
used to construct a computer graphic. An artist
watching on a stereo-pair crt system (7) can draw
a three dimensional object. Another approach,
being developed conceptually, analyzes a real
object for its three dimensioan co-ordinates. The
system would record the positions at which an
object is struck by a point of light from a laser
beam which is deflected over the object. In
Pantomation, the "hit" of the laser light would
be used to tag the surface, allowing acquisition
of all the points that intercept the light.

After a computer "puppet" is created, its
movements can be imparted by Pantomation
techniques, The puppet is partitioned into
volumes that will be corelated to tags in a scene
recorded by television cameras., In the analogy to
marionettes, the tags correspond to marionette
strings. During production, repositioning of the
tags by the movement of actors or cameras will
control the movements of the partitioned volumes.
The proposed computer puppet process would
benefit animation, because a character would only
need a single rendering. The process would allow
for much greater detail in designing the

Front-on camera Tags

——r &

&
~ .

Horizontal O
axis
L
Depth
axis <)
Orthogonal
4 Camera

67

Vertical
axis

Fig. 9) Diagram of the set-up for three -
dimensional tracking

character than is permitted when many multiple
drawings must be made.

In an experiment conducted with Pantomation,
lip movements of an animated face were made by
tracking the lips of the narrator who wore a
color tag on his chin. This technique could free
animators from the time consuming task of -
corelating lip movements with spoken dialogue.
Another experiment with Pantomation created an
animated wing for a dancer giving his
interpretation of flight. Three points were
tracked: the hand, the elbow, and the shoulder.
This allowed for a realistic articulation of a
synthetic wing made by video synthesis (fig. 10).
The experiments are leading toward production
techniques that divide control of an animated
character among several artists such as a
draughtsman for the image, a dancer for the body
movement, and a orator for the voice.

Performing Arts

Other experiments with Pantomation have
focussed on combining audio and video synthesis’
with music, dance and mime. A musical performance
has been conducted by a bassist who used a tagged
hand to control the pitch and rhythm of an audio
synthesizer. He appeared to be playing an
"invisible'" instrument, but his videotaped image
had the synthesized image of a vibrating bass
string superimposed. The Pantomation system has
been used to read a handwritten musical score.
This technqiue uses a variant of the VECTOR -DUMP
program. The score is prepared according to the
format of skyline notation, a form of bar graph,.
and each voice is written in a different chroma
key color ink. The graphs are made on paper with
punched registration holes, and are scanned by a
video camera on an graphics stand.The graph is
stored as a list of values in the VECTOR DUMP
buffers and is output later through DACs under



Fig. 10) A corporeal mime articulates a
synthetic "wing."

tining control of the external clock. The
technique has the advantage that a composer can
prepare an electronic music score away from the
studio using the traditional approach of
handwriting at the piano.

Pantomation was developed within a modern
dance company, Electronic Body Arts, and has had
immedidte applications in videotaping dance and
mime. As a tool for training and rehearsal, the
system allows the teacher and choreographer to
study the isolated tagged parts of the dancer,
Audio cues can be generated by tracking position,
giving the dancer an indication of important
variables such as location on the stage or
relationship to other dancers., Velocity detection
is of use when comparing the current performance
to performance standards. Notation for dance can
be accomplished with videotaping, but some of the
abstract ideas in dance can be understood by
limiting the notation to key components of body
movement. Laban notation has been implemented on
computer graphics systems for this purpose (8).
Pantomation dance notation has the advantage of
simplicity, both in the recording and the
reconstruction of dance movement. The system has
produced videotapes in which graphic abstraction
itself is combined with the dance (fig. 11) (9).

Fig. 11) A dancer holding two tags of
different color manipulates pompoms created
by electronic image synthesis.

SUMMARY

A tracking chroma key process called
Pantomation has been developed. The system
incorporates a mini-computer and operates on the
principle of color tagging. Positional
information about subjects or scenes is derived
from computer analysis of color coded information
taken from images scanned by television cameras.
These positions are marked in the scene being
televised by placing color chips called tags on
the points to be tracked. The tags are detected
by chroma keying techniques, and a special
interface to the computer detects their position




in the raster. The computer processes, stores and
outputs the positional data under software
control, The output of the computer is connected
to production components such as video and audio
synthesizers. Pantomation is similar in
construction to light pen interfaces common to
computer graphics, but a camera is used to sense
light instead of a single photo cell, The system
is interactive and designed for real time
operations,

Pantomation was developed by a theatrical
company that produces works in dance, mime and
music and is intended to advance the integration
of these arts with film and television., Some of
the applications for the system are in matching
movement of chroma key backgrounds with
foregrounds, tracking and displaying trajectories
of objects in motion, and controlling electronic
graphics and sounds, Uses under investigation
include three dimensional tracking for
interfacing video to computer graphics systems.
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GLOSSARY

Blanking: The period during the video signal
when the crt beam is turned off such as during
the vertical interval.

Chroma Key: A key created by analyzing a
color video:signal for red, green, and blue
components.

Key: A comparison of the video signal to a
reference brightness level, A keyer creates a bit
mask based on the outcome of the brightness test.

NTSC cclor encoding: A method for
transmission of color information using a 3.58
MHz phase modulated sine wave which is added to
the brightness level of a black and white
television signal,

Raster: The Cartesean grid of a television
picture, for example, North American television
has a raster of 525 lines vertically, each with
several hundred pixels horizontally.

Re-entry special effects generator: A
television production component that combines
several signals by keying, wiping and mixing,
Sometines called a "switcher.”

Vertical Interval: A synchronizing period
which occurs between fields of brightness
information. In North American television the
vertical interval is about one millisecond and
occurs each 1/60th of a second.

Wipe: A video special effect which produces
a simple geometric mask such as a box.







REAL TIME ANIMATION TECHNIQUES WITH
MICROCOMPUTERS

Frank Dietrich

Pixel Creations
731 West 18th Street

Chicago,

Animation movies are back in
business. For a long time this genre was
almost identical with Walt Disneys' cutely
drawn animals and fairy tale characters.
Now it is the Disney Studios again making
the breakthrough into the animated space
age of computers with a new creation TRON.
The computer generated special effects of
many other current films make headlines in
the movie critiques. The type of computer
animation possible with low-cost machines
with less resolution, less colors, less
speed, the list of deficiencies could
easily be extended, are a far cry from
these expensive and very sophisticated
visual innovations. Nevertheless, as will
be demonstrated throughout this article,
the small graphics computers have strong
features for animation used by industrial
and educational video productions as sell

as in the exploding world of cable TV.

TRADITIONAL & COMPUTER ANIMATION

Animation is the art of changing
images in time. This is faster said than
done. Traditional film animation requires
many tedious :and time consuming steps to
produce the numerous drawings necessary
for sophisticated motion effects.

Computer animation can save labor by
automating some of these tasks like cel
inking or inbetweening. Computer Assisted
Imagery (CAI) can even produce complete
movies. But most computers do not produce
real-time animation. Instead they
generate one still image at a time.
illusion of motion is invoked later,
traditional amimation, when complete
series of stills have been filmed and are
projected at 24 frames per second.

The
as in

Real-time animation has been possible
in the past only with vector refresh
displays, mainly because the computer
could calculate the new endpoints of
relatively few vectors forming the image
during the refresh cycle of the display
device. Much less picture information has
to be processed in such vector systems
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than in a raster system, where the entire
screen memory containing up to millions of
pixels (picture elements) has to be
rescanned for display. Changing parts of
this amount of such large memory has been
untill now too slow to allow for real-time
animation. Only modern high speed
computers with dedicated image processors
can accomplish this task in the short time
of a 30th of a second.

In this respect it is a surprise that
microprocessor-based video game machines
are highly interactive and capable of
real-time animation. Their main
limitation, low resolution, becomes a
feature: less pictorial information has
to be moved around. Even if this motion
appears to be somewhat crude, it is
nevertheless real-time animation and
serves the interactive purpose.

The animation techniques discussed
here were executed on a low-cost
micro-graphics system, the Datamax UV-1,
initially developed from a video arcade
game computer. Its RAM was expanded to
32K, and 256K of screen memory were
added, yielding a 320%200 pixel resolution
with 16 2-bit 'thin' framebuffers. ZGRASS
is the hi-level graphics programming
language of the system, ready to go in 32
K of ROM. An internally generated standard
NTSC signal puts the imagery from the
computer right into the heart of the video
world. Even though all this accounts for a
specially configurated micrographics
system, many of the animation techniques
are commonly used and thus serve as
general examples for getting a maximum of
motion out of small computers.

ADDITIVE CHANGES

Two different ways exist to change an
image, one, by drawing new graphics (or
erasing existing ones for that matter),
the other by changing previously created
and stored images. Of course the later
which can be either a change of color or a



switch to another image plane happens much
faster and therefore is better suited for

real-time animation. In terms of how much
information is changed by drawing, the
‘least demanding animation technique simply
keeps writing one graphic element over the
previous ones, thus building up the image.
This amounts to a gradual change of the
image, where the order of introduction of
the picture objects significantly
contributes to the meaning produced. In
some respect this is like story telling
with pictures as an ongoing process, And,
as in stories, one new element can
drastically turn the already known facts
around.

There are two flaws with additive
changes. This technique can only produce
gradual changes of an image and the viewer
has to watch the drawing of the new
graphic, which can divert the attention to
a very insignificant action like filling
in an outlined shape. Computer systems
featuring at least two image planes offer
help: With a technique called "Double
Buffering" the immediate action of drawing
can be hidden by always showing the image
in the other buffer, where no drawing
takes place. Once the drawing is finished
the program switches to the plane
displaying the new image and continues to
draw onto the plane which is now not
shown. In this manner the animation
effect is concentrated on the images
changing in time without having to show
how the images are being drawn.

SHOW planel; DRAW to plane2
SHOW plane2; DRAW to planel

COLORMAP ANIMATION

The fastest method of changing a
raster image is known as colormap
animation. Since no drawing is done, the
bitmap, storing the digital information of
the screen, is not touched at all,
Instead, only the representation of color
for each given combination of numbers is
altered. Since this is a minimal )
computation it can be quickly
accomplished. Just consider the
difference between changing only four
color values to calculating up to 320%200
pixels. A simple but effective trick like
the blinking of a particular object is
done by switching back and forth between
its color and the background color.
Continuous motion ( e.g. bloodstream,
waterfall ) can rather easily be
visualized, if a series of colors is
switched.

TEMPCOLOR = COLOR 1; COLOR1=COLOR2;
COLOR2=COLORn; COLORn=TEMPCOLOR
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A more elaborate version of blinking
is the creation of multiple frames in one
image plane. Essentially it is a
trade-off between color resolution against
multiple images which are initially hidden
in the background and then consecutively
switched on to create the illusion of
motion.

COLOR1...COLORn=BACKGROUND
COLOR1=FOREGROUND; COLOR1=BACKGROUND

COLORn=FOREGROUND; COLORn=BACKGROUND

SNAP ANIMATIONN

Numerous animation techniques are
possible given the ability to store parts
of the screen in a special image array.
The DATAMAX UV-1 features a custom
designed chip to handle the activity of
storing and displaying images up to a
quarter of the total size of the screen.
Such a memorized image is called a
SNAPSHOT or SNAP for short. The same
effect can be done with other systems by
storing images into another frame buffer

for instantanecus retrieval.

The simplest method of animation is
to make a SNAP and then continuously
display this image along a computed path.

SNAP name,xcenter,ycenter,
width,height
DISPLAY name, xcenter,
displayoption
xcenter=xcenter+offset;
ycenter=ycenter+offset;
IF Xcenter AND ycenter<

screenborder ,GOTO 1IMOVE

1IMOVE ycenter,

The display option defines how the
SNAP information is logically combined
with the existing values in that
particular part of the screenmemory. A
total of 150 different display options is
available: PLOP, OR, XOR, AND, etc. are
the choices for the BOOLEAN operation to
be performed. Additional color filters can
be applied to determine which colors would
be effective. For instance, one useful
application of appropriate display options
would be to let a red car drive behind a
green house, disappear and become visible
again. :

A special trick called the
"Difference Snap" relies exclusively on
these display options.The difference snap
deals with the problem of having to
execute two drawing commands to move an
object once: first the image has to be
erased at the old location and then it
must be displayed at the new location.
Not only does this take more time, it also
causes a disturbing flashing visually
interrupting the movement.




The "Difference Snap" combines
erasing and displaying into one single
action. Its name describes what it is:
the visual difference between a snap at
location X1 and X2, created by XORing the
snap onto itself while it was offset by
exactly the amount of pixels it should
move. The visual result becomes the
difference snap and is stored. Now the
movement can be achieved by displaying the
original image only once and then
continuing to XOR the difference snap

with the pre-defined offset. Memory
considerations restrict this technique,
since two snaps are needed and the
direction of movement is not variable.

SEQUENCING

By now we know how to move static
images across the screen. In order to
change the image itself the snaps have to
be sequenced. This technique consists
of pre-storing and playing back a series
of snaps. First a number of snaps are
created, each slightly different than the
previous one. These images are labeled in
series PICi, PIC2,..., PICn. Again,
memory constraints allow only a limited
number of snaps of a limited size to be
stored. The animation takes place as a
simple sequencing through the snaps much
like flipping through a flipbook. In this
case the PLOP display option is used, in
order to completely cover the old image
information with the next one.

DISPLAY PIC1,
DISPLAY PIC2,

DISPLAY PICn,

x,y,PLOP
x,y,PLOP

x,y,PLOP

The particular effect achieved
depends on the chosen approach. One
approach is a sequence in the tradition of
Disney animation where two keyframes (or
extremes) for each cartoon character are
drawn first. Then a number of inbetweens
are drawn to create a smooth transistion
from one extreme to the next.

A pseudo rotation around either the X
axis can easily be created by scaling
down either the width or the height of the
snap until only a thin line remains.

Along this scale subsequent new snaps are
made and later played back in sequence.
The net result of this technique is a
rotation without any time consuming
computation of the sine and cosine
functions which are usually employed.

or Y

MULTI-PLANE ANIMATION

Similarly, the 16 planes of the UV-1
can be utilized for full screen animation
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by cycling though a series of previously
designed images. This is an important
extension of displaying graphic objects in
snaps both in terms of the size of the
image changed and the decrease in time
this takes. The switching from one plane
to the next (memory bank switching) is so
fast, that the eye can not detect the
switch. In addition to multi-plane
animation, the UV-1 hardware has two other
important features: video-digitizing as a
source of input and programmable
arrangements of 16 screens either into a
panorama of X by Y planes or into a stack
of 16 planes, one behind the other.

INTERPOLATION

Since the very beginning of computer
animation various mathematical forms of
interpolation were established mainly to
produce keyframe animation of cartoon
characters. Basically the interpolation
algorithms are set up to divide a range
formed by two given numerical poles into
a specified number of intervals, thus
producing intermediate values in between.
The distribution of the intervals and the
numbers of interpolated values depends on
the function (e.g. linear, sinusoidal,
etc. ) and the step factor used. Both
determine the number of intervals and
whether they are constant ( linear ) or
not (sinusoidal). Interpolation
algorithms as such are so general that
they can be applied to almost any element
of the animation sequence: distance ,
size, angle, time, etc.

Interpolation techniques played a
prominent role in a recent computer
installation entitled DO-IT YOURSELF
MACHINE ART by Joanne Culver, Zsuzsa
Molnar and myself. The DATAMAX UV-1 was
programmed in such a way that two
participants from the audience could
create instant animation. Each of them
drew one keyframe into plane 1 and plane
16 respectively. Then the computer took

over, interpolating the in betweens
necessary to transform the picture drawn
by the first player into the picture by
the second one. After finishing the
drawing job the computer cycled through
the planes creating a short animation
sequence.

FIELD MOVES

Most animation techniques discussed
so far share one commonality which can
easily turn into a major problem. They
require memory space set aside for the
storage of images. Fortunately another
technique exists that does not need one
single bit more image memory to move
fields as large as the entire screen.




ZGRASS provides two graphic commands
facilitating this welcome option, SCROLL
AND WRAP. Both enable the move of an
entire section of the bitmap to a
different location ( memory block move ).

Both commands require the
specification of X and Y locatioen, width
and height of the field, X and Y direction
of the move and finally the display
option. The main difference between the
two is that SCROLL simply moves the
designated field to a new location,
automatically clipping it along the screen
boundaries if necessary. WRAP performs a
wrap-around function to the image
information contained within the area,
displays it again at the same location.

but

Both techniques lend themselves very
well to preparing animation sequences for
later playback as well as copying large
areas. But the drawing of these techniques
is such a visible interruption , that it
should be hidden by double buffering ( as
described earlier ) to successfully
utilize these field moves. Sometimes an
artifact of WRAP can be turned into a
visually interesting result. Since WRAP
simultaneously executes both READ and
WRITE functions, the image that appears
during the WRAP as seen as though through
venetian blinds in motion.

TIMING AND CONTROL

Finally the question of timing and
rhythm must be addressed, since a high
degree of control over time is absolutely
necessary for animation. Unfortunately the
option of greater speed is limited. Only
two possibilities presently exist: to
compile a program or to streamline it.

The latter can be done, for instance by
calculating lookup tables of moves defined
by complex functions thus stripping down
the computation during the animation to
the bare bones of retrieving those values.

Slowing down the animation is much
easier and offers more options. A WAIT
command counts in seconds helpfully
slowing down the action. System timers
which need to be set only once and then
count down to zero become helpful for
triggering a new event after completion of
a previous one.

For choreographing a number of
simultaneous events parallel processing
comes in handy. ZGRASS offers three
different execution modes: normal,
foreground and background. The normal
mode executes a program only once and then
returns. Background and foreground modes
execute the program until explicitely
stopped. The difference between them is
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that programs running in background mode
are executed one line of code at a time
whereas macros in foreground mode are
executing a line of code each 60th of a
second.

Features like this make use of the
extendability of the graphics language to
allow the development of libraries of
special purpose routines. They also
support the task of combining a handful of
different events into one complex
animation. A controller program for such
a sequence could look like this: )

READJOYSTICK.FOREGROUND
MOVESHIP.FOREGROUND
CHANGECOLORS .BACKGROUND
MAKESOUND.BACKGROUND
DISPLAYSCORE. BACKGROUND

SUMMARY

The variety of animation techniques
available for small ‘computers and the rich
palette of examples already produced, will
convince even skeptics that powerful tools
are ready to enhance video and cable TV
productions. Even the micro graphics
computers of today's generation are far
superior to the titlers and character
generators widely used in audio-visual
production.

By now the excuse that computer
animation is so difficult that it can only
be handled by programming staff can no
longer be made. The software is so
advanced that it allows the animator to
concentrate on the graphic design without
bothering about the internals of the
assisting computer. What it does require
however is the courage to develop new
techniques for new machines.




An Application of a Micrncomputer as an Interactive Art Medium

George K.

Shortess

Department of Psychology

Lehigh

Bethlehem,

Abstract

This paper describes the way that
I am currently using a microcomputer as
the medium for expressing some art
ideas. Specifically, it allows me to
incorporate real time interaction be-
tween the art piece and the viewer, who
thus becomes part of the work.

Introduction

In one sense, all traditional art
forms can be considered to involve
interactive or participatory activity.
Certainly in the visual arts, the
viewer typically moves around in the
gallery space to gain different per-
ceptions of the painting or sculpture.
In addition, the active scanning proc-
esses of the eyes change the particular
focal areas and the sequences of eye
fixations. In both ways, the viewer is
interacting with the piece and, while
not changing the physical properties of
the art object, he/she is changing the
nature of the stimulation reaching
his/her eyes.

A higher order of participation
would be achieved if the viewer could
actually manipulate the piece and change
it to suit her/his needs, desires or
whims. The_ artist, of course, has
always had this experience in the design
and execution phases of the work. In
recent history, getting viewers more
fully involved began in the late 1950's
and 1960's with the advent of Happenings
and various forms of Conceptual Art.1
However, with the availability of power-
ful microcomputers, and their ability
to operate in real time, the possibil-
ities of participatory art pieces ex-
panded tremendously. While a number of
artists are using microcomputers in
interactive ways, I will describe only
my own applications.

82CH1831-7/82/0000/0075$00.75 © 1982 IEEE

University

18015

An Application

The art ideas behind my work have
been based on the functioning nervous
system. That is, I have selected proper-
ties of the nervous system and attempted
to give them artistic form, much as a
landscape painter selects features of the
physical environment and gives them
artistic form. Among the various features
of the nervous system that I have used are
(1) the structure of the neural network,
(2) the electrical impulse activity of
nerve cells and (3) the interactive qual-
ity of the nervous system. These features
have been incorporated into various con-
structed sculptural pieces. They are net-
works made from 1-1/2 inch square aluminum
tubing-which simulate, in a formal way,
the structure of the nervous system. These
structures vary in size from 2 to 20 feet
in length and width, and up to 7 feet in
height. Small aluminum boxes, varying in
size from 2-3 inches, have been attached
at the points where the pieces of square
tubing join together. Covering these
boxes are photographs of images, which
were digitized using a television- camera
input to an Apple II Plus microcomputer,
equipped with a Digisector card (Figure 1).

Figure 1. A drawing of a section of one
of the sculptural pieces, showing the
network of tubing with the small boxes
at the junctions (not to scale).
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Figure 2. Schematic of Interactive Art Work

In addition, these pieces emit sounds,
simulating nerve cell impulses. A simpli-
fied schematic is shown in Figure 2. Em-
bedded within the aluminum structures are
(1) speakers which emit the sounds and
(2) photocells which sense the 1ight from
the environment. The microcomputer (an
Apple II Plus) is programmed in BASIC to
read the resistances of the photocells
and to generate the electrical signals
which are amplified and fed into the
speakers. In its "resting state,” with
no viewers around, the computer, with the
program generates a low level of sound
activity in the speakers and continually
samples the resistance values of the
photocelis.

As viewers move to the nearby space,
they change the light level reaching the
photocells. This causes the micro-
computer system to change the particular
group of speakers that is activated and
to increase the sound activity of these
speakers. In this way the viewer can,
in a very natural manner, change the
physical qualities of the piece and
select the kinds of stimuli to be ex-
perienced.

The basic program design is rela-
tively straightforward. It consists of
several loops and sub-routines. There 1is
a2 main loop through which the computer
"idles" when there are no viewers in the
area. It continually reads the resist-
ances of the photocells and generates a
low level of sound in several speakers.

Membrane +70+
Potential

o

R i

When there is a change in the light level
falling on a photocell, the program
senses this and shifts to another loop,
depending upon the particular photocell
activated. This loop causes increases in
the sound activity in the speakers near
the photocell that had "experienced" a
change in light level. Then, depending
upon further changes in the light to that
photocell or to others, the sound patterns
change in terms of both how and which
speakers are activated.

The sound simulates a form of elec-
trical activity generated by nerve cells.
They are called nerve impulses (Figure 3)
and consist of a sequence of brief {several
milliseconds) changes in the electrical
potential occurring across the membrane of
the nerve cell. The amplitude (voltage)
of each impulse is the same (approximately
100 millivolts). With an appropriate
sensor inserted in an active nervous
system, these voltage changes can be de-
tected, amplified and played through a
speaker. The result is a sequence of
click-Tike sounds with each click (im-
pulse) of the same loudness. (For more
details of these neural processes, see
Carlson.?2)

The sounds generated by the computer
and amplified for the speakers in my art
work are similar. The rate of "impulse"
generation changes in response to changes
in the viewer's behavior, much as most
nervous systems do. In this way, I have
created computer controlled art works

0 1 2 3

0o
ey

5 6 7

Time in Seconds

Figure 3. An example of impulse patterns. Each vertical line
represents one impulse.




which incorporate certain features of the
nervous system. There is a fixed struc-
ture which responds interacively with a
viewer by changing its pattern of simu-
lated nerve impulses.

A video tape of a viewer inter-
acting with one piece, "Network," will be
presented and discussed.
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AN ARTIST'S COMPUTER SYSTEM

Walter Wright

Digital Image Corporation

ABSTRACT

Digital Image Corporation makes computer

generated 35mm slides for audio visual producers
and graphic artists, We aspire to be better and

less expensive than the competition. Therefore,
we use relatively inexpensive hardware and we

write owr own software. I will list briefly our

hardware and then describe in more detail our
graphics software.

HARDWARE

Our hardware includes a Cromemco 22D
microprocessor, video terminal, dual Si¢
floppy disks, 64 K bytes of random access
memory, the SDI graphics controller and two
48 K image buffers or pages. As inputs we
use & Houston Instruments Hipad digitizer
and a Via Video digitizer, This latter device
congists of & b and w video camera and an
interface to digitize and store the camera
image in elther image buffer. As outputs we
have an Aydin Controls RGB color monitor and
a Matrix Instruments Camera system modified
to accept a pin registered Nikon 35mm camera
body. The Matrix camera takes the seperated

Matrrx
)| e
Camera.

§‘§[ aN

baw
yealeo
Xy Coovetimarls

Figure 1
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red, green and blue video images from the
computer, displays them, in turn, on its own
high resolution b and w monitor and exposes
each image through the appropriate color filter
onto a single frame of 35mm film, See Figure 1.

Worth approximately $35,000 this system
isn't for the average hobbiest but it is within
the grasp of enterprising individuals like
ourselves,

SOFTWARE

Our software is designed to make commercial
slides., This means word copy slides, Slides
for speaker support, to augment training manuals,
title slides, tables of numbers and so on, We
make charts, graphs and special effects slides.
Posterization, digitizing a video image and
adding color with the computer, is a hot item,

Beginning at the beginning, owr software
includes image making programs such as FONT, a
program which produces word copy or text in a
variety of typefaces or fonts, Next, image
manipulating or "cut and paste" programs such as
MENU, Bitpad driven, this is owr most powerful
program, the heart of the system, More about
MENU later. Finally SHOOT retrieves completed
images and outputs them to the camera, See
Figure 2.

images .
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Figure 3
MENU Justified, adjusted, equivalenced, assigned and

At the creative center of our system sits
MENU, The user communicates with MENU using
the bitpad and occassionally the keyboard.
MENU communicates with the user on the video
terminal screen. Looking at the bitpad, the
upper portion is an array of 21 x 7 function
keys. These keys are activated by depressing
the bitpad stylus within the key boundary.

See Figure 3,

The top line of keys control besic
program operations such as input/output,
page selection, resolution, macros and
program termination. Near the center of the
array is & number pad.  On the bottom left
of this number pad is a key labelled BOX;
keys to the left of the number pad control
boxes. Boxes are defined using the ASSIGN,
FIND and BOX=BOX keys. Boxes are moved and
aligned using the SHIFT, JUSTIFY, ADJUST and
directional arrow keys. The YES key confirms
possibly dangerous operations., Various
operations can be applied to boxes, groups of
boxes or images with the AVERAGE, FUNCTION,
COPY, KEY and FU2ZZ keys. These operations can
be applied in ADD, SUBTRACT, AND, OR, XOR or
REPLACE function modes. On the bottom right
of the number pad is a key labelled COIOR;
keys to the right of the number pad control
color. Colors are set using the SET RGB,
RANDOM COLOR, SHADE and COLOR=COLOR keys.
Color intensity and red, green and blue
components can be fine tuned using the I,
R, G and B keys, Color maps can be saved and
retrieved with the PUT MAP and GET MAP keys.

In summary, the user controls 16 boxes
per page and 4096 colors. He/She can recall
any number of images from disk, Function modes
include add, subtract, and, or, xor, replace.
These modes can be invoked for any disk load,
camera load (digitizing an image from the
video camera), average, copy, key and fuzz,
These operations apply to image loads and to
boxes., Individual boxes or groups of boxes
can be filled, inverted, cleared, shifted,
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found, Colors are set, shaded, raised or
lowered in intensity, seperated into red, green
and blues components, equivalenced and
transliterated. Color codes ars used by the
function modes to produce effects such as smooth-
ing, edge detection, surface textures, stc,

MENU allows the user to define macros which
become higher-level operations and can be used
to define grids, shading, animation effects etc,

ART

Artistic expression is difficult to achieve
in any medium, Computer art generally emphasigzes
technique over expression, Artifice is not art.
Artistic expression is akin to personal express-
ion, an artist develops his/her own style.
Technique is important as a starting point and
as a foundation to build upon. MENU demands
this technical skill and, in turn, offers the
potentional for developing individual style.

To illustrate I will describe one aspect of my
own work in more detail.

FEEDBACK

Abstract expressionism is my favorite
school of painting, The subject or content is
spiritual, the soul of the artist. It recogn-
izes feelings and emotions; defines structure in
terms of balance, pattern, rhythm, harmony,
contrast, counterpoint, etc; and defines beauty
as ;ppropriatenou of form (content plut structe.
ure),

Video feedback has interested many artists
in recent years. It produces detailed and
dynamic images which symbolize, for many,
cybernetics, the computer revolution and so on,
Its basic structure is recursive, an important
prograrming technique of some philosphical inter-
est. A feedback image is produced through a
combination of controlled and random elements,
Again, for many, this symbolizes the electronic
age.




My feedback images are created by pointing
the video camera at its own monitor. Noise and
sources of light reflected on the monitor screen
are repeated within the loop, like a hall of
mirrors, This convential feedback loop is
modified by our slow column by column scanning
process. The image is controlled by varying
camera position, lens settings and monitor bright-
ness and contrast, After considerable tinkering
acceptable images are selected and stored.

1 use a panoply of techniques to develop
these bagic b & w images. Fwzzing with the
replace function smooths the image. Fuzzing with
the subtract or xor function produces an edge
detected outline, This outline can be averaged

back into the original image in various modes.
Fuzzing with the add function then loading the
original image with the and function produces
These can be used as mattes for
Sections of the image can be assign~

cutouts.
Oolhging .

od to boxes and these boxes keyed over the full
frame to produce foreground or background
patterns., Colors can be transliterated. I
clean up a complex image by setting colors
1«3t00, 5«7toh, 9«11 to8 and 13 =15
to 12, Selecting colors can be approached in
many ways, Often, I randomly set colors 0 and
15, then shade the map to produce an overall
tone, and finally randomly select only the odd
or even colors. The combined results of these
and many more related strategies are illustrated
in the photos following this article,

For me, using MENU in this manner parallels
the process of painting, I am directed by my
intuition., I respond to the image as it develops
on the color monitor. I can store an imsge I'm
having trouble with and return to it later, 1
can make false starts, backup and start again,

I can develop several images simultaneously.
The computer is my studio,
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VIDEOTEXT AS PERSONAL EXPRESSION

WENDY RICHMOND AND SUSAN RUBIN

ABSTRACT

"Videotext as Personal Expression”
is a description of two artists’
participation in the creation of a
videotext electronic art gallery.
This project was funded by the
National Endowment for the Arts
through a grant awarded to the
Alternate Media Center at New York
University. The first section is a
description of the graphic workings
of the videotext system. The second
saection is a discussion of Susan
Rubin®s interactive electronic
calendar, created for the project.
It encompasses an evaluation of the
database for the calendar, as well
as her methodology of working with
the medium. The third section
describes Wendy Richmond®s project,
an exploration which emphasizes the
search for an appropriate visual
language and imagery for the
videotext medium. The conclusion
addresses the definition of an
electronic art gallery in the home.

Videotext is the generic name for
the transmission of computerized
information and services to the home
television screen. It is delivered
via cable or telephone line, and is
accessed by the home viewer using a
hand—held decoder or computer
keyboard. The videotext displays are
static pictures, or "pages" which
are called up individually by viewer
request. These pages can be either
text or graphic information, or
both. Videotext is interactive, in
that the viewer selects the pages
she wishes to see.

The Telidon videotext system, which
was selected because of its enhanced
graphic capabilities, provides a
pallette of six colors—-red, blue,
vellow, green, cyan, and purple-—as
well as six shades of gray from
black to white.

82CH1831-7/82/0000/0087$00.75 © 1982 IEEE
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Its drawing system is based on
Ficture Drawing Instructions, or
FDI’s, which enable the user to
create points, lines, arcs, circles,
rectangles, and polygons using a
compact set of commands. These
shapes can be drawn in any specific
location using a keyboard, jay
stick, or electronic stylus to
position the cursor.

Telidon offers textures in the form
of grids, diagonal lines, dot
matrices, and stripes, all in
changeable widths. These textuwres
can be used to draw and fill, and
can be overlayed to create
variations in pattern and tonal
value.

Each page is created by issuing a
sequence of commands. When the
image is displayed, it appears to
draw itself in sequence for the
viewer. This step-by-step picture
creation offers the potential for
limited movement and animation.

in addition, the Telidon system
enables the artist to edit her
pages, providing commands to change
colors, move forms, rotate and scale
shapes, erase specific areas, and
combine part of one page onto
another.

BGenerally, videotext services
consist of news, financial data,
sports scores, community activities,
weather reports, travel information,
and the like. in the fall of 1981,
Martin Nisenholtz aof the Alternate
Media Center at New York University
received a grant from the National
Endowment for the Arts to create an
electonic art gallery using Telidon.
The grant was awarded to artists
selected for their abilities to
explore the graphic potential of the
medium, and to extend its
application as an art form.




This paper is a collaboration
written by two of the participating
artists, Susan Rubin and Wendy
Richmond. They come to the project
with complementary yet different
backgrounds and attitudes. Ms.
Rubin is an animator with a
persistent interest in calendars.
Her approach lies in translating her
interest into a new medium. Ms.
Richmond is a graphic designer whose
work focuses on exploring the visual
language with which a given medium
communicates. Her primary objective
in this project is to discover the
appropriate imagery to be viewed on
this medium, and the appropriate
style in which to portray the chosen
imagery. For Ms. Rubin, videotext
is yet another graphic tool for
creating personal imagery. For Ms.
Richmond, it is an extension of her
research and evaluations of the uses
of media.

INTERACTIVE 1983 CALENDAR
Susan Rubin

I was invited to participate in the
project based on my work as an
animator. The calendar has been a
theme in my work for the past six
years. Four of my films are
animated months. I also designed a
calendar for 1982 using xerox,
collage, and rubber stamping. So
for the Telidon project, 1 proposed
to create an electronic interactive
calendar, with an emphasis on its
graphics. My approach was to extend
my interest in calendars to a new
graphic medium, and to find the
appropriate structure, imagery, and
vocabulary within that medium.

The database for the calendar is the
twelve months, each created in a
different graphic style using the
elements of the system. For each
month, there is a selection of four
additional pages, each keeping
within the graphic theme and "look"
of the month of which it is part.
There is a holiday page, depicting
reference to a holiday celebrated
during the month. There is a recipe
page, offering a different recipe
for each month. The order of the
recipes throughout the year follow
the order of a meal, from appetizer
through dessert. There is a
quotation page, which presents
quotes from poetry, prose, and
songs. And there is a page for each
month which is one installment of a
twelve—part story which progresses
through the year.
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The calendar is designed to offer
the user an initial choice of any of
the twelve months. Once the
selected month has been displayed,
the viewer is asked to move on to
the next menu. At this point, she
can select either a new month, or
a choice of holiday, recipe,
quotation, or story. If she
selects, for example, the recipe
page, the recipe for the month will
be displayed. At this stage, she is
given the option to view other
recipes, or to go back to the
month’s menu and select either its
holiday, quotation, or story. She
is also offered the opportunity to

- return back to the cover menu, from

which she can select another month.
(See Figure 1)

The interactivity of the calendar in
this medium allows the viewer to
travel multi-dimensionally through
time and content, month by month,
through the holidays, recipes, and
quatations one by one, and through
the story chapter by chapter. She
can also elect to view each full
month, with all of its options, one
at a time. As previously explained,
all options for each month are
graphically similar, whereas moving
"horizontally"” through the months,
holidays, recipes, quotations, and
story results in twelve different
graphic styles.

It took several weeks for me to
become accustomed to the system and
to produce images that I found
acceptable. Initially, 1 attempted
to sketch certain ideas on paper and
translate them onto the monitor.
The results were frustrating. 1
found it necessary to spend several
sessions playing loosely with the
system in order to develop a feel
for the kinds of images I was
looking for. Eventually, my
sketching as well as my final pages
were created soley on the system.

As I became more familiar with
creating these pictures, I developed
certain preferences and styles of
working. For instance, when the
program is booted, the screen is
black. At first, I drew my shapesg
against the black background. It
didn’t occur to me for several
sessions that I could change the
color and texture of the background.
In the final calendar, a good number
of my pages were drawn on
other—-than-black backgrounds.




I also found that I preferred
warking in certain modes. I
discovered the polygon mode much
more useful to me. And I began to
know which fill patterns I wanted.

1 developed the habit of storing
successive stages of pages as 1 was
creating them, and of saving as much
as I could, even if I was not
intending to use it. As it turned
out, a number of early sketches were
eventually developed and
incorporated into the final calendar.

Egssentially, I found the system a
satisfactory vehicle for my personal
creative expression. As the
calendar evolved, I discovered a
language with which to produce
imagery which was aesthet1ca11y
gratifying and exciting.

CULTURAL PATTERNS
Wendy Richmond

As a graphic designer, my approach
to creating electronic videotext art
consisted of an exploration of the
medium itself. What are its
limitations? What are its
advantages? How will the audience
view the images? What is the
appropriate content for this medium,
and what is the appropriate style in
which to display this content?

The limitations include extremely
low resolution, limited choice of
colors, small screen size, and slow
display time. Each image is always
displayed as it has been
constructed: piece by piece. The
viewer must "request" each image.

‘It is impossible to represent highly
realistic, photographic images.

Conversely, each limitation can be a
strong advantage. The extremely low
resolution can be used to exhibit
rich, patterned textures -—-
electronic weavings, mosaics,
tapestries created with electron
beam threads. The colors are
emitted rather than reflective, and
are bright, strong, highly graphic.
As the image builds up, piece by
piece, its form unfolds. From
mysterious disconnected shapes, it
evolves, like a story, into a final,
fully constructed image. The viewer.
can regquest any image, and construct
her own sequence. And finally, the
images are not of our reality, but
characters of an electronic world.
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The key, then, is to analyze the
limitations/advantages, and use them
appropriately.

Information displayed on a CRT

screen is never literally static.
The picture is constantly being
redrawn by an electronic beam which
traverses the screen left to right,
top to bottom, completing an entire
frame every thirtieth of a second.
Although the picture may not
actually move, it is never totally
stable. One of the most important
requirements of textual typography
is that it be extremely stable,
allowing the reader to progress
smoothly through the text without
encountering visual breaks and
inconsistencies. Videotext type,
because of the medium’s extremely
low resolution, is made up of very
few pixels, thus causing the type to
be jagged and poorly articulated
(not unlike the type that you are
reading at this very moment, that of
a low resolution dot matrix printer).

Therefore, I decided that the frames
should rely primarily on graphics,
and text should be confined to
short, caption-like material. All
graphics themselves should be strong
and free from miniscule detail which
does not “read" in such low
resclution.

My electraonic imagery consists of
masks, figures, and tapestries of
primitive art. Each of the three
categories is intended to support
the physical nature of the videotext
medium in its own manner.

The masks of primitive art are
strong and highly graphic. They
have immediate emotional impact. In
translating these images to video, I
gtrove to retain this visual and
emotional impact, creating large,
looming “faces", full of
benevolence, anger, or fear, with an
imposing stature. As elements build
on the screen, the mask emerges, and
its emotions unfold. If floats in
space, with no landscape.

The figures that I chose to
translate into electronic form offer
a different kind of appropriateness
to the mediumi they are geometric,
with sharp edges and angles. They
are bright and cartoon-like, and
have a surprisingly (or not so
surprisingly) strong resemblance to
the figures of video games.




The tapestries have the most obvious
and concrete appropriateness to low
resolution computer graphics. They
can be translated almost literally
from their original form, where the
patterns and textures provided on
the Telidon system are extremely
similar to patterns and textures of
weaving.

The viewer has a choice of two paths
in which to travel through the
databage. She can view a sequence
of masks, figures, and tapestries
from a specific geographic origin,
such as Africa, Feru, or the Pacific
Northwest. 0Or, she can choose to
view a sequence of either masks,
figures, or tapestries from a
variety of geographical origins.

In conclusion, a note regarding the
illustrations. Because this is a
“paper", a hard copy, black and

white, primarily verbal description ﬁﬁ,?*gn;e? gzagztjggttﬁ&‘
of a soft copy, celor, primarily Cehsar o nEX :

graphic set of images, I am
compelled to allude to the irony of
displaying the artwork in this
paper. Therefore, I am including
additional images more appropriate

to the medium at hand, that is, hard
copy sketches.

CONCLUSION: WHAT IS AN ELECTRONIC
ART GALLERY?

An electronic art gallery is one
which is viewed at home, on a
television monitor. It can be
viewed at any time, at any speed, in
any sequence. It differs greatly
from the art gallery as we know it.
Think of the way in which you
normally view art. You allot a
Sunday afternoon, most likely only
several per year, outfit yoursel+f
accordingly, leave your home, and
drive or take the subway to the
chosen location. The purpose of
your trip is to view art. Anything
that happens during your visit that
does not involve looking at art is
secondary. Think of viewing an art
gallery at home, on your television
set. Are you eating dinner at the
same time? Doing the dishes?
Waiting for a phone call? Why not?

Susan Rubin
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COMPUTER PAINTING WITH RODIN
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ABSTRACT

This paper presents computer generated

artistic images produced by a system called

Rodin, which we designed and implemented. Rodin

utilizes the following techniques.

-~ Surface design with bicubic B-Splines

-- Elimination of hidden parts

-- Generation of shadows

-- Surface modulation

-~ Blending or concatenation'of surfaces

-- Texture generation

-- Recursive subdivision

-- Reflection, refraction, and transparency
simulation

-- 3D interpolation

SURFACE DESIGN

We model objects by using bicubic B-Spline
surfaces because these are well suited for
constructing smooth 3-D objects. A B-Spline
surface is defined by a set of "control points",
with each point represented by its x,y,z
coordinates. B-Splines are not interpolating
surfaces, i.e.; they do not pass exactly through
their defining control points.

The control points to produce a desired 3-D
surface can be estimated by a number of
different ad hoc methods. We illustrate the use
of the methods through several examples.

1. For the head in Picture 1 we used
20%40 = 800 control points. An initial set
of points was selected by hand drawing two
views of a face (front and profile). This
technique is similar to the data acquisition
procedure deseribed in [1]. We spent
several days manipulating manually the
control points to achieve a satisfactory
result. For an easier manipulation, we
implemented algorithms based on the
so-called "0slo algorithm" [2] for the local
non-uniform introduction of new control
points. This provides a means for modifying
objects 1locally in the regions where the
objects are richer in details.

82CH1831-7/82/0000/0095$00.75 © 1982 IEEE
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2. For the dinosaur in Picture 2, we

started
with a wood skeleton and and measured by
hand coordinates of points along the spinal
column and various cross-sections
("slices"). 1Initial estimates for control
points were computed- by positioning the
slices appropriately with respect to  the
spine. This spine/slices combination has
the advantage of being rapidly adaptable for
an animation sequence: this only requires
changing the spinal column position and the
orientation of slices.

3. The control points of a surface can also be
generated algorithmically. For example, the
control points for the mountains of Picture

1 were generated via fractal curve
algorithms [3]. The control points for the
lake of  Picture 3  were defined by
superposing several waves generated
algorithmically.

Improving the methodology of data

acquisition for complex scenes is of fundamental
importance to our overall work. Consider, for
example, the construction of a pseudo-realistic
movie, and think of how many different simulated
objects and actors are needed to keep an
audience from being bored after a few minutes.

QOBJECT VIEWING
Depth Buffering

Rodin calculates visible surfaces and

shadows by wusing algorithms based on depth
buffering [4] which are similar to those
described in [5]. These algorithms were chosen

for ease of programming.

Visibility calculations are performed as
follows. We step along the u,v parameters which
define the surface in equal increments. and
generate the corresponding points P(x,y,z) on
the surface. Each point P is projected onto a
discretized screen” to determine a
corresponding pixel. The depth (i.e., the
distance VP, where V is the viewpoint) is




computed and compared to the depth stored in a
Z-Buffer for the appropriate pixel. 1f P's
depth is smaller than that in the Z-Buffer, then
P's depth is stored in the buffer.

Shadow calculation is similar to visibility
calculation. We use an S-Buffer in which we
store distances SP between the (point) 1light
source S and surface points P. The S-Buffer
corresponds to an Mauxiliary screen”
approximately orthogonal to the "average" light
direction. The Z-Buffer and the S-Buffer are
computed in a single u,v scan of the surface.

To produce a display with shadows we
proceed as follows. We traverse the surface
again. For each point P we determine visibility
by comparing the depth VP with the appropriate
entry in the Z-Buffer. If P is visible, we
project 1t onto the Mauxiliary screen"™ and find
if P is illuminated (or if it is obscured by
another point) by comparing the distance SP with
the contents of the S-Buffer. If P is not
illuminated then it belongs to a shadow and is
painted black. If P is illuminated then we
compute its corresponding intensity by using
Lambert's law or different formulas as described
in [4], and display it. Surface normals are
computed by finding the partial derivatives with
respect to u and v by using de Boor's formulas
[6], and then evaluating the cross product of
these derivatives. We have encountered the two
following problems with the above method:

1. When two neighboring points P and P' on the
surface project onto the same S-Buffer
"pixel"™, the point which is farthest from S
will be assigned to the shadow, and the
object will appear with some rather strange
"self shadows". This problem is easy to

solve by introducing a tolerance in the
distance comparisons. Specifically, if the
distances SP and SP' are approximately
equal, both P and P' are considered
illuminated.

2. The surface often is "under-sampled™, i.e.,
not enough points on the surface are
generated to fill completely and correctly
the Z- and S-buffers. The effects of
under-sampling 'are quite visible in the
shadow cast by one object upon another. For
example, a shadow point P may be found by
the algorithm to be illuminated simply
because a portion of surface which obscures
P was under-sampled and therefore was not
taken into consideration in the calculation
of the S-buffer, Under sampling effects can
be avoided by using a very large number of
points, which is an expensive solution, or
by interpolation.

Interpolation method

To reduce computing time we use the
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following interpolation technique. First we
compute the points of the surface corresponding
to two successive discrete values of v and to
all the discrete values of u. After projection
on the screen, two sequences of 2-D points are
thus obtained. Then we interpolate each polygon
of four points as shown in Figure 1.

Figure 1

To each corner of the 2-D polygon being
considered, we associate a set of values to be
interpolated simultaneously: (a) brightness
value, (b) the contents of the Z-Buffer, (c) the
values of the two indices of the S-Buffer,
(d) the contents of the S-buffer itself, (e) the
depth, and (f) the S-depth, i.e, the distance
between the point and the light source. During
the interpolation the shadow and the hidden
parts are evaluated for each point. Note that a
Gouraud shading [7] is included automatically.

Brightness

The brightness of a point can be computed
by using Lambert's law or several other formulas
[4]. Highlight effects are used in Picture 10
to enhance the rocks in the foreground. Fog
effects are used in Picture 7; fog 1is created
by adding a diffuse 1light whose intensity is
proportional to the distance to the eye. Other
effects can be created by modulating the light
according to different parameters (e.g., the
altitude). All these effects seek realism, In
addition, certain promising effects can Dbe
produced by random modulation of the light
around an average computed value.

SURFACE MANIPULATION
Local Surface Modulation

We modulate a surface by perturbing its
defining control points. First the Oslo
algorithm [2] is used to add the desired number
of control points to a selected region of the
surface. Then the control points are moved
according to a specific rule. For example, in
Picture 4 control-point perturbations were
sinusoidal, with variable frequencies.

A local = modulation is obtained by
controlling the displacement of a subset of a




surface's defining points. When the point
perturbation in a region has zero amplitude, the
initial surface appears without deformation in a
subregion because of the 1local properties of
B-Spline surfaces. Local modulation was used,
for example, to construct the head of a faun in
Picture 5.

Concatenation of B-Spline Surfaces

Blending two or more B-Spline surfaces
together 1is required to obtain more complex
shapes such as a body with limbs or a tree with
branches.

We describe our concatenation process for
the " specific example of the dinosaur shown in
Picture 6. First, subdivision algorithms [2,8]
are used to cut the surface into two B-spline
surfaces, with two sets of corresponding control
points. Then the control points of the foreleg
are juxtaposed with those of the first part, and
the corresponding surface 1is displayed as a
whole (Picture 6). The process continues by
cutting the rest of the body, juxtaposing the
new leg and displaying it as shown in Picture 6.
Finally the 1last part, the tail, is displayed
alone.

The trees of Picture 7 are made in a
similar way, the sole difference being in this
case that the process of cutting and attaching a
branch 1is recursive. The tree is made with two
B-spline surfaces: a trunk and a branch, and
the branch 1is automatically translated before
each concatenation.

3-D Interpolation

By equalizing the number of control points
in two B-Spline surfaces, it 1is possible to
combine the surfaces through interpolation in
various ways. The combination can be local by
controlling spatially the coefficients of the
interpolation. The head emerging from a
mountain of Picture 8 was constructed in this
way, and can be imagined as a part of an
animated sequence .

Iexture

In Rodin, we are using the ideas of [9].
The texture is produced by modifying a point in
the direction of its surface normal. We use
different kinds of texture, either by giving a
pattern (e.g., the ground in Picture 9), or by
using random functions (e.g., the
mountains,ground, trees in Pictures 7, 2, and

1.

Many different textures can be obtained by
employing stochastic functions or by locally
controlling their variations. The texture can
be altered in coordination with different
parameters of the Picture, the characteristics
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of the objects, ete...

For our artistic goals, this kind of
stochastic method is very important. It gives
some life to the uniformly metallic aspect of
the B-spline surfaces and thus we are pursuing
the stochastic approach in all the imaginable
directions trying to produce hair and skin
textures, and stochastic movements [10].

Recursive Subdivision

Using the ideas in [11], we combine
Z-Buffer techniques and recursive subdivision to
get another way of displaying a  B-SPLINE
surface. The subdivision is obtained by cutting
the given surface into four B-Spline surfaces
using [2] and [8]. It is then possible to
modify the control points of the subsurfaces in
a way analogous to that deseribed in [3].
According to the number of recursions, the
amplitude, and the direction of each deformation
we obtain different perturbed surfaces as shown
in Picture 10.

Reflection and refraction

We simulate reflection and refraction of
light on B-Spline surfaces by using the
raytracing techniques described in [12]. We
traverse the reflecting or refracting surface,
and for each point on it we determine the ray
going from that point to the eye. Then the
brightness of the point is determined by optical

geometry: light can come from a ray symmetric
with respect to the normal in case of
reflection, or from a ray determined by the

index of refraction in case of refraction.

To find the intensity along these rays, we
intersect them with the other objects of the
scene. Then the same process is repeated
recursively at each point of intersection. We
refer the reader to [12] for a full description
of the algorithm, In Pictures 11 and 12 we
stopped the process at the first intersection
(point A in Figure 2a) in order to produce the
reflection of one opaque object -- the body --
in the lake-mirror.

M

Figure 2a

Reflection



In Picture 1 we stopped the process at the
second intersection, i.e, point B in Figure 2b,
to compute a refraction through thick glass.
(The two sides were obtained by a small
translation of an initial vase.) The
illumination of A (respectively B) is then
computed in the usual way and used as part of
the brightness of the point M of the mirror.
This method uses certain approximations: for
example the influence of the reflected light
source, an important factor, is neglected.

.f
M
A
B
Figure 2b
Refraction
In any case, we must compute the

intersection of a ray with a B-Spline surface.
We use a recursive subdivision algorithm [2] and
[8]. We cut the B-spline into four subsurfaces,
and determine if the ray can intersect each of
the subsurfaces.
with a subsurface is detected, we subdivide
again, and so on. Intersection tests are made
by examining the largest cube that encloses the
control points of a subsurface. Since B-Splines
have the convex hull property, a ray which does
not intersect an enclosing cube cannot intersect
the surface itself.

Texture can be added to the mirror without
difficulties. Note, however, that some problems
involving the reflection of a textured object
are still not solved.

Iransparency

By using a ray tracing procedure it is
possible to combine the intensities of different
points on the same ray to compute transparency.
When there are no reflections or refractions we
compute transparency by simple depth buffering
techniques using multiple Z-buffers as in [13].

CONCLUSION

Rodin was implemented in Fortran on a VAX
11/780 under VMS at the University of Rochester.
The system extends to 3-D scenes many of the
ideas used in our earlier work [14], and
exploits the specific capabilities of 3-D
computer graphics.

In order to address the artistic questions

If a potential intersection
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that constitute our fundamental concern, we must
always use the state of the art in computer
graphics; this prevents Rodin from ever being a
closed system.

The choice of B-Spline surfaces reflects
our own preference for smooth surfaces, even if
we try to perturb them most of the time.
Obviously the choice of tools is a personal
affair and is not, and does not have to be the
same for all artists.

ACKNOWLEDGMENTS *
We are grateful to the Production
Automation Project of the University of

Rochester for facilitating our artistic research
by hosting us during 1981-1982. We would
especially like to thank Dr. Herbert Voelcker,
Professor and Director of the P.A.P., and
Dr. Aristides Requicha, Associate Director, for
their kind efforts in our behalf.

REFERENCES

Remark: The references given here are a
very samll part of all the literature existing
about B-Spline and other topics considered in
this paper., We list only those papers which are
directly relevant to our system. For a very
interesting, complete, but mathematical
Fre?entation of B-Splines, we add the reference

151,

1. F. I. Parke, "Computer generated animation
of faces", in H. Freeman, Ed., Interactive

Computer Graphics. New York: IEEE
Computer Society, 1980, pp. 357-363.

2. E, Cohen, T. Lyche, and Richard Riesenfeld,
"Discrete b-splines and subdivision
techniques in computer-aided geometric
design and computer graphics", Computer

Graphics and , no. 14,
pp. 87-111, 1980,

3. L. C. Carpenter, "Rendering of fractal
curves and surfaces", ACM
Graphics, vol. 14, no. 3, p. 109. July
1980,

4, W. M. Newman and R. F. Sproull, Principles

of Interactive Computer Graphics. New
York: McGraw-Hill Book Co., 2nd ed., 1979.

5. L. Williams, "casting curved shadows on
curved surfaces", ACM Computer
vol. 12, no. 3, pp. 270-2T4, August 1978.

6. C. de Boor, "On
B-Splines", J. Approximation
vol. 6, no, 1, pp. 50-62, July 1972.

with

calculating



9.

11.

H. Gouraud, "Continuous‘shading of curved
surfaces™, IEEE Transactions on Computers,
vol. C-20, no. 6, pp. 623-628, June 1971.

W. Boehm, "Inserting new knots into
B-Spline curves", Computer-Aided Deaizn,
vol. 12, no. 4, pp. 199-201, July 1980,

J. F. Blinn, "Simulation of wrinkled

surfaces", ACM Computer Graphics, vol. 12,
no. 3, pp. 286-292, August 1978.

A. Fournier, D. Fussell, and L. Carpenter,
nComputer rendering of stochastic models",
Compunications of the ACM, vol. 25, no. 6,
pp. 371-384, June 1982, :

E. Catmull, "A subdivision algorithm for
computer display of curved surfaces",
Tech. Report No. UTEC-CSC-T4-133,
University of Utah, December 1974,

12.

15.

T. Whitted, "An improved illumination model

for shaded display", of the
Ag%, vol. 23, no. 6, pp. 343-349, June
1980,

P. R. Atherton, "A method of interactive
visualisation of ' CAD surface models on a
color video display", ACM Gomputer
Graphics, vol., 15, no. 3, pp. 279-287,
August 1981,

H. Huitric and M, Nahas,"Computer art
experiments of the last ten years",
Proceedings of IEEE Symposium on Small
Computers in the Arts, IEEE catalog
no. 81CH1721-0, pp. 87-89, November 1981,

practical guide to

C. de Boor, "A

Applied
New York:

b-splines",

Mathepatical Sclence,
vol. 27. Springer-Verlag, 1978.

9




100



101




102



103







Computer Graphics and Woven Fabric Design

Laura Giannitrapani

Personal Computer Arts Group

Box 1954,

ABSTRACT

The nature of the weaving process
lends itself to using cemputer graphics in
the design stages. As a designer and hand
weaver, I have used computer graphics in
generating decorative and graphic designs.
I intend to use the computer as a design
tool in weaving. In this paper I will
describe ways that small computers can
assist the weaver,.

Computers are used as design aids in
a variety of fields both functional and
aesthetic. One area that lends itself
particularly well to computer assistance
is woven fabric design. Both commercially
mass produced fabrics and individually
hand woven fabrics can be enhanced by the
use of the computer in the design stage.

The structure of woven fabric is
composed of two sets of interlocking
threads called the warp and weft. The warp
extends the entire length of a piece of
fabric and is held under tension on a loom
for the duration of the weaving process.
Alternating warp threads are lifted and
depressed by harnesses and treadles
creating a shed for a weft thread wound on
a shuttle to pass through. This process
ranges in complexity from the simple
methods (American Indian backstrap loom)
to the most complex (Dobby and Jacquard
looms).

The design of woven fabrics involves
tdetermining which warp threads to raise
for each shed. The treadle sequence for a
plain (or tabby) weave requires lifting
every other warp thread for each shed.
More complicated designs are achieved by
varying the treadle sequence. A point by
point graph is made of the design
illustrating which threads will appear on
the completed surface. The columns and
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rows are assigned numbers. Threading and
treadling sequences are generated from
them.

A computer can be programmed to
simulate patterns of warp sequences. The
treadling sequences can be entered in any
combination and the graphics monitor can
display the rendered patterns. The weaver
may experiment and perfect a pattern and
color combinations before she/he
undertakes the time consuming tasks of
threading a loom and weaving.

Granted, experimenting and planning
with the fiber itself reveals invaluable
information about how a fabric can and
will look, while the computer's rendering
is presently rather plastic. Nonetheless,
the computer can be used in the planning
stages when the designer establishes
desired constants such as texture, number
of colors, and complexity of pattern. Here
the computer is an invaluable aid in
experimenting with the other elements and
in finalizing a design. The plotter and
printer can then draw and list the
threading and treadling sequences.

More than accelerating the design
process, the computer can help to generate
designs. For example, a design sampler
could be generated by giving the computer
a threading sequence and the number of
harnesses. The computer would generate
every possible treadling sequence and
render the resulting patterns. The element
of color is always a variable which can be
controlled either by the designer or the
computer.

A unique approach to designing with
the computer would be to use mathematical
forumulae to make harmonic transitions in
designs. Given a formula, number of
harnesses, warp and weft threads, and
colors, the computer could generate an
entire plan for a piece of fabric without




pattern repetitions as is common in
conventional weaving. Naturally, the
.number of harnesses and treadles
contribute to the complexity of a design.

Microcomputers are limited in their
inability to render the unlimited variety
of colors available in yarn dyes. The
micro's relatively low screen resolution
also inhibits accurate rendition of fabric
texture. However, their low cost and
ability to generate and manipulate
patterns quickly and interactively makes
them both accessable to and desireable for
an independent handweaver. Software
packages that include some of the features
described above are currently available;
interested weavers need not worry about
having to program the computer themselves.
However, after establishing familiarity
with the computer, the designer may wish
to explore the many possibilities
available through programming.
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COMPUTERS AND CHOREOGRAPHY

Cathy M.

Stadler

The Spence School
22 East 91st Street

New York City,

ABSTRACT

I am a dancer and teacher of dance
who up to a year ago had no exposure to
computers. In this paper I will describe
where my year-old interest in using a
computer to choreograph and replay dances
has taken me.

My first encounter with computers was
seeing a child's exhibit called Graphics
Theatre running on an Atari 800 micro-
computer. The program was designed to
show the animation capacity of a small
computer and how it could be controlled
interactively. It enabled a child to
manipulate the color, path and speed of
three different objects, a rocket, a tree
and a man. As a dancer/choreographer, 1
was immediately captivated by the man who
appeared to be dancing. I didn't care
about changing his color or speed, I
wanted to change how he moved. I
turned to the creator of the program and
asked, "How do you change his movements?
How many positions can he strike? How many
objects can interact on the screen
simultaneously?"

While my friend answered my
questions, my mind raced on. I considered
how difficult it was to express movement
ideas with dance notation systems like
Labanotation. While Labanotation and
other dance notation systems provide the
positional information of a movement, they
don't show the stylistic qualities that
‘help a choreographer visualize the spatial
flow of the dance. However, here before my
eyes was a means to solve these problems.
The computer could help a dancer create,
preserve, and animate her movement ideas.

After this experience I was hooked. I
was convinced the computer could serve as
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a tool to help me create dance combi-
nations and view their spatial design, I
thought that if I could learn some
programming skills, I would be able to
direct an army of animated dancers with a
single keystroke., I even envisioned a
system that would enable me to see both
the positional relationships and the
stylistic qualities of each movement. Or
so I thought....I had lots of dreams.

I plunged in and began to learn Basic
and Logo on a friend's Apple II computer.
I experimented with a number of animation
packages trying to create figures that
could do individual dance steps and
combinations. In many instances I never
moved beyond creating the figure because
the system couldn't accomodate the size
or shape I wanted. When I did manage to
create the desired image it took forever
because I had to key in seven discrete
body positions to compose the one movement
phrase I wanted! It took an hour to create
a figure leaping. After spending days
designing the figure, compiling the paths,
and generating the actors, I discovered
that the movement could only follow a
horizontal or diagonal path. And even
worse, it was impossible to show a figure
jumping or turning.

Discouraged by my own inability to
program and frustrated by the limitations
of animation packages, I turned to
research. What I discovered was that
together programmers and dancers at
universities here and in Canada were
grappling with similar issues, albeit on
larger computers. I
discovered computer dance programs that
used keyboard equivalents of Labanotation
to animate a figure. Some programs were
sophisticated enough to generate an image
that could articulate 21 body joints.
Using this system one could program leaps,
runs, and complex movements like
a forearm extending or shoulders rotating.
Other systems used goniometers, devices
which measure angles, and transmit that
movement information to the computer. The




computer could then produce a Labanotation
score or an animation directly from the
dancer's movement. Another system
reproduced a dance from video frames
grabbed at specific time intervals from a
video camera.

* (Labanotation is the most thorough
system for symbolically describing
movements. There are notations for
movements as small as a tiny hand
gesture.)

While most of these systems produced
an animated figure that moved in a
humanlike manner, there still remained the
major issues of body orientation and
notation. Many of the systems generated a
turning figure but one couldn't tell
whether the shape was turning clockwise or
counter clockwise. Nor was it clear
whether the image was moving forward or
backward.

None of the systems I investigated
could completely serve my needs. There
were limitations with each either in the
cost or the design., I didn't see myself
buying a goniometer any time soon and I
needed a system that could let me create a
dance that included turning movements.

So after months working on the
computer what had I achieved? I still
hadn't found an easy way to choreograph a
dance. What the research taught me was
that every system had its limitations. But
most importantly, the time I spent working
made me realize that the computer could
operate as a tool to serve my artistic
ends ony if I knew what I wanted. The
months of work forced me to take my dreams
and translate them into ideas that could
be adapted to the capabilities of a
computer I could afford.

A software package integrating the
following eight features would suit my
needs when choreographing a dance. While
I believe that such a package could be
built on a microcomputer, I also realize
now that the programming skills involved
would be far in excess of my own.

Draw Mode: For drawing a series of two
dimensional stick figures directly on the
screen. These figures would be composed of
six or seven lines to represent the
relative position of the arms, legs, head,
and torso as they exist in an individual
dance pose. A carrot shaped line could be
used for the head and when pointed either
left or right would allow me to see the
direction of the movement.

Save Screen: I would want to draw a
specific number of figures on one screen
to constitute one movement phrase. This
screen could be saved and recalled
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subsequently for viewing and editing as
needed.

Interpolation Function: When I draw a
dance phrase I use a shorthand notation.
of my own. I don't draw every discrete
body change. I draw a sequence of gross
positional stances (see Figure 1). The
interpolation function would encode the
relative limb and body positions of the
figures on the screen and fill in the
interval movements to create a humanlike
animated movement that would complete the
movement phrase.

Color Function: A means to use color to
determine the body direction, focus and
orientation. This would enable me to use a
two dimensional screen and still be able

‘to work with angular and turning move-

ments. For example, a movement phrase such
as a pirouette would be represented by
displaying the initial forward stance

in white, the side view of the leg lifted
in red, and the ending stance with back
faced upstage in green.

Repeat Function: A means to create
repetitive movements or positions on the
screen without having to draw them each
time.

Path Drawing: Once a movement phrase were
drawn, it would be essential to establish
its spatial and directional design. The
ability to draw a path along which the
movement would be executed would satisfy
this need.

Edit, Grab and Insert Functions: I would
need to be able to take a movement phrase
and either edit a segment of it or pick up
a segment and place it in another

part of a phrase. This would allow me to
easily resequence the movement phrases.

Animating Sequences: I would need a means
of specifying and sequencing the movement
phrases in order to create the full dance.
When this ordered sequence was recalled
from the disk, I would see the dance
performed.

If all of these features were
integrated in a single program, I could
draw a figure, create the steps,
experiment with their order and direction,
animate them, view the steps and their
spatial design, and finally hook them
all together to create a movement score.



This system would reflect my own
individual style of choreographying.
However, I feel that these are the basic
elements any dancer would need to create
and view a dance. Once given this, a
dancer could watch a movement score
without the choreographer being present.
The interpretation of the movements would
come later, after the dancer had learned
the work. If such a package were fully
designed and programmed, it would provide
a system that preserves movement ideas as
well as animating them on the screen for
others to learn from and adapt.
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DESIGNING A RECURSIVE FRAMEWORK FOR EVOLUTIVE POETRY

by Ned J. Davison

University of Utah, Salt Lake City

Abstract

The personal computer offers new solutions to
the sequential limitations imposed on creative
writers by traditional printed forms. Temporal
experiences can now be manipulated, re-ordered,
and juxtaposed in new and endlessly varied combi-
nations. This essay explores the literary impli-
cations of the new creative freedom and suggests
ways in which the computer may expand our literary
imagination in the future.

Since the first time a text was cut into
segments and the resulting pages broke the
sequential tyranny of the papyrus roll, writers
have searched for greater temporal freedoms.

Late nineteenth-century experiments with the
displacement of action and the spacial disposition
of words, phrases, and letters brought critical
incomprehension and cries of "degeneracy" and
"decadence.," The modern artist's sensibility was
no longer served by the orderly forms of the past.
His world view was indeed "dis~integrating," and
new technical needs arose. Mallarmé, Joyce, Dos
Passos, Jorge Luis Borges, Julio Cortazar, or a
William Burroughs, all inherited the marvellous
flexibility of the separate leaves of a book,
susceptible to instant leaps from middle to back
to beginning, but they were still obliged to
struggle against the confinement of the imprisoned
pages and the unalterable printed letters.

The personal computer offers new solutions,
freedoms, and perhaps even new forms. Here are
some musings on one of them.

I recall reading, I believe in Creative
Computing, of an Argentine poet who was working
on a program that would allow the user to make
literary decisions. Since then, notations of
narrative or filmic forms that invite the
spectator to choose the ending or simulate open-
ended dialogue have proliferated. Recent
experiments with adapting the video-disc to new
game~development are, in a way, a variant of the
same impulse to add new dimensions to our play and
aesthetic activities. 1In one way or another these
are all manifestations of the evolution of a
participatory art in which the artist and the
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spectator,
merged and

or the author and the reader, are

share the creative act. 1In a curious
sense this evolution, or quest of modern artists,
prefigures in aesthetic terms the emergence of
Alvin Toffler's economic ''prosumer," the social
archetype of the high-tech society. (The

parallel is not fortuitous, and further speculation
on the socio-psychological implications of the
relationship might be worthy of comsideration in
some future essay.)

At any rate, it is very possible that
recollection of the arrival of the computer in
the arts might arouse, in coming generations of
writers, a sense of appreciation analogous to
what others must have felt when first provided
with the freedom of separate manuscript leaves
bound together in easily managed pages.

If we limit ourselves to only letters, words,
and phrases—-leaving aside for the moment the
bewildering promise of graphics and sound--we can
quickly see that the almost instantaneous
variation of sequence that pages provide is
extended by the computer to the simplest element
of written language, the printed or displayed
alpha or numeric character. Passing from the
letter to the syllable, word, phrase, line, stanza,
or paragraph is a simple and natural progression
in the liberation of verbal art from the bonds of
fixed sequence.

Future literature that takes advantage of
this exceptional feature of the computer is very
difficult to envision with any clarity. It will
be the artist who will uncover the new forms,
though certain characteristics are already
discernable. One is the obvious realization that
all materials of composition, potential structures,
and forms, will be stored in a format that is
essentially latent and unfixed. Latency in art has
always existed, of course, but in a simpler way—-—
the book, dormant, waiting to be opened and the
action and characters put in motion; the film, on
the point of being projected; the record or tape,
ready to be played. Even the sonnet awaits a
reader to put its structure in motion, like a
mobile anticipating the touch of a finger or a
thrust of air to bring its planes and light to
life. All of these, in their way, share a latent
expressivity. But the electronic file holds
ready a sensory pattern of experiences, feelings,
and sensations that are uniquely unfixed and




mutable. The pathways that weave them together
offer ever-renewable roads and combinations.

Each presentation, or playing, or reading of the
electronic work may be made to be inevitably
individual, unique, and not repeatable. The
spiritual variety that we feel with each

reading of a traditional work is extended and
embellished with the variety and unpredictability
of the computer driven work. The creative manage-
ment of traditional ingredients, time, characters,
place--or physical, emotional and sensorial
environment—--is made more flexible and complex
with the power to "program' chance, to invite it in
and then put limits and borders on it. Random
occurence is given an opportunity to entwine
itself with the will of the author and to combat
his choices. - The popular idea of the poet/god,
the magus, takes on new meaning with a fictional
world of such structured chance, guided but
unpredictable even to its maker.

An example is in order. Let's take the
archetypal notion of a "trip." It could be a
voyage through space, that is to say, geographical,
or through our bodily perceptions (sensory). The
basic structure is the same in either case--a
matrix of meeting places like a Borgean network
of spacial and temporal junctures. The links are
varied in form and intensities. As in a railroad
network, some lead to dense nuclei out of which
spread new routes that terminate in "minor"
modules. The switchman is a "double," a multiple
personality. One part is the programmer/author
who creates the nuclei and modules--as a formal
act of structuring and composition--and who fills
those modules with life experiences, metaphors
and images. The other half of this "double" is,
naturally, the reader/spectator. Using a
controller, a keyboard, a stick, oral commands, or
other means, the "reader" chooses, along the
journey, a direction, a turn, or a destination.
Let's imagine, in order to make things more
concrete, a trip through Europe, by train.

The matrix, or cohesive framework, is a
stylized map, a blueprint, expressed in terms of
the cardinal points of the compass. Pushing the
stick forward sends us northward. The author may
have dropped us, at the beginning, in a predeter-
mined city (nucleus) or have left the locale to
chance, according to his creative instincts, or
we might have been given a choice. All possibil-
ities can be latent within the microEurope of the
program branches.

We leave from, say Paris, and the screen and
air fill with shapes, colors, and sounds
psychically correlative to the French-Belgian
countryside, (Pictures if you wish. I'd prefer
visual metaphors, abstractions.) Then there
appear, one after another, phrases, free images,
combined randomly out of a limited set of fixed
and carefully conceived lines that share a common
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emotional and thematic base.* When we reach a
nucleus/city, we elect to remain or not. We
choose a place or an atmosphere--a cafe, club,
museum, pension. With each choice, visual images
and sounds attend the decision, accompanied by a
flow of poetic lines appropriate to the module
chosen. They play on, unfolding, turning back on
themselves in continually varying repetitions
until we decide to move on, and we continue our
journey toward some new geographic or affective
module, Every so often, chance makes us take the
wrong train, and then we awaken surprised, in an
unexpected world. The profile of such a poetic
network might suggest, perhaps, something of the
angular and cosmic geometry of Borgean chance.

This outline is not entirely imaginary.
Computer-generated music and graphic arts are
commonplace and already part of the history of our
times. The verbal arts, however, are still
waiting in the wings. Early and generally
unsuccessful efforts to produce poetry generated
by computer led us somewhat astray and inclined us
to overlook the real possibilities. With the
arrival of the personal computer, writers now have
at their complete and exclusive discretion a tool
that combines, on one level, pen, brush, canvas
and tape, and on another much broader scale,
pages/book, screen/sound and the promise of their
varied and perpetual regeneration.

VERSE SET by Alan Davison

"the room is full of smoke":GOTO 23

""a policeman watks back and forth':G0TQ 23
"two drunks sieep in the corner'":60TO 23
"stale bread for lunch"-GOTo 23

"the smell of oil":60TO 2

"four dazs without a bath":60T0 23

"you loo around."-GO 0 23

na Freng gn s eans his nails":G0TO 23

a Soan lights a ¢ 8arette": 023
stomach grouls":GOT 23

"you have gas":G0T0

"thref hours til the next train":607T0 23

you took at your watch™:GOTO

"a lady enters with four kids"'GOTO 23

"the benches are full':6G0T0 23

try to sleeon":G0T0 2?

rearrange your ba ckoack":aOTo 23

sit down on the floor':60TQ_23

toudspeaker ratties’:G0TO 23

" 'T{ene usted ta hora?'":60T0 2

"the man next to you asks a question":fOTo 23

"close your eyes":G0TO 2

"you shrug and took away' :G0T0 23

" 'Tiene usted la hora?'":60T0 23

"a cigarette butt lands on the floor":G0TO 23

"you write in your journal':G0TO 23

"you think about home':60TO 23
been waiting two hours,'

"180 this is Furooe?!":60T0 25

':60TO 23
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* See my ''Verse Weaving . " in the July '82
issue of Creative Computing, pp. 166-172, as an
example of an affective module, and also the
sample verse-set and randomly generated stanzas at
the end of this essay.
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" GOTO 23

""'GOTO 23

uu, o 23
""'GOTO 23

"you look at your watch":60T0 23
time oasses"'GOTO 23

ntime passes':G0TO 23

"an ant crawls on your shoe':G0T0 23
1nd1fferent"-’0T0 23
"tired":60T0 23

"slowly":GOTO 23
'uncomfortablie":G0T0 23

"without think1ng"'GOT0 23

"self conscious":GOTO 23

nyou wait..."z60T0 23

the loudsneaker rattles":GOTO 23
"n tginnghanges :GOTO 23

?"::OTO 23

' TQuelle heure est=il?'":G0THn 23
an old man coughs"”:60T9) 23

a begqgar aooroaches':6070 23

"vou nretend not to_notice"”:GOTO 23
voices,...":60TN 23

"feverish'":60T0 23

"you yawn":G0T0 23

time passes
you sit down on the floor
heen waiting two hours,
stomach qrowts

a Spaniard lights a cigarette

the benches are full

stowly

you took at your watch

indifferent

you sit down on the floor

the room is full of smoke

the man next to you asks a question

the Loudspeaker rattles
voices...

indifferent

you wait...

stale bread for {unch
the loudspeaker ratttles
you think about home
vou look at your watch

been waiting two hours,

voices...
indifferent
you shrug and look away
you rearrange your bhackpack
you have qas
the room is fultl of smoke
three hours til the next train
you wait...
indifferent
the loudspeaker rattles

a cigarette butt tands on the floor

you took around.
the benches are full
slowly

stomach qrowls
indifferent

an old man coughs

you took around.

'So this is Furope?'

you rearranqge your backpack

the room is full of smoke

the loudspeaker rattles

the henches are full

the room is full of smoke
stomach aqrowls

stomach growls

feverish
time vasses
a noticeman watks back and forth
the man next to you asks a question
you Look around.
'Queitle heure est-1l?2"
setf conscious
you look at your watch
two drunks sleen in the corner
the room is fulit of smoke
you try to slteen
you shrug and look away
you look at your watch
a2 lady enters with four kids
time passes
stomach growls
you wait...







LASER SHOWS AND THE USE OF COMPUTERS

by Alan Jackson

Buffalo State Planetarium, Buffalo, New York

Abstract

Laser shows are described as they have
developed over the last 20 years from the
invention of the laser to present day machines.
They may evolve to incorporate video projectors
and theirwse of computers will be greatly
expanded.

Laser shows came about because of the special
properties of lasers. Before the laser, there was
no comparable médium which could create an image
as fluid or dynamic live and in real time. With
the arrival of the microcomputer, these images
could convey more precise and complex informa-
tion according to artists ideas.

An artist strives for control of his or
her medium. The computer provides the graphics
artist with an extension of his or her own men-
tal process that allows control over a much
greater amount of information than would be
possible if each image were individually made
by hand.

For a laser show, the artist gives a Tive
performance drawing patterns according to his
or her interpretation of the music that accom-
panies the show.

The beam of a laser is useful because
it is so concentrated and does not diverge
as it passes through the air. A laser
(Light Amplification by Stimulated Emitted
Radiation; consists of a nartially reflectina
and a fully reflecting mirror which are
exactly parallel, with a tube filled with an
inert gas mounted between them. Atoms of the
gas may be in various states of excitation
depending on what orbital level the electrons
of the atoms may take. When an electron ab-
sorbs energy, it jumps to a higher energy
Tevel. When an electron jumps from a high
to a Tower energy level, due to a collision
with a photon, it gives up energy in the
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form of a photon. That Emitted photon

plus the original photon are an Amplification
of the original photon. Light that is exactly
perpendicular to the mirrors is reflected
many times and each reflection is amplified.

A small amount of this 1ight passes through
the partially reflecting mirror as a pencil
thin laser beam.

The invention of the laser supplied the
world with the solution to a"thousand unasked
questions, although the laser soon found
applications in many places in research,
industry and entertainment. The first lasers
shows were crude; usually the Taser projector
was a mirror glued to a piece of balloon that
was attached to a loud speaker. When music
was played the mirror would vibrate randomly.
A laser beam reflected by the mirror onto a
screen created a pattern that would pulsate
to the beat of the music.

The next innovation was the use of scanners
specifically made to deflect a laser beam. A
scanner is made of a small piece of iron and
a mirror attached to a shaft mounted on instru-
ment quality bearings. The jron is made to
rotate by coils of wire surrounding it and is
spring loaded so that it returns to a center
position when no current is applied. A small
variable capacitor mounted on the shaft feeds
back the position of the mirror to a controller
circuit. :

The scanner made possible the sophisti-
cated laser shows that first appeared in the
early seventies. These shows use a synthesizer
similar to a music synthesizer to create var-
ious: frequencies and waveforms. These signals
are fed to pnairs of scanners, the mirror of
the first scanner deflecting the beam hori-
zontally and the second scanner deflecting the
beam vertically. The shape of the patterns
produced will depend on the two signals given
respectively to each scanner and the relation-
ship of the signals to each other. The
arrangement is an electromechanical version
of an oscilloscope set up to produce Lisajous
figures. For example, two sine waves which
are of the same phase and amplitude will cause
the scanners to trace a straight line. If they



drift out of phase, the pattern will seem to
be a slanted circle that slowly rotates.

The major laser shows incorporate a wide
variety of color and special effects. Most
use an Argon-Kryton laser as a light source.
The beam of this laser is split into different
wavelengths by prism. Each of the most power-
ful of the resulting beams (usually green,
blue, yellow and red) is sent through a modulator
and then to a pair of scanners. The modulator
is able to turn the laser beam on and off at
high speed to achieve a "spaghetti effect" in
the patterns. It can also allow the scanners
to draw separate patterns without a connect-
ing trace.

The shows are controlled live by an
operator or by a multitrack tape deck. Pre-
recording a show allows a tape to be made at
a remote computer graphics facility where
simple words and figures can be composed at
a terminal. Now that the cost of computers is
coming down, some shows are using them as part
of the live performance. Using the available
input devices, such as joysticks and bit pads,
the artist can draw words and figures quickly
before a show or generate abstract patterns
during a show which are not possible usina
a synthesizer.

The computer generates patterns as a series
of one to several hundred points connected
by straight lines. It uses a stored program
plus data supplied to it through joysticks and
switches to calculate the coordinates of each
point in the pattern.

After the coordinates of each point in the
pattern is calculated they are sent to an
external buffer memory as successful 8 bit
bytes, each (x,y) coordinate pair occupying
two bytes of memory. Data in the buffer
memory is presented to digital to analog con-
verters and the output of the D/A's is sent
to the scanners.through the scanner controller
amplifiers. In order to relieve the computer
of excessive I/0 data handling, the buffer
continuously cycles through to present the
scanners with the same pattern thirty times per
second. At this speed, the human eye cannot
detect a single moving point of laser light
but sees only a non-flickering continuous
pattern.

Although computer controlled laser shows
are in their infancy,they have potentially an
enormous advantage over hardwired devices
because creating patterns is as simple as
supplying data to a program.

Future advances %ill allow television
images to be presented to large audiences as
easily as films. Although relatively inexpen-
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sive conventional light source television pro-
Jjectors are readily available, their image

size and quality is too limited to be truly
useful. High quality conventional and laser
light source projectors exist but are prohibit-
ively expensive. With the rapid development
taking place, it seems only a matter of a few
years before an economical high quality pro-
jector comes into common usage.

A system with great promise is the large
area display which uses a laser beam to create
a raster similar to the raster created by the
electron beam in a TV. The beam from an
Argon-Kryton laser is split into the four pri-
mary colors, passed through modulators and re-
combined into a single beam. That beam is
scanned in the horizontal direction by an
octagonal mirror rotating at one hundred thousand
rpm on an air bearing. The vertical is pro-
vided by another slower mirror whose axis of
rotation is perpendicular to the first. It
seems reasonable to assume that television images
with quality comparable to present day film will
be possible with such a machine.

Right around the corner may follow the
showing of prerecorded tapes or live pre-
sentations with special effects not possible in
film. The actor(s)/artist(s) may act out
scenes and then through the use of video
processing the images may be changed for
greater effect.

Chroma-keying is one popular means of
enhancing video. In one scene, a particular
color (usually blue) is the key. Then another
video image can be substituted wherever blue
appears in that scene. For example, the weather
map on the six o'clock news are viewed by
separate cameras. The forecaster stands in front
of a blank blue background and the map is super-
imposed on the blue by a videoprocessor. This
allows any map to be shown at will including mov-
ing satellite films which would otherwise have to
be shown behind the forecaster using rear screen
projection.

The movie Tron made extensive use of Chroma-
keying. The actors were filmed on blank white
stages and the rest of the scenery was filled in
by computer graphics. The graphics in Tron were
generated one frame at a time each oomposed of
well over 10 million pixels and sometimes taking
hours to finishj for comparison, a TV frame
contains only a quarter million pixels.

As computers become faster, it will be
possible to generate these graphics in "real
time".

Plays could be presented with instan-
taneous set changes. Scenery could move
about the stage. Or, using a variation on
chroma-keying, a computer could be programmed to



respond to a person's motions. It would

search a scene for "Key"color or '"key" shape
such as a person's hand. It would extrapolate
geometric data from the object and use it to
generate figures. The actor/artist could drive
a car, step off a plane, perform magician's
tricks, move an animated puppet, all by the "wave
of the hand". The actor/artist will be able to
spontaneously communicate with an audience,
through a visual medium made possible by com-
puter.
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