PROCEEDINGS

ord. symposium on small
computers in the arls

OCTOBER 14-16 1983
PHILADELPHIA, PENNSYLVANIA

SPONSORED BY::
IEEE COMPUTER SOCIETY and IEEE PHILADELPHIA SECTION

ISBN 0-8186-0499-9

IEEE CATALOG NO. 83CH1930-7
'LIBRARY OF CONGESS NO.83-81625
IEEE COMPUTER SOCIETY ORDER NO. 499

1864-¥+-188Y THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC COMPUTER
e SOCIETY
M = = | -1]

PROCEEDINGS
ord. symposium on small
compulers in the arls

OCTOBER 14-16 1983
PHILADELPHIA, PENNSYLVANIA

SPONSORED BY:
IEEE COMPUTER SOCIETY and IEEE PHILADELPHIA SECTION

,l})

ey
=|

=

COMPUTER
SOCIETY &y
PRESS

(1 THE iNSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
T9BY

165+

A CEWTURY OF ELECTMCAL PROORESS

ISBN 0-8186-0499-9

IEEE CATALOG NO. 83CH1930-7

LIBRARY OF CONGESS NO.83-81625

IEEE COMPUTER SOCIETY ORDER NO. 499

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

Order from: |IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

The papers appearing in this book comprise the proceedings of the meeting mentioned on the
cover and title page. They reflect the authors’ opinions and are published as presented and with-
out change, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors, IEEE Computer Society Press, or the Institute
of Electrical and Electronics Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street
Suite 300
Silver Spring, MD 20910

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for
private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish-
ing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copy-
right © 1983 by The Institute of Electrical and Electronics Engineers, Inc.

ISBN 0-8186-0499-9 (paper)

ISBN 0-8186-4499-0 (microfiche)
ISBN 0-8186-8499-2 (casebound)
Library of Congress No. 83-81625
IEEE Catalog No. 83CH1930-7
IEEE Computer Society Order No. 499

Order from: IEEE Computer Society IEEE Service Center
Post Office Box 80452 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

&yogng The Institute of Electrical and Electronics Engineers, Inc.

A CANTURY OF ELECTICH. PROGRESS.

ii

1983

Proceedings
of the
Symposium
on
Small
Computers
in the
Arts

October 14-16, 1983
Philadelphia

Sponsored by:
IEEE Computer Society

IEEE Philadelphia Section
Delaware Valley Chapter/SIGGRAPH

Organized and produced by:

Small Computers in the Arts Network

iii

Proceedings Committee

EQitOYSeeeeesssossssscsosssocsssssssssssasccssssccsssssnsssssBric Podietz
Dick Moberg
Kerry Sherin
Donna Mansfield

LayoOuUteeessoscessccsocsesosssscoscssasssasssscasseassssssascssDick Moberg
Eric Podietz

SymposSium ChairmManeecseeocecccssssassessessssseassssasessssseDick Moberg

Historical Notes

The Symposium on Small Computers in the Arts grew out of a computer music
concert held in downtown Philadelphia in 1978. It was planned as part of the
Personal Computing '78 show held at the Civic Center. John Dilks, the founder
of the show, graciously backed the idea and provided a hotel ballroom for the
event. As word of the upcoming concert spread, we received calls from people as
far away as the West Coast asking if they could participate. One musician from
New York actually arranged a piece for computer and clarinet especially for the
concert. The evening of the concert, over 500 persons showed up and tried to
squeeze into a room that only held 300. The concert was recorded and an album
made.

The success of that concert led the organizers to form an informal group
to produce similar events and to act as a clearinghouse for those interested in
computer applications in the arts. The 1979 Personal Computer Music Festival,
sponsored by the group, included talks and demonstrations during the day in
addition to the evening concert. In 1980, a separate day of computer graphics
talks and demonstrations was added to make the Personal Computer Arts Festival.
All these events were held at the Personal Computing shows in Philadelphia.

It had always been our desire to some day organize a major meeting solely
dedicated to the use of small computers in the arts. This dream became a
reality with the 1981 Symposium, thanks to the support of the IEEE Computer
Society and the IEEE Philadelphia section.

At the 1981 and 1982 symposiums, 150 computer arts enthusiasts descended
upon the Holiday Inn on the University of Pennsylvania campus. An informal and
very interactive atmosphere prevailed making the symposium a great success with
respect to its goals of increasing the participants' awareness of the uses of
small computers in the arts. In May 1982, response to the symposium and
succeeding interest led to the publications of Scan, a monthly newsletter on
small computers in the arts.

The Small Computers in the Arts Network (formerly the Personal Computer
Arts Group), as a volunteer not for profit group, continues to promote the use
of computers in the arts through its newsletter, concerts, and other informal
events. To contact the group, write to: Small Computers in the Arts Network,
Box 1954, Philadelphia, Pennsylvania, 19105.

Table of Contents

Proceedings Committee. + + « ¢« ¢« « o o &
Historical Notes . . . « ¢ ¢ ¢« = ¢ o o o o o o o«

Approaches to Computer Literacy and Training
for Artists/Designers/Creatives. « « o« « o« o + &
R. LeWinter, J. Shafran, and B. Wiffin

Camera In/Camera OUt « o« « 2 o o o o o o o o o &
T. Porett

MovieMaker: A Real Time Microcomputer
Animation SYyStem « « o+ o o s o o o o ¢ o & s s+
E.S. Podietz

Computer Animation as an Art Form. . . . « « o o
D. Mansfield

Experimental Visual Evaluation for
Computer Graphicse. + « + « o o o « ¢ o o« o o o &
M. Holynski and E. Lewis

A Pantomation Interface for the Apple IT
T. DeWitt

Electronic Thinking Cape « « ¢ ¢« « ¢ o « o = o &«
S. Metros

State-of-the-~Art Questions . « ¢« ¢« « o o & « o« &
L. Spiegel

Sound Systems on MicCros. « ¢« ¢ ¢ o o o o ¢ ¢ o &
S.E. Jenkins

Quadsurf: A Graphics System for 3-Dimensional
Halftone Tmages.: « « « o o o o o s o o o o o o o
S.R. Seidel

Design for an Artist's Workstation for
the Microcomputer. « « ¢ o o o o o o ¢ o & » o =
D. Cook

Developing a 3-Dimensional Animation System for
the Digital 11/23 Microcomputer.« « . .
M. Schweppe

3-D Computer Graphics for Artists. . « « . « «
J. Sachter

A Professional Quality Digital Audio
Peripheral for Small Computers . « . « « « o o

H. Chamberlin

vi

iv

13

21

25

30

32

36

41

48

65

68

74

A Computer Controlled Installation in

a Gallery Space.

G.X.

Computers, Music, and the Arts: A Liberal

Shortess

Arts College Course.

w.

Patter-Pushin'-Palyka Presents Too-
Loose-A-Trek Thru the Selling of

Matthews

a Paint System .

D.M. Palyka

Microprocessor Typography.

M. Xeith

.

\

¢ .

Keyframe Animation for the Microcomputer

W.J. Kolomyjec

PIPEDREAM--A Complete CAD CAM System

Tubular Sculpture.

F.M.

Smullin

Using an Artist's Workstation.

W. Wright

Author Index .

.

vii

81

86

89

929

103

112

128

143

Approaches to Computer Literacy and Training for Artists/Designers/Creatives

Renée LeWinter, Joan Shafran and Brian Wiffin

Massachusetts College of Art, Boston, MA
Jack F. Nolan, President; Marilyn Bever, Advisor

The design and implementation of a Comprehensive
Computer Graphics and Computer Literacy Program
has been seen as an essential addition to the
existing course offerings at the Professional Art
College. Within the Continuing Education Depart-
ment and the Day School such courses have been in
existence for several years. Through these
experimental classes, the College and the Visual
Technology Center have seen the need for expan-
sion and growth in the area of Computer Graphics,
and are beginning develop interesting course

work and present a new methodology for learning
approaches.

Introduction

Massachusetts College of Art remains the only
publicly supported, professional arts college
in the United States. It was founded to train
art educators for the public schools and
designers for industry. The undergraduate
degrees offered are in Art Education, Critical
Studies, Design, Fine Arts and Media and Per-
forming Arts. Graduate Degrees are offered in
Art Education and Fine Arts. There is also an
extensive Continuing Education Program and a
Visual Technology Center which is devoted to
research in the area of High Technology and the
Arts and offers classes and special programs to
students and professionals in the Boston area.

Because of the commitment to a professional
school atmosphere, the faculty and administration
strive to bring the best and most useful curricu-
lum to its students. With the increasing
necessity of training in the high technology
field, Mass. College of Art introduced courses
that would be relevant to the designer and the
artist going out into the market place. At
present, the school has a permanent Apple lab:
eleven 64K Apple II Plus, printers, digitizing
camera, Polaroid output, tablets and lightpens.
The school also relies on temporary loan of
equipment.

Demographically the College is uniquely located
near the high tech companies on Route 128, and
has sought support from these companies. One
result was a class given through the Visual
Technology Center using a Camex page make-up
system, and was aimed at Mass. Art faculty,
students and professionals in the design field.
The main objective was to acquaint the student

CH1930-7/83/0000/0001$01.00© 1983 IEEE

with using a computer as a design tool and to
gain some literacy. The College sees as one of
its roles that of providing not only training
but also keeping abreast of the changing job
markets. :

Classes this fall will include Introduction to
Computer Programming, Computers and Visual Commun-
ication, Programming Computer Graphics, Computer
Graphics Laboratory, and Advanced Computer
Graphics Applications.

The Resistance/Fascination Factor

With the commitment to providing access to the
creative, it soon becomes clear that a Pandords
Box, of sorts, has evolved. Through course work
and curriculum development at Mass. Art, it has
become apparent that the need for "finding out"
about computers is strong within the local art
community. However, along with the need to know
comes a variety of fears, expectations and preju—
dices. Machine fear is the most common, and in
some cases, actually touching the machine, fear
that pressing the wrong button will do something
horrible. Another very real fear is that these
new technologies will generate loss of jobs.

Expectations and prejudices are prevalent, because
of the "seduction'" of the imagery (fascination
factor) or the speed one can access software
particularly in a Paint program. The student at
first is awed by the ease of image making, but
with further exposure discovers the limitations
and complexity of the software. The new user,
prejudiced by traditional methodologies and
techniques, tries to apply them to the creative
process rather than exploring new possibilities.
The question of "Why can'tiI do this?" is a con-
stant in a beginning class and it is simply
based on the lack of understanding of what the
technology can do. The confusion and deception
arises with the immediate gratification of seeing
something or the sense of drawing while you're
thinking.

Although these problems are mainly geared toward
using software not writing it, a general literacy
of what the machine can do, or potentially do, is
imperative. The instructor can then proceed to
alleviating these fears and prejudices and begin
to affect change and growth to the creator's
'psyche', by getting them to ask the questions

"How, what and why."

There is also an inherent problem of different
levels of comprehension. Although the creative
person is often nontechnical, there are exceptions
to this. It is often said the greatest problem
with artists learning the computer as a medium is
that the programming is linear and they cannot
think that way. Along with a comprehensive
approach to literacy, careful selection of equip-
ment and analogies to traditional artforms are
important. References to mediums such as print-
making become obvious, in terms of 'process'
being used to create an end.

The Design Process

Traditional graphic elements such as "line, compo-
sition, space, form, shape" with the addition of
"time" (because of the dynamic nature of the
screen) form a foundation from which the new user
can draw from and apply to the new media. These
associations to known experiences cuts down much
of the fear and learning is faster. It can be
said also, that understanding graphic elements is
helpful in designing comprehensive graphic soft-
ware as well.

The Question of Aesthetics:

Establishing a New Criteria

When using microcomputers such as Apples, the
question of image quality comes to bear. Because
of our equipment, the image is unsophisticated
and almost too colorful. To the eye of a designer
or artist the image presents itself as crude and
almost unworkable. The micro does have an
aesthetic life of its own and often, because of
the directness of the micro, students produce
quality graphics once the comparison with other
media or systems subsides. Because of the sim-
plicity of the equipment, the student must con-
front directly the nature of what the image is
composed of (in our case the PIXEL, or picture
element) and use this as an integral part of their
image.

The responsibility of the instructor and the educa-
tional institution 1is to supply and create an
environment that allows for maximum understanding
of many ways of creating images. The introduction
to other applications such as music and perform—
ance and their interconnections is important. It
is having the foundation from which to build that
will allow a new aesthetic to form, whether it be
programming or manipulating graphic software.

Some important questions to consider are 1) what
do we mean by image quality (should this be dic-
tated by the capabilities of the machine, should
we encourage the thought that because it was
generated with a computer it must be good; 2) what
is the end product, hard copy, video, digital stor-
age, and should the criteria that apply for analog
output have application here; 3) the ephemeral
quality of the computer image; 4) how the idea
becomes an abstraction in its translation to
digital data; 5) seeing the screen as a conceptual
art form; 6) and still seeing the differences
between design vs. fine arts.

Selection of Hardware and Software

When considering the selection of hardware and
software to be used in a computer graphics cur-
riculum, several choices must be made regarding
dedicated versus all purpose systems; the use of
canned software versus writing one's own and the
establishment of a criterion and a purpose with
respect to limited access and an attempt to
create a broad base of minimum literacy.

Another consideration is addressing the issue of
obsolescence. The very nature of the rapidly
changing computer graphics field dictates the
necessity for intelligent selection of hardware
and software. The importance of effective
research and development to keep abreast of
these changes allows you to maintain a viable
computer graphics program.

As one example of the use of available software
as a tool for literacy, the use of the Gibson
Labs Lightpen and the Graphics Tablet and asso-
ciated softwares have proven to be a very accep-
table link between traditional drawing media and
packaged graphics software and serve as a
steadying influence in the transition into
"technology".

In the case of using the Gibson Lightpen software
in a week-long twenty-hour intensive literacy
workshop (Computer Literacy for Designers) we
found giving the students actual written explana-
tions, or reference sheets as to what the menu
was, how the software interconnected, began
student understanding of the structure of the
software. With the use of only one screen, it

is impossible for the new student to remember

the menu choices. When two monitors are avail-
able, it may be important to rewrite the software
so the menu appears on one monitor and the
graphic image is previewed on the other. Supply-
ing each student with "PIXEL" paper helps the
student relate to the new medium in terms of
traditional methodologies. We are not suggesting
that ultimately a student should "hang on" to old
ways, only that for comprehensive literacy, it
supplies a connection that reduces fear and
instills some level of confidence.

Problems with Computer Graphics Education

As with most institutions, obtaining money and
space to purchase equipment for labs and class-
rooms is difficult. There are great difficulties
in obtaining hardware donations. Many of the
high technology companies who are clearly inter—
ested in creative usage of their equipment are
too small to be able to afford equipment dona-
tions to schools. One way around this is to
arrange to be a beta site in lieu of donationms.
In this way, the institution would have the
option of testing the equipment and offer
suggestions to the manufacturer, in trade for
having state of the art equipment on site tempor-
arily. The Federal Government supports donations
to science programs but not to art programs and
ways have to be found around this bias. We have
found that you need to educate high technology
companies that are either in your area or

their representativesg, of the need for computer
equipment in art related programs. It should be
stressed upon them that many graduates will be in
need of equipment upon graduation. Emphasize the
need for more collaborative efforts between engin-
eers and artists to produce better equipment for
all users.

The limits of computer systems are a great problem.
The larger more powerful equipment is prohibitive-
ly expensive and the micro systems are limited in
quality. As seen through the courses offered
through Mass. Art, we have seen problems with the
limitations of single user workstations such as
Camex, Scitex and the Artronics. Access time

also presents problems, with these types of work-
stations, and the micros to date, although afford-
able do not perform the vast functions needed to
present a truly comprehensive program.

Any school or institution should begin to estab-
lish an identity of what its major goals are and
who they wish to accommodate. In the need to
provide computer literacy both on a global level
and a basic direct level, it is important to
remember that at the base is a development of
visual literacy and the introduction of the com-
puter into the classroom should assist in that
application. Programs should not be developed in
a patchwork quilt fashion. The goals of the
school should be carefully defined, along with
guidelines. Current faculty should be trained
and additional faculty selected. At present, many
of the current faculty in these institutions are
overcome with the same problems as are the
students.

Computer graphics does not necessarily fit into
any of the programs already in existence. It
reaches all disciplines, and with clearly defined
goals standards should be set for admission re-
quirements and how prerequisite sequences should
be handled.

In our experience, rather than placing people
directly in a programming class, we have offered
a basic foundations course which has consisted
of understanding computers, history, and intro-
ducing them to various applications of computer
equipment. There is encouragement to attend
conferences and trade shows. A development of a
reading list and a general awareness of changing
career options is initiated.

To combat fear and resistance among faculty and
students, providing a team teaching approach
proves successful. Drawing instruction from
several disciplines offers the student or faculty
a way of seeing all aspects of computer under-
standing. A program coordinator who oversees all
the classes and encourages new approaches to
creativity with the new technologies is essential
to maintain a coherent program.

Conclusion

It is true that computer literacy, training and
education are open ended questions for any edu-
cator. No one has yet explored the potential of

the equipment, its systems and output possibili-—
ties. What this means for artists and designers
and the places and people training them will be
seen within the next few years. It is important
to understand the goals of your institution, to
rely on the expertise of not only technicians and
computer scientists, but creatives who have worked
in computers in the arts. As instructors at Mass—
achusetts College of Art it has been important to
develop a curriculum that reaches all of the
disciplines, and to develop a common philosophy,

for it is no longer valid to teach design or art
without the enhancement of a tool such as an inter-
active graphics system.

About the Authors

Joan Shafran

Poet/Computer Artist/Educator

Masters of Science in Visual Studies
Massachusetts Institute of Technology

Works in visual poetry using computers, electro-
graphics and airbrush. Working towards educating
designers and artists in the use of computers

and teaching visual awareness to engineers. Cur-
rently instructing at Massachusetts College of
Art, and consults to the computer industry in the
areas of computer graphic applications and train-
ing and education.

Brian Wiffin

Artist/Graphic Designer/Computer Artist/Educator
Bachelors of Fine Arts

Massachusetts College of Art

Works in printmaking, illustration, electro-
graphics and computers. Currently involved in
curriculum development and computer graphics in~
struction at Massachusetts College of Art. Com
puter curriculum consultant to Melrose Public
Schools, Melrose, Massachusetts. Operates a
free~lance graphic design business. Committed to
involving artists and designers in the use of
computers and writing of creative software.

Renée LeWinter

Designer/Printmaker/Educator

BFA Pratt Institute

MA Goddard College

Lecturer at the Visual Technology Center—Camex
Project, and faculty member of the Computer
Graphics program, both at Massachusetts College
of Art. Uses typographic imagery as symbols and
textured marks to create spacial landscapes.
Exploring the possibilities of page make-up
systems as drawing tools and consults in this
area.

Camera In / Camera Out

Thomas Porett

Fhiladelphia College of Art

Abstract: As microcomputer
graphic capabilities become more
sophisticated, video digitization
is becoming a standard input
process. Hardcopy output includes
both paper printout and
video/photographic recording
devices. This paper will outline
several distinct approaches that
are now available for optical
scanning and hardcopy output.

ANALOG/DIGITAL

Video digitization is actually a
sophisticated analog/digital
conversion process that "looks® at
the continuously varying voltage
coming from the video camera or
recorder, and assigns a numeric
quantity to signify that voltage.
Typically a system is comprised of
a black and white video camera, an
interface card that accomplishes
the A/D conversion, some software
in RAM or ROM that directs the
hardware, and finally, one or more
image capture devices ranging from
a disk drive, and/or printer, or
in some cases a film recorder.

In the simplest configuration,
data are organized through
hardware or software to output
directly onto the graphic screen
in whatever resolution the
particular device is equipped to
display. An example of this is
the manner in which a still video
image 'is scanned into an Apple II+
computer by the Microworks DG-65
digitizer. With this system, an
image is converted into a high
resclution (280 by 192) image
using one of two conversion

CH1930~7/83/0000/0004$01.00© 1983 IEEE

routines located in ROM, on the
interface card. The resulting
image is a rather crude black and
white facsimile of the original.
Contrast, brightness, and picture
width are adjustable through three
potentiometers located on the
interface.

A more refined image can be
obtained through the use of disk
based software that offers the
user a fair degree of control over
conversion parameters such as
contrast, brightness, and
dithering algorithims. Further
controls are available that amount
to basic image enhancements that
offer substantially greater
control of the final image.
Typically, these controls allow
the user to transpose values, and
manipulate false color by
assigning a color to a gray scale
value.

In spite of these desirable
controls, the inherent limitations
of the Apple’s screen resolution
keep the image from attaining a
successful illusion of gradation
in gray scale. This problem is
confronted in some dramatically
differing approaches that are
discussed below.

PRINTER RESOLUTION

One rather elegant strategy that
some manufacturers have settled
upon involves bypassing the Apple
raster screen display in favor of
using the print resolution of a
dot matrix printer which is
typically three to four times
finer in its ultimate resolution.
The Photocaster system available
from Commsoft Inc., is one
prominent example of this
approach. This imaging system is
more accurately described as an
integrated imaging environment.
It relies primarily on software
oriented data manipulation with
extensive image enhancement

capabilities that are designed to
output to the dot matrix printer.

The machine display screen is used
to roughly indicate what changes
are being effected by the system.
These manipulations are
implemented through an extensive
image enhancement section of the
software, and an editing feature
that permits text to be added to
the image. The final image (128 x
128) with 16 level gray scale is
realized on the printer. Al though
this figure seemingly implies
limited resolution, the
implementation of gray scale
vields an image of startling
accuracy when compared to
caonventional dot matrix screen
dumps.

TRUE COLOR PRINTOUTS

Another unique feature is the
system®s potential to create
accurate, full color images by
inputting red, green and blue
filtered images and printing a
composite image with a color
capable printer. A full color
sub ject is presented the
monochrome video camera, first
with a red filter in place in
front of the lens, and and scanned
into memory then saved as a file.
The same procedure is followed
with the green and blue filters,
resulting in the three files saved
on a floppy disk. Each file is
then printed in the appropriate
color using a printer such as the
IDS Prism 80 or 132 ribbon
printer. The task is simplified
substantially by using an
intelligent parallel interface
such as the PKASO card from
Interactive Structures Inc. The
colors are printed in three
successive passes of the paper
through the printer, one for each
of the primary colors, leading to
a full color image remarkably
faithful to the original.

IMAGE TRANSMISSION

An added feature of the
Photocaster system is its built in
modem that allows the user to
convert an image into an audio
signal that can be sent over phone
lines or transmitted on radio.

The data structure of the image is
configured to standard slow scan
television faormat, common to image
transmission used by amateur radio
operators. A futher product
enhancement is soon to be offered
that will allow a 256 x 256 image
resolution.

HIGH RESOLUTION GRAPHICS INTERFACE
A radically different approach to
extending digitized image
resolution is facilitated through
an additional interface that
establishes an entirely new video
display using the host CPU
strictly for processing
information. This interface is
manufactured by Number Nine, and
is available for the Apple or IBM
personal computers. The highest
resolution available is 1000 x
1000, or less depending upon the
number of colors desired. The
complexity of the hardware
necessitates some rather demanding
programming, a task that has been
elegantl filled by Visual Data
Enterprise, a firm offering
software for the Number Nine that
allows use of a graphics tablet
and video digitazation with an
Apple 11+ or lle. This hybrid
approach allows the small computer
to acquire attributes of a
sophisticated imaging workstation,
capable of serving the needs of
the professional graphic artist.
IMAGE STORAGE DIFFICULTIES
Although the added resolution of
such a system is most desirable, a
problem emerges regarding final
image output and storage. The
typical approach used to store an
Apple "high resolution” image is
the floppy disk. Traditionally up
to sixteen images can be stored on

one disk, but this figure is
radically reduced if higher
resolution images are stored.
Assuming a resolution of 500 x 300
with 146 colors, one image would
take up to three floppy disks
depending upon how the data is
organized. Additionally, such an
image cannot be printed on
commonly available printers,
necessitating a turn to some
photographic storage process.
Although it is possible to
photograph a color monitor
directly, suffice it to say this
approach will not lead to optimum
image quality.

FILM RECORDER

In order to gain full benefit of
the enhanced imaging system, one
must utilize a dedicated film
recorder device. Essentially,
this device consists of a flat
screen black and white monitor, a
camera, a filter wheel with red,
green, and blue filters, along
with associated electronics that
utilize an RGB video signal.
Although some recent small
computers provide RGB output, such
is not the case with the Apple 11+
or 1le. Instead, an additional
interface is required to provide
this signal to the monitor. The
Amdek DVM 8B0Oe, designed for the
Apple Ile 80 card auxiliary slot,
is one well designed example. The
video signal from the card is used
to drive an RGB monitor and film
recorder. In a typical image
recording, the camera is loaded
with a color transparency film,
and three successive exposures are
made as the red, green and blue
filters are rotated into place,
and the appropriate values of that
color are displayed on the flat
screen monitor.

The price of film recorders has
been in the range of six to ten
thousand dollars for a low end

unit. This is rapidly changing

as, devices such as the Lang
Videoslide 35 make a strong
showing in a price bracket of less
than three thousand, with the
performance that equals the more
expensive units. Using this
approach, the image maker can
photographically save a high
resolution image as photographic
hardcopy on negative or positive,
black and white or color films.

The idea of creating an image
through camera input, digitally
mediating that image through
enhancement programs or electronic
paint programs, and then
finalizing that image in a
photographic medium is truly a
viable approach made possible by
these new graphic tools for the
small computer. These tools are
admirably suited to the graphic or
fine artist as they are reasonably
priced when compared to
commercially available systeas,
and offer a great deal of
flexibility through the variety of
configurations possible.

pEN——

-

L e P ——

-
st

I — " WA

o a——

N T
g b i N
P
ot

© THOMAS PORETT

MOVIEMAKER: A REAL TIME MICROCOMPUTER ANIMATICM SYSTEM

Eric 8. Podietz

Interactive Picture Systems

ABSTRACT

The average home computer {(under $200Q ranpe)
provides a balance of features peared toward a
high degree of interactivity. fn emphasis is
made on graphics and sound capability since
seeing and hearing are human facilities that
transcend computer literacy. The anthropomorphic
term *friendly! is attributed to computer
programs that relate to people in a mammer that
comes naturally to them. MovieMaker is an
animation program that takes advantape of these
features and is easy to use.

INTRODUCING: MovieMaker

MovieMaker is a microcomnputer program that
allows ane to create two dimensional animation,
naturally. The 'natuwral’ compornernt is bred into
the system through its means of interacting with
the user:

- It is a visual, screen oriented system:
"What you see is what you get”

- The keystrokes used to direct the system
correspond to Erplish words that relate to
animation. (e.g 'A’ for Action, 'C' for
Color)

- Creation, editing and renlay cccur
immediately, in real time. The result of
one’s actions is never hidden for any
period of time.

- Division between modules is organized in
such a way as to avoid a tedious
progressicn through menus.

If one thinks of animation as the motion of
shapes over a background in time, three distinct
data sets emerge:

- a set of shapes

- a background

- an animation describing the motion of the
shapes over the background

In MovieMaker, shapes and backgrounds are

CH1930-7/83/0000/0008501.00© 1983 IEEE

developed in the Compose module, and animation
is created and edited in the Record module.
Shapes, backgrounds and animations are stored in
three distinct files: GHP, BKGE and ANI files
(see figwres 1,8,3). The Record module also
allows sound effects and music to be added at
any point in the animation. The scunds are
selected from predefined sets of scund/music
effects stored in a fourth file type, a SND
(sound) file. These four file types are stored
on disk, with names chosen by the user.

COMPOSE: Building Shapes and Backgrounds

In Compose one creates a shape page and
background (see figures 4,5). Compose utilizes
simple image processing techniques, such as
mirroring, color transposition, opaqing,
brushing, and window duplication to allow image
data to be rapidly built up on the screen. For
example, to create a walking sequence, one would
paint one position in the walk sequence, copy
that position to several other parts of the
screen, and then alter each copy to correspond
to the remaining positiong in the walk sequence.
Similarly, a forest backoround could be built by
painting orne tree, and ther copying it all over
the screen.

The shape and background pages in Compose are
separate screens which can be flipped between by
hitting the Escape key. Image data can be cupied
from either of these screens to the other using
the Window and Duplicate functions. The user
frames the area using the Border command, picks
it up with the Duplicate command, directs it to
the area where it is to be placed using a
Joystick or graphics tablet, and drops it by
hitting the Duplicate key apain. This
flexibility allows the Background page to be
used as a kind of work page o palette where
textures can be built up, icons edited, etc.

A shape page is a screen full of shapes; shapes
are delineated by the user's placing a window
around the image data representing the shape,
and pressing the Outline key. When a shape is
Qutlined, Compose remembers where it is on the
screern, thus allowing the user to return the
window to that shape, move the shape, and sc on.
Once several shapes have heen Outlined, they may

be put in a sequence. Sequences are created
using the Sequence keystroke; the user
designates the order of shapes in a seacuence by
moving the window to the riext shape to be in the
sequence and pressing the jaoybutton., The first
two shapes of a sequence are shown in figures S
and 6.

A sequence can consist of up to 1€ shapes; there
can be 9 sequences. Once a seguence has been
defined, it can immediately be tested by
pressing the Action key. Actiown displays the
background page and flips through the shapes in
the sequence at a rate fram one to thirty franes
per second, selectable with the Frame rate key.
Using the joystick, the user can position the
moving sequence at any place on the background
page, providing a means for motion testing the
sequence.

At any point in Compose the user can save or
load the shape or background pages. Thus rew
shape pages can be built out of data from
several previous shape pages. The ability to
copy data between shape and background pages
would allow the user, for example, to cony a
tree from an old background onto the shape page,
make it into a shape, enter it into a sequerce,
and animate it.

RECORD: Creating and Editing Animation

In Record animation is created and edited.
Shape, Background, Animation and Scund files are
all used in the Record module (see figure 7).
Record is designed to emulate a multi-track
videotape recorder, with familiar functions such
as play, rewind, and free:e frame. There is a
'track? for each of the elements that can be
changed during the animation. The length of the
animation, types and numbers of tracks varies
with the host computer. MovieMaker on the Atari
800 allows 300 frames of the following tracks tao
be recorded as part of an animation:

- & actor tracks
- 4 color tracks
- 4 sound tracks
- 1 zoom/pan track

Recording of all the tracks is done in real
time, as if filming real action. All recording
is done by designatirg which track ore wishes to
record on, selecting a frame in which to begin
recording, selecting a frame rate at which to
record, and starting the record process. As the
recording proceeds, the user makes changes to
the track which is being recorded. Recording can
be done single frame, or at frame rates ranging
from | to 3@ frames per second. The animation
can be replayed at any of these frame rates as
well. Figures 8 thru 12 show various frames of
an animation being replayed. The frame counter
is at the lower left.

To record on actor track 1, Al (for Actor 1) is
pressed, a sequence selected, and the space bar
hit to begin recording. The selected sequerice
then begins execution, and, as in the Action
mode of Compose, the sequence can be positioned
anywhere on the screen with the joystick. Record
remembers the screen location of the actor as
each frame is recorded. To aid the user in
establishing the interaction between actors,
Record plays back whatever was recorded hefore.

For example, an animation of a man walking his
dog would be done as follows: First the sequence
of the man walking would be laid dowr on Actor
track 1, by positioning the walking man orn the
left hand side of the screen and moving hin
across to the right side of the screen. This
animation would then be Rewcurd (and you would
see the man walk backwards). Then the dog
walking sequence would be selected, ard recorded
as Actor 2. As the dog was recorded, the man
would be played back, thus allowing the dog to
be positioned alongside the man in every frame.

Up to & actors can be recorded in this manner.
Of course, it is possible to switch seguerces at
anytime, making it easy to change from a man
walking left to a man running right. Any track
carn be recorded over, making the editing of
screen position or shape information a cinch.

The 4 scund tracks correspond to the 4 voices
available on the Atari 808. For each sound
track, 8 predefined sounds are available, for a
total of 32 possible sounds. These sounds can be
continuous sounds that proceed until they are
shut off, or sounds that shut off of their own
accord, such as a musical note or explosion.
Sounds are recorded by selecting which of the
four sound tracks to record on (e.g Noise 1 for
sound track 1), selecting a frame rate and
hitting the space bar. As the existing frames
are played back, the user hits the key
corresponding to the sound which is to be
initiated in the frame being displayed. The
sound is heard immediately. Since Record is
playing back everything that had been recorded
besides sound track i, synchronizing the sound
to the animation is easily achieved.

The 4 colar tracks allow color animation to be
recorded. The 4 color tracks corrvespond to the 4
colar registers of the Atari 80Q. Each of the
color registers can be one af 128 colors, which
can be braken down into 16 hues each with 8
luminances. Recording color changes allows the
hue and Iuminance of each coler register to be
adjusted during the animation. Aside fraom
enhancing effects such as sunrises, lightning,
and explosions, traditional color map animation
can also be done.

Finally, the zoom/pan track allows the ’'camera’
filming the animation to be zoomed to 1x, 4x or
16x magnification. In the 4x arnd 1€Ex levels, the
camera can be 'panned’ to show the actionm
proceeding on any portion of the bhackground.
Zoom/pan recording is invoked with the Zoom key,
and pan tracking is achieved with the joystick.

POST PRODUCTION: Smcoth and Play Modules

The Smooth and Play modules of MovieMaker are
invoked once the user has completed an
animation. The Smooth module combines the shape,
background, animation and sound files into one
file, for playback purposes only. The function
of the Play module is to play these files. Since
the data in the files is compressed, the
playback files take up considerably less disk
space than the files from which they were
derived.

Since the Play module offers flicker free
playback, it is possible to videotape the
animations as they are replayed. Animations that
were split into several parts due to space
limitations can be linked together by pausing
the videotape recorder between the replay of
each animation.

SECTION S: fpplications of Moviemaker

MovieMaker’s ease of use and immediacy make it a
valuable tool for previewing animation. This has
application in the animation, broadcast,
advertising and microcomputer software
industries., The issue of prime importance is
that live action can be created and reviewed
rapidly. Traditional animators using MovieMaker
have reported that overall efficiency is
improved 2 to 4 times cover traditional cel
animation techniques. This does not include
improvements in the overall quality of the
animation gained by being able to repeatedly
review and edit.

Since the entire animation is in a data as
opposed to program format, the animation is
device independent. This means that the
animation can be moved from one computer to
another. Differences in graphics hardware, such
as color and screen resolution, would be
accomadated by translation programs employing
color and pixel reduction/expansion algorithms.
Sound effects might have to be omitted on some
systems.

Perhaps the most important current application
of MovieMaker is in the design of software for
low cost microcomputers. By utilizing the
MovieMaker graphic primitives, collectively
known as the MovieMaker Development System,
animation produced using MovieMaker can be
included inside of a user’s program. This would
allow, for instance, certain animations to be
called from disk given certain program
conditions. It is also possible using the
runtime routines to produce animation on the
fly, obviating the need for continuous disk
access.

CONCLUSION

While microcomputers have been viewed as
!playtoys?, they provide an envirorment in which
highly interactive graphics programs can run.
MovieMaker is one such program, which allows
animation to be rapidly developed, edited and
reviewed. It can be expected that as the
graphics resclution and computing power of low
cost computers increases that systems of this
type will become standard items in the toalkits
of those wishing to use computers to produce
video and film.

ACKNOWLEDGEMENTS

I would like to thank Buy Nouri, Mark Scott,
Jimmy Snyder, and Bob Svihovec, all of
Interactive Picture Systems for their help on
MovieMaker. Guy contributed immensely in
ensuring that MovieMaker was easy to use and
effective as an animation tool. Mark, Jimmy, and
I slaved for 18 months programming and
reprogramming MM in 6502 assembly language. Bab
Svihovee, our animator, has created innumerable
animations (including the ome in the
illustrations) and has shown incredible patience
with the numerous changes and bugs that MM has
undergone. Finally I would like to thank the
Reston Computer Group who made the financial
commitment that made MovieMaker a reality.

Figure 1 Figure 4

Figure 5

Figure 3

Figure 7 Figure 10

Figure 8

Figure 9 Figure 12

COMPUTER ANIMATION AS AN ART FORM

Donna Mansfield

Drexel University

Introduction

Computer animation has developed
from a visual method of representing
equations for scientists into an exciting
new art form for artists who wuse the
computer to produce art. However, there
was a crucial stage before computer

animation moved out of the laboratory and
into the artist's studio. The computer
was used to assist animators in producing

conventional animation. Only after the
computer was successfully integrated into
conventional animation did computer
animation emerge as a new art form. Art
is a difficult word to define, but for the
purposes of this paper we will define art
as the act of producing form for its own
sake. This definition will help us
differentiate between computer graphics

used by artists and computer graphics used
by scientists in the laboratory.

Photography and film both imitated
accepted forms of art before they emerged
as artistic disciplines of their own.
Computer animation has followed the same
path, now emerging as its own art form

only after
integrated

having
into an

been successfully
established art form.

will describe the
evolution of the computer in animation
from a tool that assisted artists in
producing conventional animation to a tool
used by artists to create a new art form.

In this paper, I

History of Animation

Animation is the name given to that

branch of the cinema in which films are
created frame by frame and have some
appearance of movement. We have defined

animation as a branch of the cinema, but
it was not always that
way.

The earliest animations were simple:

brightly colored drawings of dogs running

CH1930-7/83/0000/0013$01.00 © 1983 IEEE

or clowns juggling, Each animation was
about 2 seconds long and composed of about
12 different pictures. These animations

were shown on mechanical devices like the
zoetrope or the phenakistoscope. The
drawings were mounted on a_ drum or disc
that revolved. Spectators viewed the

drawings through slits.
Animation was further
Emile Reynaud
praxinoscope to
machine was similar
replaced the slits of
mirrors set at an angle.

developed by
who invented the
show his drawings. This
to the =zoetrope but
the zoetrope with

In 1888, Reynaund opened the Theatre
Optique in which he showed colored
animations ten to fifteen minutes long.
Initially, Reynaud's animation were very
popular, but 1888 was also the year of the
invention of the first movie camera and
the motion picture cinema quickly drew
Reynaud's audience away from his
animations. ‘No artist of quality would
draw pictures for a machine and Reynaud's
device remained only a novelty.

It is interesting to speculate what
might have happened had Reynaud's device
attracted an artist who drew beautiful
pictures for it., The history of animation
might have developed differently. But
during Reynaud’'s time, great artists did
not draw for machines and so mechanical
animation died with Reynaud (1).

Subsequent animation did not build on
anything Reynaud had begun,
Essentially,animation was reinvented in
the early 1900's when it reemerged as part
of the cinema. Artists produced nothing of
the scope of Reynaud's work wuntil the

1930's, and the animations of Walt Disney,
perhaps the best known creator of
animation. Many of the techniques that

Disney used are still being used today.

Techniques of Conventional Animation

Conventional animation is a tedious

there
making of animated
much of the work is repetitious
boring. These are some of the
involved in making an animated film:

is great creativity
films,

and
steps

process; While
involved in the

1. The characters are drawn in pencil on
different sheets of white paper.

2. Backgrounds for the individual frames
are painted on cardboard sheets.

3. Director decides how the camera will
shoot each frame.

4, Cameraman shoots a pencil test to get a
preliminary idea of the final film.

5. The artist traces the outline of the
picture using thick black lines.

6. The colors of the characters are filled
in.

7. The backgrounds and characters are
combined on the camera stand to create
the correct shot.

8. The frames are filmed (2).

All of this takes much time and money
and many people. Each frame of the film
must be created separately. Studios
usually employ artists to create the "key"
frames, the first and last frame of a
particular movement, and use assistant
artists to draw the frames in between the
key frames. These intermediate frames are
called "in-betweens" and the assistants
who draw them are called "in-betweeners."

The transition of movement must be smooth
from one frame to another and each frame
in the same sequence must have the same

background. A filmed pencil test gives the

artist a primitive idea of the final
project. But the pencil test uses only
black and white outline drawings.

Conventional animation techniques offer no

really effective way of previewing the
action in <color before it is finally
filmed by the camera. Errors that appear
here cannot be easily corrected: drawings

must be redone, recolored, etc. It is easy
to see why animation is such a difficult
and expensive process.

Critics of animation often say that
Walt Disney could not afford to produce a
"Fantasia"™ or a "Snow White" today. The
salaries required to produce an animated
film of this quality would be prohibitive.

The popularity of television kept
audiences home and motion picture studios
were no longer able to afford the high

cost of animation. Animation reemerged
a staple of Saturday morning TV,

as

14

The quality of animation greatly
deteriorated after its move to TV in the
late 1950's (3). Disney animations were
famous for their expressive movement and
meticulous attention to background detail,
but now artists were forced to use the
techniques of "limited animation" for TV.
Limited animation meant that the artists
restricted their representations of
movement and simplified the background
detail as much as possible. This was a
result of the smaller budgets and shorter
deadlines of TV. Donald Heraldson says
"the animation industry today (1975) is in
financial trouble and often <claims are
made that it is dying. Obviously, for a
fast dollar, it is being smothered from
the inside out" (Heraldson, p.82).

The technology of motion pictures has
improved dramatically since 1888.
Filmakers now reguarly use technical
effects that the early motion picture
pioneers would not have dreamed possible.
George Lucas recently said that the
technical effects used in "The Return of
the Jedi" simply were not possible when he
made "Star Wars" nine vyears ago (4).
Animation presents a paradoxical example,
in that it is unlikely, given the
techniques of conventional animation and
the present financial realities that we
can produce animations of the same quality
that motion pictures studios produced
fifty years ago.

Conventional
changed

animation techniques have
very little in the 1last hundred
years. There was almost no technology
involved in conventional animation.
Conventional animation was a labor
intensive, machine poor art form trying to
survive in an industry dominated by
technologically superb motion pictures.
For animation to survive as an art form,
animators 1like John Halas agreed that
"mechanization was essential to advance
the whole industry" (5). But what
technology could be wused to automate
conventional animation without changing
its unique style?

History of Computer Graphics

The use of the computer to generate
movement evolved accidentally, the result
of early experiments by scientists and
engineers who used prototypes of today's
sophisticated systems to analyze objects
in motion and to <create or simulate
conditions with graphics that could be
displayed on screens,

Early computer
exploited the amazing
capabilities of computers.

graphics work
"number crunching"
Scientific

events governed by complex equations could
be visually displayed on a computer
screen, Objects could be moved according
to the laws of physics. Computer graphics
was also used extensively to simulate
activities like movements in space that
man could not see,

Computer graphics offered a &#echnique
for moving objects around. First, objects

were defined. The programmer entered the
coordinates for the first and last frame
of movement into the computer and then,
the computer automatically interpolated
the rest. Each frame of a sequence did
not need to be computed separately.

Objects could also be colored easily. The
programmer specified an area, selected the
color he wanted, and that object appeared,
so colored on the screen. The animation of
objects wusing the computer was certainly
much easier than animations done with the
techniques of conventional animation.

These animations using
were done only in laboratories and in
other scientific settings. No one
attempted to move computer graphics out of
the laboratory. However,in the 1970's
people began to see a natural alliance
between the computer and the beleagured
animation industry. The computer had been
successfully wused in animating images in
the laboratory. There was certainly no
reason why that "talent" of the computer
could not be applied to an art form which
tediously executed the same steps by hand.

the computer

Conventional animators were still wusing
the same techniques that had been
developed nearly eighty years ago.
Animators hoped the computer would
liberate them from some of their more
tedious tasks. If the computer could be

successfully integrated into the animation
process, animated films of quality might
produced again. And for computer
scientists, animation represented a good
research problem. The computer scientists
were not interested in changing the art of
animation but only in transferring some of
the techniques of computer graphics to
conventional animation.

Computer Assisted Animation

Much of the work of conventional
animation is repetitious, time consuming
and tedious. This 1is the sort of work

the computer does well., In the seventies,
some computer graphics researchers began
to actively adapt computer technology to
the techniques of conventional animation.

They reasoned that the computer was

already being used to interpolate between
frames in scientific work and they saw no
reason why this technology could not be
adapted to speed up the process of
conventional animation. Specifically,
they hoped that the computer could be used
to assist in the following phases of
animation:

1. tracing the outlines of figures;
2. drawing the in-between frames;

3. filling in the colors for the
figures;

4. visualizing the final project;

5. filming the final project
(Wallace,p.254).

Animators wanted the
them, but they wanted
unobtrusive. They
look the same as it
not want a new "look";
to help them produce quality animation
like Disney used to do. They wanted to be
freed from some of the more time-consuming
chores of animation. A tool 1like the
computer could perform some of these
steps. Animators could spend more time
developing original images and would not
have to revert to "limited animation" as
had happened in the 1960's.

computer to help
the computer to be
wanted animation to
always had. They did
they wanted a tool

free
again.
might
animations as original
Disney's fifty years

Perhaps, the computer could
animators to be original
Paradoxically enough, this new tool
help them produce
and innovative as
ago.

Computer scientists were willing to
cooperate to help the artists. These
researchers were committed to wusing the
computer as a tool to help animators. They
were not interested in changing the "face"
of animation. They began to develop
software programs to automate some of the
techniques of conventional animation.
Their committment to automatiny
established techniques of conventional
animation can be seen in their naming of
the new software programs.

The names
from the vocabulary
animation. An animator
with Disney would have no trouble
understanding what each of the new
programs did. The programs that were used
to fill in the <character outlines with
color were called "paint" programs and the
programs used to create the frames between
the main action frames were called
"in-betweening" programs. Both the basic

of their programs were drawn
of conventional

who had worked

steps of animation and the language of
animation remained the same, whether that
animation was completely hand drawn or

computer assisted.

This . is important. It is often said
that artists are uncomfortable with
machines. Certainly, there was a time when
no artist of quality would work with a
machine. The early history of animation
is an example of this. Part of this
reaction to the machine must come from a
concern about the new structure that the
machine imposes on their work. The
computer was introduced into animation in
a way that would still those fears. Roy
Madsen says about computer—-assisted
animation that the the researchers
considered the artists' needs and the
pleasing result was that "working as a
unit (computer and artist), the computer
not only challenges the animator's most
imaginative efforts but augments them and
responds to the slightest whim in less
time than it takes to sharpen his pencil,
Using familiar tools, as well as equally
familiar industry terms the animator can
generate and control movement, shape and
color - simultaneously and instantaneously"

(6).

People fear that the machine will
replace them. The computer was introduced
into animation to help the artist, not to
replace him, Marc Levoy, a computer
scientist who has been developing
computer—-assisted animation software for
Hanna-Barbera says, "We're not out to
replace the cartoon animator. Our goal is
just to relieve him of some of the
horribly tedious, boring and repetitive
work that normally goes into
hand-coloring each of cels in an

“animation sequence"(7)

the

Computer-assisted animation has been
accepted by the animation industry, and
for good reason. One computer-assisted
animation system now on the market can do
the following: "make in-between drawings
from the key frame drawings what the
animator enters into the system, and will
play back a full pencil test, take
conventionally prepared cel-animated
figures and scan/digitize them; paint the
cels; paint the background art; and record
and composite the images on videotape or

35mm film, including angles such as zooms
and pans"(8). But this system does not
change the way animation 1looks, "it

preserves the integrity and clarity of the
animator's art"(Ferderber, p-59). The
Hanna-Barbera studio uses a computer to
help them make Fred Flinstone cartoons
now, and these animations look the same as
they did before the computer became a part
of the animation process. The technique
of making Fred Flinstone might be
"high-tech", but Fred still 1looks quite

Stone .Age.

The computer has not altered the
"look" of conventional animation, only
automated some of the processes involved
in making this special art. Neal
Weinstock says in his article, "New
Technologies for the Realization of Ideas"
that with "a computer to remember the
details and a graphics termimnal to make
the changes, most of the drudgery can be
taken out of the animation process. The
animator who doesn't want to work with a
computer should be about as rare as the
housekeeper who doesn't want to use
labor-saving devices" (9).

The computer is a tool, and it has
been successfully introducted into
animation without changing the vocabulary

or the style of conventional animation. Ed

Catmull, a leading pioneer in the field of
computer-assisted animation says that
"computer-assisted animation far from
shrinking the role of artist as has
sometimes been thought, greatly enhances
their productivity and so improves the
economics of animation production. As a

tool in the hands of animation artists, a

dedicated computer system automatically
performs many of the non-creative tasks
which have had much to do with the high

cost and extended production schedules of
animated films"(10).

The computer has been
introduced into animation. Artists worried
that the computer would dehumanize art,
but computer-assisted animation looked the
same as conventional animation. Artists
were not replaced by the computer because
the computer was after all, only a tool.
The quality of the animation still
depended on the imagination and talent of

successfully

the. artist. The computer simply helped
the artists speed up the production
process. The success of computer-assisted

animation proved that the computer
be wused in art without replacing the
artist or depersonalizing his art. Now
that the computer had been successfully
integrated into this very old established
art form and was being used
enthusiastically by artists it was time to
see 1if the computer «could be wused to
create art that was new and distinctive.

could

The Computer in Art

I do not believe that computer would

have used by artists to create a new art
form if it had not been successfully
integrated into another art form first.

The idea of using the computer in art has
been frightening to some artists. Perhaps
they are afraid the computer will replace
them. David Em, a computer artist
believes that "the art world has put up a

lot of resistance to to it. But the
biggest problem is a pyschological one on
the part of artists...There is a
tremendous fear of the computer. People
think the computer is going to do it all.
You are supposed to turn it on and it
produces a picture" (1l1).

This is, of course not true, but it is
not an uncommon fear and one that has been
true when other technologies were
introduced into art.

When
developed,
produced
clarity:

still cameras were first
artists were aghast. The camera
pictures of extraordinary
people and landscapes looked
"real". Artists must have been a afraid
that the photograph would make their
representations of people and landscapes
superfluous. This did not happen because
the photograph and the painting fulfilled
different needs. The photograph slavishly
imitated reality (it could do nothing
else), but paintings created moods and
gave a different sort of pleasure. Artists
realized that photographs «could coexist
with paintings and not replace them.
Therefore, artists began to feel
comfortable enough with photographs to use
them as models. If they could not travel
to Greece, they could still paint the
Parthenon from a photograph. The
photograph came to be accepted by the
artist as a tool for his art. It was only
after the artist accepted the photograph
as an aid and not a replacement that
artists began to use the camera as a tool
to create new art (12)., Photography became

an art form of its own.

I believe the computer followed this
same path in animation. It was first used

as a tool to help the artist create
animation that looked exactly like
conventionally drawn animation, Having
been assured that the computer would

neither replace them, nor dehumanize their
art, artists were able to imagine a new
art form using the computer. Kadinsky had

envisoned an art form which would radiate
directly from the artist's mind without
the aid of pigment or brushes. Perhaps,
computer animation was that art form.
Computer Animation

The computer had been used
successfully to automate the work of
conventional animation. But this
animation was indistinguishable in style
from animation done totally by hand.

Artists seeing this marriage of machine to
art began to wonder what animation totally
generated from the computer would look
like. These artists wanted to experiment

and isolate what the computer could do
that man could not.

Roy Madsen says, "The computer offers
promise in areas of animation requiring
the maximum of mathematical precision ,
such as piotting trajectories and
depicting complex physical relationships.
Pictures may be programmed to move in
accordance with the laws of perspective,
at any desired speed and following any set
of rules or formulae”™ (p. 190). This is
what computer graphics researchers had
already discovered, but artists now wanted
to use this special "skill" of the
computer, not for science but for art.
Artists were not interested in visualizing
the laws of physics for research, but were
interested in. using these visualizations
as a part of something else, like creating
a mood or telling a story. They were not
interested in studying movement itself,
but in using movement in their art. Using
a computer does not bind the artist to

scientific laws. Artists can parody the
precision of the computer by creating
improbable figures which move according to
some laws of nature that exist only in the

artist's head. The computer is not bound
to "the" reality, but is subject to
whatever reality the artist chooses for
it. The computer, then becomes an
extension of the artist's ‘imagination.

Some artists have complained that it
is impossible to <certain things with the
computer., But this limitation does not
prevent computer animation from being a
unique art form. David Em says that
"People say computers don't do this or
that. But all art forms are like
that...Yet it does things no other medium
can do" (Levell, p.39). Artists simply
find ways around the computer's
limitations, as they do with any other
medium's limitations.

For example, the kinds of figures
that the computer can generate are fairly
limited. So far, no one has animated a
completely computer-generated human
figure. The figures that are easily
generated by a computer are different from
anything seen in conventional animation.
For years, the computer had been used to
assist designers to build better cars and
airplanes and most people have seen some
examples of the wire frame figures used in
this work. These wire frame figures looked
like lined grids twisted into whatever
shape they were supposed to represent. In
the early years of computer graphics, wire
frame figures were the easiest to
generate, They were used to model
automobile and airplane strucures. It was
easy for a programmer to rotate, move and
change the scale of the figure. Recently,
I saw an animated film which used totally
wire frame figures, but the film had

nothing to do with designing cars or
studying movement (13). Rather the film
told a story and created a mood. This is
the province of art, not of research. The
film featured a wire frame child who flew
from his wire frame planet through a wire
frame depiction of New York City. The boy

flew by the Statue of Liberty which was
rotated and shown from several different
sides, But this film was not. made to
demonstrate movement or to model
buildings. This was a film that was
chsrming, affecting and humorous, a wire
frame "Little Prince." It was without a
doubt, art, and " it had no purpose other
than to tell its story, create a mood and

give pleasure to its viewers. This film
used a figure traditionally wused for
research to create a special kind of art.

The mood was not unique, but the look was.
This was not the sort of figure Disney
ever drew, but it is the the kind of story
he would have told. This film was an
artistic application of a design that is
unique to the computer.

Computer artists do not just have to
contend with the limitations of their new
tool. The artist who uses computers can
take advantage of some unique properties,
One of the most extraordinary is the
interactive capability of the computer.
Flight simulators have wused interactive
computer animations for many years. A
pilot who <chose one path would see an
entirely "world" different from a pilot
who chose another path. Computer
animation can also be interactive,
Conventional animators draw the pictures
and choose the camera positions which will
be used for the final film. The drawings
are then filmed and the animation sequence
will stay that way forever unless the
drawings are refilmed. Computer animation
does not always have to be the same. The
animations can be different each time.
Interactive computer animation is what is
used to make video games. While this is
not "high art", it is designed to
challenge and give pleasure to its
players. This was not possible with
conventional animation. Interactive
animation is unique to the computer and is
now being used for something other than
research: it is being used to make art.

is a
new one. David

Computer animation
distinctive art form and a
Em has said that 1981 was the year
computer animation became an art form. It
was the year "artists started to emerge
and started to do things with it
(computer)" (Levell, p.40). It is no
longer just a research tool, an aid to
another art form or a novelty. Computer
animation is beginning to have a
personality and distinctive look of its
own. Already critics see a change in the

18

look of
and wire
produce
highly
image-oriented
appear to be

computer animation, "from grids
frame looks which tend to
a technical clean look and toward
stylized 3-D work, toward
material in which objects
spatial but do not
necessarily behave acccording
to the laws of physics. They are
structures that come apart or metamorphose
or unfold™ (14).

There is already evolution in the look

of computer animation and we notice that
is away from grids and wire frames which
are the very structures computer

scientists manipulated in research to new
figures which have resulted from artists
stretching and expanding the forms of the
computer. Saul Bernstein, a prominent
computer artist says, "Sometimes I'm glad
I don't know their (computer's)
limitations. I keep trying to push their
machines; sometimes I get results that
surprise even their creators"™ (15).

Our first fear about the computer was
that it would constrain the imagination
and 1limit the personal expression of the
artist. This does not seem to be true. In
fact, the computer responds immediately to
the artist.,. As Kadinsky envisioned, the
computer offers a direct path from the
artist's imagination to the final piece of
art. To change a finished frame in
conventional animation, the artist must
redo that frame, check the continuity and
then refilm the entire sequence, The
computer animator can select a frame,
change it at his terminal and replay the
entire sequence immediately. His
animations need only exist in two places:
his mind and in the computer, so he does
not need to make changes in a number of
different media (paper and film) before
the project 1is completed. The computer
allows the artist immediate feedback.
Conventional animators must wait ©before
the entire sequence is refilmed before
they can see how the correction looks.

Far from constraining the artist's
imagination, the computer responds
directly to it. So powerful 1is this
response that some critics believe that
new defintions of art must include the
computer as well as the artist (Madsen,
p.80).

- There is additional evidence for the

emergence of computer animation as its own
art form. Carl Machover estimates that
only 70% ~ of "computer-look" art is done
by a computer (16). The other 30% is drawn
by hand. Computer animation is now so
popular and so distinctive that people who
can not afford to use a computer to
produce their animations hire an artist to
imitate that look,

to have come full <circle.
artists let the computer into
try to save it, to allow
artists to produce quality animation
again. The computer was wused only to
relieve some of the tedium of the
animation process. However, after artists
saw that the computer could be useful in
art, that it would help them and not
replace them, they were free to experiment
with the computer to see if they could
create something wunique. And they have.
David Em says, "Whenever a new medium
comes along people are going to repeat
what has already been done. Just as when
film came along people tried to do theatre

We seem
Originally,
animation to

with it. It took a while for the true
artist of film to come out and start
editing. The same is true of computer
art. It's going to take a while to
establish itself as a truly unique form.
But there's no question that it is"
(Levell, p.39).

Conclusion

Computer animation has followed the
same path as photography and film in its
development as a new art form. Both
photography and film first imitated
already established art forms before they
emerged as artistic displines of their
own. Artists used photographs as models to
paint from, filmakers first shot movies
like theatre with no camera changes at
all, and the computer was used to assist
animators in producing conventional
animation.

New technology brings artists new
fears. They worry that the new technology
will replace them or dehumanize their art.
But, as the new technology imitates older
art forms, those fears are quelled.
Curiosity displaces the fear and some
artists are driven to experiment with the
new technology to <create art that 1is
unique and different. Computer animation
has emerged as an art form recently, but
already artists have created designs that
are unlike anything seen in the laboratory
or in conventional animation.

Artists
realized what

using the computer have

other artists who have
experimented with other new technologies
eventually realized, that it 1is the
imagination and the talent of the artist
that creates great art. So the technology
loses its mystique and becomes what it is:
a tool to be used, stretched and expanded
by artists. The computer has now been
accepted as a tool and we can look forward
to the further development of this new art
form.

References

1.

10.

11.

Ralph Stevenson, The Animated Film
(London,Tantivy Press,1981), p.8.

Bruce Wallace, "Merging and
Transformation of Raster Images
for Cartoon Animations," Computer
Graphics, No.3 (1981), p.253

Subsequent citations from this work
appear parenthetically in my text.

Donald Heraldson, Creators of Life (New
York:Drake Publishers,Inc.,1975), p.82.

Subsequent citations from this work
appear parenthetically in my text.

Paul Scanlon, "George Lucas: The
Rolling Stone Interview," Rolling
Stone, 21 July 1983, p.l1l5.

John Halas, Computer Animation (New
York: Hastings House, 1974), p. ix.

Roy Madsen, Animated Film (New York:
Interland Publishing, 1969), p. 190.

Subsequent citations from this work
appear parenthetically in my text.

Robert Rivlin, "Computer Graphics,"
Omni Magazine, 1982, p.33.

Skip Ferderber, "The Commercial
Production Designer," Millimeter, Feb,.
1983, p.59.

Subsequent citations from this work
appear parenthetically in my text.

Neal Weinstock, "New Technologies for
the Realization of Ideas,"Millimeter,
Feb. 1983, p. 71.

Edwin Catmull, "New Frontiers in
Computer Animation," American
Cinematographers, Oct.1979, p.1001.

John Levell, "The Computer Paintings
of David Em," Business Screen, 23 Oct.
1981, p.39.

Subsequent citations from this work
appear parenthetically in my text.

12.

13.

14,

15.

16.

Ruth Leavitt, ed., Artist and Computer

(New York: Creative Computing Press,

1979), p.3.

Philippe Bergeron, Nadia
Magnenat-Thalmann, Daniel Thalmann,
Vol de Reve (Dreamflight), a film,
1982.

Suzan Prince, "LIVE! Pratt's Computer
Graphics Seminar," Computer Pictures,
Jan/Feb 1983, p. 56.

Howard Shore,"The Fine Art of Computer
Graphics," Softalk, March 1983, p.
150.

Carl Machover,"Patterns in Computer
Graphics," Computer Pictures, May/June
1983, p. 20.

20

EXPERIMENTAL VISUAL EVALUATION FOR COMPUTER GRAPHICS

Marek Holynski and Elaine Lewis

Boston University

Abstract

This paper presents an approach for
evaluating viewer preference for computer
graphics., In this initial experiment, 44
subjects rated 21 computer-generated pat-
terns which varied in terms of order and
color. Order was defined through three
levels. of visual structure -- reflection,
translation, and random placement -~- which
are based on image generation techniques.
Findings suggest that more ordered patterns
are preferred.

Introduction

Standards for the technical aspects of
computer generated imagery are becoming well
established. Graphics producers acknowledge
acceptable levels for many variables like
resolution and speed. These recognized
standards can relate to hardware design and
software organization, yet few address the
basic quality of images. In other words,
existing technical standards do not provide
clues for practical rules that produce
pleasing images. In order to develop
aesthetic evaluation standards, we must
define structural variables for computer-
generated images and relate these variables
to human responses like viewer preference.

Aesthetic standards which are tested
for viewer response can be important tools
for graphics producers. The authors propose
an experimental approach for discovering
some formal criteria. This study considers
a dimension of visual structure, order, as
it is defined through computer algorithms
that produce abstract patterns. Three
levels of order are tested for their
relevance to viewer preference.

Previous Work

In Arts and Computers (Holynski, 1976),
Holynski suggests five categories for
classifying images:

1. Images made by random choice alone.

2, Images made randomly but according
to an assumed stochastic distribu-
tion which imposes a certain prob-
ability for the appearance of basic
elements in different parts of the

CH1930~7/83/0000/0021501.00 © 1983 IEEE

21

picture.

3. Images in which random choice was
limited to a given part of the
picture while the rest of the image
was developed from a systematic
combination of the random portion.

L, Images with very limited random
choice which use probability to
reach a state which fulfills some
assumed conditions.

5. Images made according to completely
defined structure using non-random
algorithms.

These classifications relate to tech-
niques of image production. Within each,
pictures may vary their manifest structure.
This relates to the way the form of an image
appears to a human viewer, which may in turm
be based on methods that people use to struc-
ture cognitive coding of visual messages.

Visual principles which stem from
concepts in graphic design and which are
related to cognitive coding for visual media
are relevant dimensions for definition.
Historically, many similar approaches toward
formalizing criteria for aesthetic standards
have been tried by philosophers, designers,
and art historians. 1In order to include the
more precise possibilities offered by com-
puter graphics, the authors adopt an empiri-
cal approach where criteria are systemati-
cally tested for viewer response.

In previous work, three visual princi-
ple measures, the variables COMPLEXITY
(amount of information), ORDER (pattern of
information), and REGULARITY (proportional
consistency of information), have been
tested for their relation to viewer prefer-
ence (Lewis 1983, 1981). When represented
through computer-generated stimuli, these
variables have been shown to be strong
predictors of viewer preference. Order is
especially significant. In some cases,
sixty percent of the variance in preference
has been predicted by a stimulus' level of
order.

In this study, the authors consider one
relevant variable, order, as a standard that
relates to image generation technique.

Research Objectives

This experiment is the beginning of a
larger study which aims to establish visual
standards for computer-generated imagery.

As a starting point, its goals are limited:
1) To discover the interrelation between
three levels of order and viewer preference;
2) To explore how the introduction of color
affects viewer reaction for this type of
stimuli. : ’

Findings from this and subsequent
studies will provide systematic feedback
about viewers' expectations. When refined,
these findings will serve as production
rules. In this way we can produce more
pPleasing computer graphics.

Stimuli Development

First, a basic element was designed
to be abstract, because the addition of
representational meaning would confuse the
formal effects of viewer preference; and
simple, yet capable of producing interest-
ing patterns when presented in a display
matrix. This free-form shape, illustrated
by Figure 1, was defined by 60 points
which were entered from a graphics tablet
and stored as a data file containing x-y
coordinates. A scaled version of this
basic element was reproduced, transformed
and manipulated by several computer pro-
grams to produce the stimuli.

Figure 1: The Basic Element

Each stimulus pattern is a grid of
sixteen basic elements. The manner of
determining the orientation of these ele-
ments defines the order level of each
stimulus. Four orientations of the element
are possible, as illustrated by Figure 2.

22

""’

A
1

Yo\

Figure 2: Four Possible Orientations

For the least ordered type of pattern
-~ RANDOM PLACEMENT -- all orientations
are equally probable for every element in
the grid (this technique corresponds to
group one in Holynski's classification
scheme). Orientation is assigned through
reference to a random number generator
which produces a sequence of 16 random
numbers with a range of one to four. An
example of this category of stimulus is
seen in Figure 3.

Figure 3: Example of Random Placement

To achieve the two more ordered
types of patterns, element orientation
was varied in a more systematic manner.
Both begin with a four element quadrant
where each element was randomly placed.
A typical quadrant is seen in Figure 4.
(These patterns relate to Holynski's

group three.)

r
b

Figure 4: A Typical Quadrant

R SIES YOPTC

Patterns representing the middle level

for order were produced by duplicating

-~ TRANSLATION -- the original quadrant to
£ill the remaining three. Figure 5 shows
a typical translation pattern.

Figure 5: Example of a Translation Pattern

The most ordered patterns were
produced by reflecting the original quad-
rant about both inside edges and the
central point. This creates a symmetrical
-- REFLECTION -- pattern as shown by
Figure 6.

AL

X3

DO A & ¢

Figure 6: Example of a Reflection Pattern

Stimuli were produced on an AED 512
graphics terminal and recorded with 35mm
film by a Matrix camera. Twenty-one
slides were chosen to represent three
levels of order (seven for reflection,
eight for translation, and six for random
placement). An additional dimension,
color, was explored through three hues
(nine white, six red, and six blue).

Testing

Forty~four Boston University students
were shown each slide and asked to rate
them according to preference using a ten

23

point rating scale., They were told:

You will be shown- twenty-one slides.,
Each slide is a different abstract
pattern. DPlease rate each slide

with regard to preference by assign-
ing a number between 1 and 10 to
indicate how much you like a partic-
ular pattern. Assume 5 represents

an average amount of liking. Assign
a large number if you like a particu-
lar pattern very much; assign a small
number if you don't like a particular
pattern.

Stimulus patterns were shown for fifteen
seconds each.

Analysis and Results

Mean (average) ratings were calculated
for all preference ratings. When consider-
ed as a whole, the average preference
rating was 4.829. When considered accord-
ing to a particular slide's order value,
some significant differences appear due
to a stimulus' order level. A summary
table follows,

code value label mean

1 REFLEC TION 5.579
2 TRANSTATION 4,881
3 RANDOM PLACEMENT 3.886

As this table clearly shows, reflec-
tion patterns were most preferred. This
suggests that viewers like more ordered
patterns better than less ordered or
random ones. These results, as expected,
are consistent with previous findings
(Lewis and Keith, 1983).

Although some differences were
observed according to color (blue was most
preferred with an average rating of 5.374,
white next at 4.7131, and red at 4.459),
these are not as significant. Further
investigation on the effect of color may
be an interesting focus for future study.

References

Bailey, Chris, "Graphic Standards are Emerging
Slowly But Surely,'" Electronic Design, January 20,
1983, pp. 103-110.

Fleming, Jim and William Frezza, '"'NAPLPS: A New
Standard for Text and Grephics, Part 1: Introduction,
History and Structure," Byte, February 1983, pp.
203-254.

Holynski, Marek, Art and Computers, Wiedza
Powszechna, Warsaw, 1976.

Lewis, Elaine, "An Effectiveness Measure for Visual
Communication Media: Toward Definition of Visual
Principles," Doctorial Dissertation, Department of
Language, literature and Communication, Rensselaer
Polytechnic Institute, 1981.

Lewis, Elaine and Brian Keith, "The Addition of
Content and Consistency of Preference Ratings for
Visual Structures," paper presented at 1983 annual
meeting of the International Communication
Association.

McClearly, George, "An Effective Graphic Vocabulary,"”
IEEE CGSA, March/April 1983, pp.46-53.

Olenchuk, Bruce, "Graphics Standards," Computer
Graphic World, August 1983, pp.56-60.

Schneeberger, Reiner, "Experimental Aesthetics with
Computer Graphics: Analyses of Viewers' Impressions
of Computer Graphics,'" Computer Graphics and Art,
May 1978, pp. 20-28.

24

A Pantomation Interface for the Apple II

Tom DeWitt

Image Processing Laboratory
Rensselaer Polytechnic Institute, Troy, N.Y., 12181

INTRODUCTION

Pantomation is a process of
tracking objects in the field of view of
a television camera. The Apple II
computer presents special problems for a
video interface of this type, because
its video circuitry does not conform to
broadcast television NTSC standards. A
video interface card has been
constructed for the Apple II computer
which takes standard television signals
as input and makes the derived video
information available for processing and
display within the Apple's independent
time base. In a typical application,
the board derives the positional
coordinates of a single tracked point
each video field (1/60 sec.). The
positional information can be used in
the same manner as a joystick or other
positional controller.

Pantomation has been described in
the Proceedings of the Second Symposium
on Small Computers in the Arts. The
version of Pantomation created for the
Apple II similar in design, but
improvements have been made in interrupt
service handling, key position
averaging, and system timing. The
current design is compatible with the
ubiquitous Apple II, making a tracking
keyer available to many more potential
users.

THE PANTOMATION CONCEPT

Keeping track of information in a
video signal is an awesome task if every
pixel is to be examined. Pantomation
takes the approach of throwing away most
of the picture to ferret out selected
tagged areas. This masking or keying
operation is performed by external video
circuits, typically analog comparators.

CH1930-7/83/0000/0025$01.00 © 1983 IEEE

25

The resulting signal is a simple binary
pulse occupying a small portion of the
video frame. The Pantomation interface
card takes this simplified video input
along with three timing signals: pixel
clock, horizontal sync and vertical
sync. The circuitry on the board
derives the position in the raster at
which the masked tag has occurred. This
reduces the data from the video rate of
2,000,000 x,y pairs per second at 256 x
256 resolution to 120 bytes (60 x,¥y
pairs) per second. At this rate of data
acquisition, even the humble micro
computer has plenty of time to process
the incoming data.

There are devices called frame
grabbers which accept an an entire video
image in the time it takes for the
incoming video source to write the
frame. Pantomation takes another
approach to digitizing video
information. When a frame grabber
stores the rapidly transmitted pixel
information, the computer usually idles.
After tens of thousands of pixels are
stored for evaluation, image processing
programs can peruse the pixels to derive
positional information. These
operations take place out of real time.

In Pantomation real time operation
is achieved by a masking operation that
takes place at the input. In television
parlance, this masking technique is
called Keying. Today television keyers
have become quite refined. They can
detect the presence of a specific color
from a very wide palette. Masking based
on color is called Chroma Keying. Many
television studios include chroma keying
as a standard effect, so Pantomation can
be immediately implemented in this
environment. However, unlike
conventional chroma key applications,
the Pantograph is not designed to mask
out large areas and switch in a second
television signal. In a Pantomation
application, the chroma keyed area is
made as small as practical, because it
is resolved ultimately to a single
recorded point per frame.

The Pantomation process is very
similar in electronic design to the
Light Pen, but uses a two dimensional
scanner, a television camera, instead of
a zero dimensional optical detector, a
photo cell. As a consequence, the
"pointer" is not restricted in movement
to the surface of a CRT display, as are
light pens. A tag can be made from a
hand held flash light such as a pen
light, so the process can feel like a
light pen to the user. However, since
the optical sensor is not separated from
the light source by a CRT glass
envelope, Pantomation has superior
resolution compared to light pens.
Moreover, as we will see, the pen light
approach is easily extensible to three
dimensional tracking, a feature
impossible to realize with a light pen.

Three dimensional input and display
are areas of continuing research in
computer graphics. To achieve tracking
in three dimensions, Pantomation uses
multiple cameras. This configuration
proves to be a trivial extension of the
basic implementation. Stereo pair views
can be obtained by using two cameras
side by side, or greater accuracy of
depth detection can be obtained by using
orthogonally placed cameras. The
positional coordinates tracked by each
camera are obtained in time by switching
between the cameras during sequential
video fields.

SYSTEM LAYOUT

A block diagram of the Apple II
based Pantomation system is broken into
three sections: video, Apple
motherboard, and Pantomation interface
card. The video system must provide
standard NTSC synchronization pulses:
horizontal sync, vertical sync, color
subcarrier (3.58 MHz), and whatever
drives are required by the system's
cameras. If more than one camera is
used, a switching module is required.
The Apple can select the current camera
by toggling an annunciator on its game
paddle interface, so the switching
module should be a TTL compatible analog
switch such as a CD 4066. In order to
detect the tagged area in the video
signal, the video system must have a
keyer, indicated in the block diagram by
an analog comparator. Designs for
keyers vary widely and are beyond the
scope of this discussion.

The Apple II micro computer is
based on the 6502 processor. The
motherboard has an architecture which
extends the bi-directional 8 bit data
bus and four bits of the address bus to
each of eight expansion slots. Each
slot is selected by a separate enable
line decoded on the motherboard. 1In
addition, the IRQ, interrupt request
line, and the R/W, read/write strobe
line, appear at each slot. Only one
expansion slot has the Apple's internal
3.58 MHz color reference signal, but it
may be routed by jumpers to any card.
This approach was taken for the
prototype Pantomation card, so as to
leave the special slot available for
planned expansion of the Apple's video
output capabilities.

1

1 . . 1
Vertical Drive 5

: Sync Drive Sync - - Expansion Card !
! e Horizontal Drive ! Vin Rl s)
' " [3558 MHz Color Reference | : . '
! Comeras ' Stgr.mI. Decode Chains i
! Switch : Conditioning and and '
1)
¢ Keyer : Status | | Latches :
i . i
' ' !
1 ' '
1 ! '

Motherboord Address and Control Bus

Bi Directional Data Bus

3.58 | MHz

Block Diagram

26

PANTOMATION INTERFACE CARD DESIGN

The Apple II based Pantomation
system is constructed on prototype
wirewrap card that plugs into the
expansion slots on the back of the
motherboard. There are four external
signals to the board: horizontal sync,
vertical sync, 3.58 MHz color
subcarrier, and key pulse. These
signals are buffered and conditioned to
TTL levels by LM 319 dual comparators.
A jumper is provided to select the
Apple's internal 3.58 MHz color
reference signal. This proves useful
when the output display is the Apple's
bit mapped high resolution screen.

There are two counter chains and
three latches on the board. The
counters are 74LS193's grouped in pairs
for eight bit accuracy. The horizontal
counters are clocked up by the 3.58 MHz
color reference signal and reset by the
conditioned horizontal sync from off the
board. Two latches are provided for
horizontal position: Key Up and Key
Down. The distinction between Up and
Down is based on the entry to and exit
from a keyed area on a scan line. The
Key Up is left hand position of the tag,
and the Key Down is the right hand
position of the tag. Both positions are
latched for transmission to the CPU
where a center point will be calculated
by software. The latches are 74L3173's
which are commoned to the Apple data bus
and individually strobed by a T74LS138
address decoder during a read cycle
prompted by the R/W line as buffered by
a T4LS04 on the Pantograph board. The
vertical counter is clocked up by
horizontal sync and reset by vertical
sync. It is latched by another T4LS173
clocked by the Key Up signal.

+5 +5 Sync +5 +5 H Sync

LOAD LOAD DOWN QR
l}ﬂm owey [5] i3] o
QpQcQa Qp Qc Q8 QA

S S Al | £ ST P

. G1czD@DW | ¢1 G2 1D 2D 3D 4D

DT ©K IE 745173 S . TALS173

N M 19 2Q 3Q 4Q N ¥ 1Q2q3q4gq |OF

R/W E2 D7 Dg D5 D4 R/W 3, D3 Dz Dy Dg

Horizontal Chain (Key Down)

+5 +5

!

LOAD DOWN CiR

V Sync +5 +5

L |

LOAD DOWN CR

V Sync

5] Giss3] we o B (75153 2 |——1 e
QpQcQgQa Qp Qc Qg Qa
+ =i T o |
G1 G2 © 2 3D 4D GI G2 1D 2D 3D 4D
Key

Up

3.58 MHz

27

Ke,
ST o o 745173

19 29 39 40 [OR | N W 1Q2Q 3Q 4@

mE

CLR

R/ Ep Dy Dg D5 D4 R/¥ Ep Dg D2 Dy Dg

Vertical Counter Chain

To insure that the horizontal count
is transferred accurately to the
associated latch, a pair of flip flops
are used as synchronizing buffers
between the incoming key pulse and the
latch clock. This circuit locks the Key
Up and Key Down transitions to the 3.58
MHz dot clock so the data on the
counters is transferred to the latches
after the counters have settled. This
is an improvement over the first
Pantomation system which stopped the
horizontal counter at the first key
occurrence in a scan line to assure
accurate data transfer to the associated
latches. The same flip flops store the
Key Up and Key Down transitions for
testing by the processor. The
occurrence of the vertical interval of
video is also latched by a flip flop.

o= b
| Key U
Key Up Q ey Up
[741574]
3.58 MHz Color Reference >TCK 'i Key Up
C1LR

Synchronizing Buffer for External Key Pulse

The status of these three flip
flops (Key Up, Key Down and Vertical
Interval) is transmitted to the
processor through a 74LS125 three state
bus driver when enabled by a T4LS138
three to eight address decoder. The
Pantograph card uses six of the sixteen
available memory mapped card addresses
determined by this decoder:

EO-read vertical count

Ei-read horiz. count on Key Up
E2-read horiz. count on Key Down
E3-read status word
E4-read/write . clear interrupt

E5~write interrupt enable

The fourth gate on 74LS125 bus driver is
used for the Apple's interrupt request
line which can be toggled by either the
Vertical Interval or Key Down. Key Up
could be used to initiate an interrupt,
but as it is followed immediately (in
the micro second range) by a Key Down,
this was deemed redundant and the line
tied off.

Key Up — EB Do
10
Key Down 54 Efs Dt
4 9
Vint 12 1 D2
13 ‘

Stat
s
'

IC D-3, 74L5125

Or Int

Ao —1ia EL B
At —B Yo—Eo
Az —{Cc Yi1|—E1
A3 —G2A Yz2|—E2
Dev Sel G2B Y3|—E3
+65V —G1 Y4 [— (ear
— YsF—E5

IC C-3, 7415138

v

28

There are 19 integrated circuits on
the wirewrap card. To conserve space,
two Or gate packages (7432) are used for
both And and Or operations, with the And
operations being run in negative Boolean
logic, converted to positive logic on
the spare lines of a T4LS0O4 hex inverter
that was required for other design
needs. Component costs were about $100
from a local electronics retailer. All
parts are commonly available off the
shelf. -

KeTU—p Key Or

10
F5pe 12
B D
Stat
w/R 13
Key Down 2 3 4% 6
Int
- 1 5
Vint

IC D-4, 741532

RAT L >e2—w/R
Int 3 f it

H Sync 34:>*5——H5hnc
3.58 MHz -2 >e?— 358 MHz
Key Or LDO—’—"—— Key Or
NC 2> N¢

IC C-5, 74L504

SOFTWARE

At the time of this writing, driver
software is still in development. The
initial set of programs, written in
Basic, test the board's functions and
registers. A demonstration program
written by Eric Podietz was used at the
Digicon 83 conference in Vancouver in
August 1983. This program simply polled
the board for the latest acquired tag
values and did not use any of the
board's interrupt features. Currently a
set of programs are being developed for
interrupt operation.

When a hardware interrupt occurs,
the 6502 vectors to a service routine.
The first operation of the routine is to
disable the board's interrupt line. The
status register is then tested to
determine whether a key or vertical
interrupt has occured. If a Key Down
but no Key Up is detected, an error is
assumed, and the the board is re-enabled
and the routine terminated. Otherwise,
the program jumps to the appropriate
service routine.

The Key service routine picks up
the acquired horizontal and vertical
position values stored by the board.

The x value of the tag is calculated by
finding the midpoint between the Key Up
and Key Down value. This is called New
X, and the latest vertical count is
called New Y. The program then looks to
see which camera is currently being used
and recalls the current recorded x,y
position of the tag from that camera.
These are called Cur X and Cur Y. The
New values are subtracted from the
current values to find how close they
are to each other. During the course of
a video frame, all New values are
compared to the position of the current
values and the closest New values are
stored as Temp X and Temp Y. At the
conclusion of the Key interrupt routine,
the vertical interrupt flag is tested in
case it was set while the key interrupt
was in operation. If it was, the
program branches to the Vertical
interrupt, otherwise it re-enables the
board and exits.

29

‘functions can be realized.

The Vertical Service routine takes
the Temp X and Temp Y values determined
during the video field, and tests them
to see if they are within a "Jitter
Window". If they are within a short
distance from the current x and y
values, the old x and y values are kept.
This prevents dither from key sample
errors that appear as jitter in the
final output. Typical jitter window
dimensions are 4 pixels on a side.
the tracked tag moves outside the
window, full eight bit resolution is
restored to the data acquisition.
Additional functions of the vertical
interval program are toggling between
multiple cameras and calculating the
approximate velocity of the tracked
tags.

Once

CONCLUSION

Pantomation, a system for position
tracking through video camera signals
has been adapted to the Apple II
computer. The interface is designed to
work asynchronously with the Apple's
internal video timing chain so that
normal NTSC video sources can be used.
The data acquisition rate is compatible
with the Apple's processor speed so that
real time operation and interactive
The hardware
investment is low. Driver software is
under development with demonstration
scheduled for the the Third Symposium on
Small Computers in the Arts on October
14, 1983%.

ACKNOWLEDGEMENTS

Hardware design and construction
for this board was the project of John
Lattyak, Chief Operator of radio station
WRPI. Software development is being
pursued by Russell Brenner, an
undergraduate student in engineering at
RPI. BEric Podietz of Interactive
Picture Systems wrote a demonstration
driver program for the board and has
generously provided his Painter Power
program to help illustrate the board's
use. The author is grateful to Ed Falk
and Aaron Heller of the RPI Center for
Interactive Computer Graphic for helping
prepare the layout for this paper, and
the author is indebted to his family for
their emotional and financial support in
bringing this project to fruition.

2

CONPUTER ASSISTED

Ly -
CREATIVE PROBLEN SOLVYING

2R

Dieclions...
1. Cofalomg <olid lines
2. Tnset fabs into slots
3. Find sometbing to connect
propeller (optimal power
sorce) onfo top of cop-.
d Reod \oo\\ouo\'nf) page-

-lgsﬁ;%ssé

S[IOLL A

CH1930-7/83/0000/0030$01 .00 © 1983 IEEE

30

oty o SPDSIIRIIA

is a playful visualization of a model for computer assisted Creative
Problem Solving (1). Creative Problem Solving is an essential el-
ement in the Graphic Design curriculum at Michigan State Univer-
sity. The mission of our program is to educate students in the
analytical and process phases of design. This kind of backround
prepares students to successfully fulfill the demands of a comp-
etitive job market that seeks creative and innovative professional
designers. The instruction stresses process over product by teach-
ing the students to actively pursue creative solutions to design
problems rather than passively assimilate knowledge.

Just like traditional Creative Problem Solving methods, the comp-

uterized method employs gaming techniques to playfully coax the

user into manipulating information in ways that new combinations

and fresh ideas surface. The advantages of the computer assisted

method are as follows: 1) information can be logically and sequen-

tially processed. 2) a quantity of alternatives can be generated in a

relatively short period of time. 3) one-to-one interaction is always .
available. 4) an objective appraisal can be used to determine the M’\/
ranking of idea options. 5) students gain important skills related

to computer literacy.

strates how the micro-computer can be used to assist designers and
artists in improving and learning Creative Problem Solving skills.
The software being developed, along with commercially available
software, provides the user with a systematic yet rapid approach
to generating alternatives for specific design related challenges.

0
The specific work being done at Michigan State University demon- WA/

The system consists of a foundation program (the center of the
electronic thinking cap) and numerous application modules that
radiate out from the foundation program. The foundation pro-
gram is an attribute data base called, "“HDS Attribute Handler""

It has the ability to maintain, modify,display, and eventually string
together attributes entered by the user. The application programs
are individual ‘‘games’’ or methods which playfully coax the user
into manipulating information, either directly inputed or retrieved
from ‘“HDS Attribute Handler, in ways that new combinations,
and fresh ideas surface. In some cases commercially available
software is being incorporated and in other cases we are develop-
ing programs to fulfill specific needs. The panels of Electronic
Thinking Cap list these programs and how they relate to the indiv-
idual steps of Creative Problem Solving.

Note: The final step under “Directions’’ was omitted. [t should read,
5, Insert head.”

(1) The traditional Creative Problem Solving model used for this
research is a synthesis of the work done by,
Don Koberg and Jim Bagnall,
The Universal Traveler (Los Altos, CA: Wm. Kaufmann, Inc.,1976)

Sid Parnes, Ruth Noller and A.M. Biondi,
Guide to Creative Action, (NY: Charles Scribner’s & Sons, 1977)

and personal investigation.

31

State-of-the-Art Questions

Laurie Sriedel 175 Duane Street, New York Cituy, NY 10013

August

Amondg those of us who used to be an
oridinal lunatic frinde of artist-hackerss
who got lost in the wilderness crevices

of the comruter—-and-art intersections

a surrrising rercentadge have bs now been
vindicated as avant garde instead of crazus
ahead of our times rather than rarallel or
right-angled to them.

has taken form in the
integration of our work into commercial
business contexts more often than by its
intedration into the mainstream worlds of
music and art, This is understandables as
our worky like any other new art movement:
breaks with ®"art world® traditionss in this
case obscuring boundaries between such
rreviously serarated realms 3s art and
music or science and artr and between such

This vindication

serarate cutrut forms as artists’ tools
and works of art rer se.
But this one-sided vindication is slso

regrettablers 25 high tech’s rotentizl of
wealth and dglamoursy and business’s more
abundant financiazl sssets overshadow Art’s
nebulous (and dubious) attractions with
other distracting imades of reward.

What seems to rose threats within the
mainstream artworld offers rrofits in
the world of business: and so our work
as artists maw be sidetracked by offers
of homes other than those to which ve
had intended to do.

A surerising number of us are now welcomed
by comranies which rpaw us to do work which
is remarkably similar to what we used to

do on our owny and at our own exrenses to

be considered crazy for doing., Comruter
images and sound have chansged from basement
inventors’ midnight imnsanities to viable
business. Larde comranies can make larde
amourits of monew by rlucking the fruits of
what was till recentls onle 3 rather bhizarre
underdround rootwork, The Art dets lost

in the ricturer and rossibly the artist too.
Faradoxically, we 3lso have unrrecedented
surrort avaeilable for our work,

32

CH1930-7/83/0000/0032$01.00 © 1983 IEEE

1983

The "state of the art®
unforseen questions at esverw stade of its
advance. Mans of these auestions

were not ashked within vector sraces whose
dimensions were rurely technicals structurel
and aesthetics and whose incentives con-
sisted almost entirely of intellectusl.,
emotionals and artistic hidhs. These
auestionsy new in a new context and for

the toolmaker, damewriters and software

rOSES new and

artistr echo their counterrart aueries as
found in the trzditional artworlds in
which "commercializationsy co-ortations and

comrromise® and many other all-too-familiar
terms alreadw refer to classic dilemmas.

Ironicallyy it is a3 mark of our new arts
media coming of adge that thew have evolved
to the roint where such cuestions arplu.
Since thew do arrlyr thew must be stated,
discusseds and thought throush by each of

LER-Y

This readiness for a sort of concertuszl
adolescence strikes me as the most
imrortant recent develorment in the "state
of the art" desrite an amazingd number of
other advances, The comruter arts are
bpevond their nursersy but far from beind
maturels rlaced in the world.,

For those of us who are addicted to
challendesy the dgreatest auestions are
those that can’t be answered, (*Sturid
auestions® are those which are too easy.)
The following are auestions which I have
asked muself or heard other reorle ask.

I list them here to clarifusy to help
generate thoudght, discussions and exchande:s
and to #redict or forewarn for those who
haven’t encountered them get, I 3lso list
them becsuse thew constitute an imrortant
asrect of the current state of these arts
which needs and has received insufficient
documentation.

Mw list bears no spreternse of universaslity
or comerehensiveness, Each of us would
make a different list.

Comruter Arts Businesses?

In the lonsg runry the lardgest rersrectiver
is it in the best interest of these new
nedia to provide more reorle with less
rowerful lower cost toolsy or to endow

smaller number of individuals with much
more rowerful creative and exrressive
rotential?

If it seems wou are dettindg ra3id at last
for what wou used to have to do alone at
night at wour own exrenser is what vou are
doing now really what wou were doing then?
How is it different? Are wou beindg raids
rewardedr surrorted for being wourselfs or
for not being zourself in some fairly
subtle wau?

Who "owns' the "rights® to our ideas»
inventionsy and creative outrut ("softuware
art*)? Those who do the creative thinking?
Those who do the drudde work? Those who
subsidize and Frovide toolss monews and
distribution? Those reorle out in the
world to whom our creatioms might really
mean something or be really valushle?

How can we balance the amount of time we
gsrend making comruter arts tools: the time
srent making art or music rer ser and the
increasindg amount of time that successful
commercialization of the field seems to
require for the *"3-DI" reality of!
Demonstrations Documentations and
Distribution?

How can we rontinue to orenly exchansge
ideass to educate and helr each other:
sunerdisticly raise the momentum of
accomrlishment todethery as more and more
of us affiliate with serarate comranies
in the private enterrrise srpheref?

Much that we create or learn from maw be
subJdect to "non-disclosure® sdreements.
Even if it weren’ty business thinkinsg
encourades us to be afraid that the other
dguy will steal anuthing we mention. How
can we rrevent raranoia from destroging
free oren exchande?

to

If we decide to rublish in the sublic
domainr we can rrotect our ideas from ever
being the exclusive srorertuy of any
interest and duarantee their oren access
by 211, It 2lso undermines our own self-
surrort for the furtherance of our works
and eaually guarantees free access to our
inventions by the seame interests who have
tbrought us Muzak and the "30 second srot.,"
What are the rpros and cons of rrivate
ownershir of intellectual rrorertu?

If mrivate comranies are 2 new breed of
ratrons for the arts and sciencesr if we
don’t safeduard our creatioms for them

the waw thew wishs will theu (or anw other
rotential epatrons) continue to be in 3

33

rosition to be able to eprovide needed
subsidy for the creative research and
develorment we believe in and want to do?

What are the differences between
emrloverss ratronss and collaborators?

What are the trade—-offs in workindg with
tiny low budget comruters while keering
total freedom and inderenderce, versus
losing the latter but dgetting further in
in the work via tools we could never
afford 3s individuals? What are these
trade-offs for each of us individuallu?
What are thew for the whole fields
technically and artisticlu?

To what extent do our own rersonal and
drtistic interests coincide with those of
the comranies we work for {or starty runy
and own ocurselves)? To what extent do we
find ourselves overlooking the difference
because it is easier to be in situstions
where our work is wanted, waited fory
rewardedy and well-ecuirred for rrodgresss
than to be frees inderendents visionaru,
and brokey frustratedy and unwanted?

Lan visionaries and idealists succeed in
*business® without beind somehow chansed
in waus that may not have been forseen or
wanted?

Comrputer Arts Tools!

How do the best sustems ordganizations for
artistic use of comruters differ froa
those which have been evolved for other
FUrrOosess such 2s business or science?

How do the surroses of comruter arts
systems differ from the rurroses of other
kinds of comruter sustems?

How does the rrocess of artistic creation
differ from other interactive rrocesses
to which comruters have been adarted?

How can we conves these differences to
other comruter technicasl rrofessionsls
who we may be workindg with or who maw be
hired to make instruments by companiess
but who have no rersonal exrerience of
doing music or art? (This maw be
ssrecially rroblematic for those who have
artistic backdgrounds but zre self-tausht
and/or without credentisls or standard
vocabulare in technical areas?)

How much more (and what) should a desidgner
of computer-based tools for the arts krow
about these arts than s maker of canvas:
brushess or rianos needed to krnow to make
the (simrler?) tools for these older
arts?

How much does knowleddge of established
techniaue helers and how might it hinder:s
the develorment of new technieues? (How
does knowing historw imerove the cuality
of our actions (works)s and how does such
knowledge inhibit us?)

How can a logical medium best accommodate
the intuitive» the irrational, the
emotionals the srontaneous and the
unrredictable?

How do seauence and simultaneitw intermix
irn the mind of the musician durins the
creative rrocess? How can we make both of
these dimensions eaually accessible at
each moment? (Most comruter music sustems
rush reorle toward the seauentizl dimension
by definind musical voices (*tracks® or
*channels") which must be entered secuen-
tiallw as in multitrack tares, and also
reauire to seauential srecification of
rarameters which are to be simultanecously
rerceivedy instead of allowind all sounds
or sound rarameters to be defined todether
if thew are dgoing to be hesrd todether.)

How does the overview of a ricture in
rrodress intermix with concentration on
detail in the mind of a visusl artist?
How is the "shorthand® of sketching used?

In creative rrocesses which artists and
musicians concertuaslize in stadges (or
multirle "rasses")s what are those stasges?
(Rough sketchs light and shade, edde
definitions renderingy colori chord
sequence or melodic linesy voicing and
orchestrations articulation and dunamics

see)

What do artists and musicians dislike or
feel constrained by in traditional media?
What would thew be willing to learn new
techniaues to be free of (or free to do)?

What has rrevented each of us from doing
further than we have in our own work in
*conventional® arts media?

Whu did we turn to computers in the first
rlace instead of sticking with more
traditional arts media?

How are the tools we create for others to
use different from the ones we create for
our own rersonal use in doing art or music?

At what rpoints and in what waus do we
choose to sacrifice denerality and
flexibility for srecialized rower in 2
creative sustem or tool? In whal
situations do we make the orrosite
trade-off?

If we design 2 tool dedicated to @ hishly
defined arplicationy how de the srocesses

34

and data structures best for that srecialtu
differ from those more genersl to the
medium (musical comrosition versus
srontaneous imerovisation: desidn
drawing)?

versus

What kinds of individuals do we envision
using the systems we rroduce? How much
learning time do we exrect them to rut in?
(In the old days anvone serious about the
arts exrected to invest euite a3 bit more
thean a single hour in learning to use that
art’s tools. But then agains, few attained
masterw,?

To what extent and in what ways might the
tools we create be too "complex® for the
"average" user? To what extent are thew
really Just too rersonal or rersonslized?
To what extent does a2 decision to reach
more peorle with less of 2 custom fit, or
to cut invested time or costy or et a
sustem out to "market® faster motivate =
reduction in comrlexity or rower (e.d, the
number of ortions to learn and use) when
we g0 from writing for our ouwn use to
writing for distribution® To what extent
are we truing to make it eassier to usey
versus making it easier to creste or

to market?

To what extent can easch rerson be eaquirred
or exrected to create their own art or
nusiec (exrression» satisfaction) instead
of reluindg on 3 small number of "talented”
specialists who create imades and music
for all? (What do "talent®: "masterrieces"’
and "amateur’ mean? Is our dgosl to make
masterworks more rossible or to increase
the amount of rleasure reorle det from the
rrocess of doimsg art? If boths how do we
balance them adainst each othery and how .
might the tools for each differ?)

To what extent do we {(or should we) .Judsde
what we create by its reer context versus
Judding in terms of some ideal? (*"This is
amazing for such 3 small computer® versus
"How does this fall short of how we can
envision an ultimate for human exrression?’
*More commands than others® versus "How
would someone saw this in natural landuade
or desture?")

Ilo we det further buw starting simrly and
then adding features 2s we need them» ov

by desidgnind 2 totalite that would satisfy
all our envisioned needs and choosindg what
subset we will imrlement? "What comrlexity
or euality of organization might make one
of these ortions rreferable over the other?

How can one avoid gettindg so involved in
the beautuy of the tool (rrogramr etc.,) one
is creating that one dets out of touch with
the purrose of the tool? If the two
conflict with each other» which tends to
dget priority in a trade-off? Whu?

Is distinction between tools to make
art and actual "artwork” still a valid
distinction?

Irn what ways can new technolodies reduce
the need for extensive trzimning in artistic
comrosition or self-exerression? Just in
exrediting the assembly and deneration of
materialy or in the heightening and
refinement of sensitivities as well? How
else?

Comruter Arts?

What will be the differences between the
arts of the rast and those of the future?
What will be the same?

Will art and music continue to be fields
of rrofessional srecializastion in the
future in this society if new tools

rermit easy deneration of materiazal withaout
extensive (time—-consuming and often
exrensive) trainindg and rhusical coordins-
tion skillsg?

To what extent is one considered to be an
artist or musician in this culture becsuse
of!
1+ mastery of sreciaslized technical
skills
2. sensativity to a medium
3. comrletion and outrutting into
the world of finished works:s
redardless of their technical
sorhistication or of the
sensativity or exPression
embodied in them?

Is it easier to relw on externsl
considerations such as audiences market,
or *fashion" to structure our creative
outruty or to let inner directions and
interests structure our work? For somes
conflicts with the environment are
harder to tolerate» and for othersr
conflicts with inner imretus are more
intolerable.

Fordet the comruters. What is art? What
is music? What do we need or want them
for? What drew us to them whern we first
felty heards or saw them? What rarts of wus
do thew touchr intridgues, exciter or oren
ur? What are the structures of these

rarts of us? How do we make new landuages
to describe and tools to denerste what
fits these parts of us?

What difference is there between sgrarhics
and art? What difference is there between
audio and music?

Is there a difference between what we
started trvind to do once and what we’re
doing now? What is it7? Have we evolved:
or Just fordgotten?

What differences are there between mu owun
comruter music and 2rt and the music and
art that I do without comruters?

What differences are there between muy art
and music as I have eroduced them and the
internal visions and feelinsgs that I have
tried to embodw in such forms?

How is my work different from the work of
those who are doing thinds most similar to
what I do? In what waus is my work similar
to that of those who arrear to do these
thinds most differently from me? How do I
want to be different? How do I want to he
the same? How am I the same or different?
From others? From how I see muself?

In what waws do I value the fimal results
I comrlete and for how long? How do I
value the srocess of doinsg, creating?
Which is more imrportant to me» doind or
havindg done the softwazres musics or art?
When is one more imrportant to me than the
other? What tridders the chandge back and
forth?

To what extent am I creating for muself
versus for others? When do I forget them
and lose myself in the doing for long
reriods? How does the awareness of my
audience (market) influence the work I am
creating? How do immersion and self-
consciousness alternate or mix? How do
they comrete or conflict? How do thew
refine or Frorel each other?

How can obJdectivity and subdectivity be
maintained in balance during the creative
rrocesss so that neither overshadows the
other?

What moves us emotionallw in music and

art? What excites us intellectuallu?

Hhat feels dgentley gratings or violent to
the senses? What insrires us a3s beautiful?
What reminds us of sadness? What textures:

images» and archtures do we see when we look

inside ourselves instead of out?

What have we exrerienced in common hut
never had means to roint to or communicate?

What are we truing to do that we have been
unatle to do?

What are we able to do now that we have
never been able to do before?

What can each of us do bewond what we’ve
already done?

SOUND SYSTEMS ON MICROS

Susan E. Jenkins

Instruction and Research Computer Center
The Ohio State University

Abstract

This paper examines microcomputer-based music
systems and their applications for music theorists and
composers. The examination is based on first-hand
experience with the microcomputers located in the micro-
computer laboratories at The Ohio State University, and
during demonstrations of equipment at the Instruction and
Research Computer Center workshops.

The use of computers is increasingly important in
theoretical research, music analysis, instruction, and
composition. Traditionally, composers had to have detailed
knowledge of digital sound production in order to
synthesize sound. Theorists had to become involved with
job control language, system utilities, and high-level
languages to use the computer for their research. Both
composers and theorists either had to share a large system

not designed specifically for their needs, or invest
thousands of dollars in their own system.
Today, these circumstances are changing.

Technology currently exists that enables a person to obtain
useful results without being a programmer or an electrical
engineer. Nor will cost continue to be as prohibitive a
factor in computer use. The technology making this
possible is that of the microcomputer.

INTRODUCTION

In this presentation we will be concerned with introducing
music applications on microcomputers. There has been
some research recently concerning voice synthesis on
micros, but it will be covered only briefly.

Briefly about Voice Synthesis

Voice synthesis for micros is generally of a different origin
than that of other sound generation systems. Presently
there are three categories:

* Analog-digital converters like Codex

* Linear predictive maodeling like Speak and Spell
and Voice Synthesis from Texas Instruments

* Speech synthesis from phonemes like BS232

Votrex Box

CH1930-7/83/0000/0036$01.00 © 1983 IEEE

36

Music and Sound

Music and sound capabilities on micros were considered
frills until recently. Sound capability was often known to
many as one of the micro's many "bells and whistles." In
other words, having sound on a micro was something extra.
Most will agree that this is true in many instances today.
Nevertheless, it is possible to use seriously the sound
capabilities of many micro systems. Even professional
musicians are now admitting that micro systems have many
uses, both musical and nonmusical.

REASONS FOR USING MICROS FOR SOUND

Some of the ways micros may be used for sound include:

* Composition and arranging - immediate feedback
without having to wait for performance by other
musicians

* Storage of melodies for
copyright violation

protection against

* As a data base for storing compositions (a library
of your own works in electronic form)

* As music copyist and printer

* As an alternative to purchasing a piano or
keyboard instrument

* |n music education

- drill and practice

- music dictation/reading

- developing aural skills
* Performance as an instrument itself
* Exploration of new sound capabilities
* |In theoretical research

- perception

- psychoacoustics

- signal processing

sound synthesis

WHAT IS A SOUND SYSTEM FOR A MICRO?

Combination of hardware and software

Some method of inputing music from the

beginning score; there are three types:

- coded-entry

- instrumental keyboard

- non-traditional

Some method of editing musical score files - may
or may not be the same method as mentioned
above

Documentation and programming aids

- manuals

preprogrammed songs
- demonstration records and tapes
- tutorials

Graphics on monitor used to see what notation is
entered; usually this is some sort of piano score

Other things you can sometimes expect:

- ability to repeat sections without re-entering
notes

- transposition of entire piece, voice or section
- control of tempo and dynamics

- sequenced playback - file mérging, copying
moving

- control of 'instrument' sound or timbre
- control of envelope
- wide range between accuracy of notational

capabilities on individual systems

A CLOSER LOOK AT SOUND SYSTEMS

PARAMETERS INVOLVED

*

*

waveform

voices (2-16)

envelope - attack, duration, decay
channel

range frequency, pitch range

amplitude control, volume

* tuning accuracy

* stereo

* filtering capabilities
* timbre control

- you choose
"instruments"

between

preprogrammed

- you program your own "instruments"

* more advanced
verberation, etc.)

SAMPLE SYSTEMS

Casio Music Machine

Name:

Use:

Manufacturer:

Price and Format:

Computer Model:
Documentation:

- Audience:

Atari
*Name:

Use:

Manufacturer:
Price and Format:

Computer Model:
Memory:

Documentation:

Audience:

Commodore 64
Name

Use:

Manufacturer:

Price and Format:

37

techniques

(modulation, re-

Casio Music Machine

Melody instrument, for
fun, performance

Casio

Keyboard with chip
$35-5300

Several models
Short booklet

Hobbyists, performers

Music Composer

Composition,
performance

arranging

Atari Inc.

ROM cartridge $59.95

Atari 400 and 800
16K RAM

21-page booklet

Hobbyists, composers

Music System

Composition, performing
for fun

Commodore

3-voice chipincluded with
original system software

Computer Model:
Memory:

Documentation:

Audience:

Commodore 64
64K

A chapter in the Programming
Guide/Tutorial

Hobbyists, composers

Mountain Music System

Name:

Use:

Manufacturer:

Price and Format:

Computer Model:
Memory:

Documentation:

Audiences

AlphaSyntauri System

Name:

Use:

Manufacturer:

Price and Format:

Computer Model:
Memory:

Audience:

Synclavier

Name:

Use:

Manufacturer:

Mountain Music System

Composition,
teaching

arranging, theory,

Mountain Computer, Inc.

Music boards, software (diskettes),
speaker cables, light pen $545

Apple 1l
64K

2 manuals, updates supplied peri-
odically

Composers, performers, music
professionals.
AlphaSyntauri
Composition, theory, in-struction,

printing music performance
Syntauri Corporation

keyboard, software, 4 octaves, $700;
12 octaves $1200; Apple Il interface
$30; Apple Il cable $35;
Musicmaster, Theory (diskette)
$150; Draw Waves (diskette) $30;
Composer's Assistant (diskette) $295

Apple I
64K
music

Composers, performers,

professionals

Synclavier Il

Music professionals wanting the
most control over timbre and note
creation, high resolution graphics,
digital readouts of hertz and decibel
levels, one-stroke transposition of
key, double command erase button

New England Digital

38

Price and Format: l6-voice 32K synthesiser and
software $19,750 Add Winchester
disk drive, dot-matrix printer, and
graphics terminal to total $40,225

Computer Model: Dedicated system

Audience: Composers, professional labo-
ratories, millionaires
GLOSSARY OF TERMS
amplifier - voltage-controlled amp is usually several

signals added together in equal proportions; results in
volume control

amplitude - is related to the height of a waveshape;
measured in decibels (dB); strong relationship
between amplitude and volume

analog-to-digital conversion - for the input of manual data;
envelope follows, pitch ftrackers, filter banks, or
audio signals converted to digital form; most micros
use monostable multivibrator

analysis - thoroughly examining sounds determining the
sounds' fundamental parameters and how they vary
with time

analysis-synthesis - creating sounds as a result of
understanding the relation between parameter change
and audible effect

bandwidth - used to describe filtering techniques; refers to
a specific range of frequencies

channel - the method many micro systems use for creating
a stereo effect; system can have 2-16 channels

digital oscillator - offers two main advantages over
conventional voltage-controlled oscillators; enhanced
frequency accuracy and greater waveform variety

digital-to-analog converter - one of the most important
parts of a digital sound synthesis system; converts
digital data to an analog audio signal

display - most systems include some method of displaying
the sounds during editing sessions or even during
playback; some sort of graphics on the computer
monitor

editing - method for inputing musical score or code on
system; by keyboard, typing, or non-traditional
methods

envelope - identification of changes in amplitude; what
separates one note from another; consists of attack,
sustaining of shape, and decay with time

filter - a device which acts directly on the spectrum
changing the amplitude and phase of each wave
component of the input by a predictable amount;

basic filter shapers:
band-reject

low-pass, high-pass, band-pass,

formant - part of the essential character of a sound;
resonant peaks of a sound

Fourier transform - way of connecting the time domain
(waveform and sample values) with frequency domain
(amplitude and phases)

frequency - is measured in cycles/second according to the
number of times a waveshape repeats itself (in hertz,
Hz; or kilohertz, kHz); strong relationship between
frequency and pitch

instrument - in "micro talk" commonly refers to a
programmed sound ‘with a certain timbre; most
systems offer choices of preprogrammed sounds
referred to as instruments

modulation - amplitude, using the amplitude of one
waveform to control another; frequency, using the
frequency of one waveform to control another

keyboard - most mid-priced to expensive systems include
electronic keyboard for performance and editing; of
various lengths and sizes; sometimes independent of
CpPU

noise generator - makes 'noise' analogous to white light, an
even mixture of all frequencies

orchestra - sometimes (in MusiclV) refers to a set of sub-
program calls generating a desired group or block of
sounds or instruments

phase - shift of a particular frequency determined by
comparing two waveforms on the oscilloscope face

reverberation - method of provisions for mixing delayed
and undelayed sounds; audible effect-some kind of
echo

sample - to convert sound in time to digital representation;
an individual pulse or number which gives the
waveform amplitude at a certain point in time

spectrum analysis - a kind of graph helpful in indicating
timbre; horizontal axis is frequency, vertical axis is
amplitude

stereo - not found on most small micro systems; separation
and cross tracking of sound

teleharmonioum - one of the earliest musical instruments
which produced sound by purely electrical means;
built by Thaddius Cahill in 1903

timbre - an aspect of sound which assists in identifying it;
sound quality

tuning - equal-temperment is used almost exclusively in
micro systems; all half steps the same size

voice - in "micro talk" one way of referring to a single
melodic line of music; not necessarily independent
from other sounds occurring simultaneously

39

waveform - a method of visualizing sound as changes of air
pressure with time

ANNOTATED BIBLIOGRAPHY

Adams, Christopher. "Sound Table: Fast Sound Effects
from BASIC," Creative Computing, July 1983.
Assembler approach to making sounds.

Buxton, W., et al. "A Microcomputer-Based Conducting
System," Computer Music Journal, Autumn 1980.
Description of system for performer to interpret or
conduct precomposed scores.

Ciarcia, Steve. "Add Programmable Sound Effects to Your
Computer," Byte, July 1982,
Includes instructions for hardware alteration and programs.

Edwards, John. "Highly Personal Music," Popular
Computing, June 1983.

iiood introduction to software for Apple, Atari, and Radio
Shack computers.

Gold, Jordan. "Keyboard Charisma - Making Music by

Computer," Personal Computing, May 1982.
Uses for personal enjoyment, includes buying guide.

Hammond, Ray. "Musical Computers," Music and Sound
Qutput, September/October |982.

Good survey of dedicated systems; aimed toward the
performer/composer

Hiller, Lejaren, "Composing with Computers: A Progress
Report," Computer Music Journal, Spring, 1982.

A review from one of the first to use computers for
composition of his own works.

Haynes, Stanley. "The Computer as a Sound Processor: A
Tutorial,” Computer Music Journal, Spring 1982.

Good technical survey of work at Institui Recherche et
Coordination Acoustique/Music and in France.

Jones, Kevin, "Computers and Musicians in Concert," New
Scientist, 27 August 1981.

Good introduction for novice includes a brief history of
computer music.

Lubar, David. "So You Want to Buy a Music Synthesizer,"
Creative Computing. Winter, 1982.
Sample systems and brief explanation of some terms.

Shore, Michael and McCain, Larry. "Computers Rock the
Music Business," Popular Computing, June 1983.

Very good survey of commercial uses, and description of
three types of entry systems.

Smith, Patricia. "Computers Make Music," Creative
Computing, July 1983.

Investigates trends in computer music especially those in
California.

Tubb, Phillip.
Winter, 1982.
Somewhat biased but informative comparison of ALF,
Micro, and Mountain systems; awkward conversational
writing style

"Pick and Choose," Creative Computing,

LIST OF SAMPLE SYSTEMS

Andex, Sirius Software, Inc., Apple Il, $29.95.

Apple Super Music Synthesizer, Applied Engineering, Apple
i, $159.

Compu-Music, Poland Corporation, Apple Il Plus and lle,
TRS-80 'and 111, IBM PC, NEC PC-6000 and -8000, cost?

Electronic Duet, Insoft, A;;ple, $29.95.
Emulator, E-Mu Systems, dedicated system, $6,400-$8,000.
Fairlight, CMI, dedicated system, $27,500.

Micro Music, Apple, collection of software and board, $50-
00.

McLeyvier, McLeyvier, dedicated system, $25,000.

The Music Box, Newtech Computer Systems, TRS-80, $149.
The Music Card, ALF Products, Inc., Apple II, MC-1 §195,
MC-T6 5245,

Music Maker, Sublogic Communications Corp., Apple I, Il
Pius, and Ile, $49.95.

Music Synthesis System, Micro Technology Unlimited, Pet,
AIM, KIM, Apple, $50-589.

Orchestra-90, Software Affiar, TRS-80 Model Ii1, $149.95
Piper, Abacus Software, Vic 20, $22.95.

Prism, Kinetic Sound Corporation, dedicated system,
$49,000.

Soundchaster Digital, Passport Designs, Inc., Apple i, lle,
$1250.

Roland CMU-800 and Compu-Music, Roland Corp. US,
Apple 11, NEC, $465.

Synthia, Adaptive Systems, Inc., dedicated system,
$28,600.

Vic Music Composer, Thorn EMI, Vic 20, $39.95.

QUADSURF: A GRAPHICS SYSTEM FOR 3-DIMENSIONAL HALFTONE IMAGES

Steven R, Seidel

Mathematical Sciences Department
Virginia Commonwealth University
Richmond, Virginia 23284

ABSTRACT

A graphics package for producing
halftone representations of 3-dimensional
objects has been developed for the
Apple II+. This package can display any
quadric surface (a sphere, cone, cylinder,
etc.) as it would appear when illuminated
by a point source of light. - The shadow
cast by the surface is also shown. The
halftone effect is obtained by construc-
ting the surface of white points statis-
tically distributed according to the pro-
portion of light reflected from each ele-
ment of the surface to the observer's eye.
Within the limits of screen resolution
this technique yields an image with appro-
priately highlighted and ambiently 1it
regions and smooth transitions of bright-
ness between such regions. The package is
written in UCSD Pascal and includes
facilities for storing and retrieving
complete images from disks, modifying
images, and a limited form of animation.

0. INTRODUCTION

An interactive computer graphics
package, called QuadSurf, has been
designed that is capable of producing
halftone images of certain types of
3~-dimensional objects. This package was
written for the Apple II+ and was designed
for inexperienced and non-mathematically
oriented users. The class of 3-dimen-
sional objects the package can draw are
called quadric surfaces. Common examples
of such surfaces include spheres, cones,
footballs, cylinders, and saddle-shaped
objects. An illusion of depth is created
by constructing the surface with indivi-
dual points of light, where the density of
points varies over the surface in a manner
analogous to that of true halftone images.
The surface is set in a simple background
consisting of a ground surface that
recedes to infinity and a "sky" above.

The shadow of the object is shown as it
falls on the ground surface.

The graphics package includes an
interactive environment to facilitate

CH1930~7/83/0000/0041$01.00 © 1983 IEEE

4]

creating and maintaining a collection of
images. It provides for the "quick and
dirty" creation of images so that image
composition can be judged quickly and it
has facilities for automatically rendering
full-scale versions of images without user
intervention. The latter facility is
useful since a typical full-scale image
takes several hours to compute and dis-
play. The system also provides for the
high-speed sequential display of previous-
ly created images so that a limited form
of animation can be obtained. The envi-
ronment provided for the user requires no
knowledge of programming or operating
system usage. The package is written in
UCSD Pascal and requires an Apple II+
microcomputer with the Pascal language
option.

The following three sections describe
in more detail the kinds of images that
can be produced by this package, the
interactive environment provided for the
user, and the limitations of this system
and its potential transportability to
other computers.

1. IMAGES

This section informally describes the
variety of images that can be obtained
using the QuadSurf package. The name
QuadSurf is a contraction of quadric
surface, the mathematical name of the
class of surfaces this package can pro-
duce. Throughout this discussion the word
"image" refers to the entire contents of
the graphics display screen. The word
"surface" refers to the object shown in
the image, namely, the quadric surface
apart from its background. Figures 1 and
2 are examples of images produced by
QuadsSurf. 1In those figures each surface
is composed of black and white points,
the "ground" is green with black horizon-
tal lines, the "shadow" is violet, and the
"sky" is blue. The selection of alternate
colors for the elements of an image may be
be available in a later version of this
package.

In general, the surfaces QuadSurf can

2

Figure

42

produce are smooth and very symmetric. A
more detailed classification of quadric
surfaces is given in the Appendix. Here
it will suffice to think of them as
cylinders (possibly smoothly gathered in
at the "waist"), spheres, footballs,
infinitely deep smooth-sided mixing bowls
(perhaps with their mirror images), cones
(perhaps with their mirror images), and
"infinite" saddles. All but the last of
these can be of circular or of ellipitical
(oval) cross section.
i The QuadSurf package can draw any one
of these surfaces in a given image. The
surface is presented in relation to a
"ground plane" with horizontal lines
across it to give an illusion of depth.
Any part of the surface that lies below
the ground is hidden from view. Figure 2
shows how the bottoms of the two "pods"
are cut off by the ground. The upper half
of the background is a simple "sky" that
lies at infinity.

Figure 3 shows the observer's position
with respect to the elements described
above. The observer is centered behind a
viewing window. The ground is perpendicu-
lar to the window and the bottom edge of
the window lies directly on the ground. A
light source above the ground illuminates
the surface and casts its shadow on the
ground. Only that portion of the surface

above the ground and on the side of the
window opposite the observer is seen by
the observer.

The observer's environment is des-
cribed to QuadSurf using the conventions
of a 3-dimensional Cartesian coordinate

ground surface

system. As indicated in Fiqure 3 the x
axis of the coordinate system runs right
and left, the y axis runs parallel to
the observer's line of sight, and the =z
axis runs up and down. The coordinate
arrows in Figure 3 indicate the positive
direction along each axis. The user may
specify the location of the window any-
where in the x-z plane, that is, any-
where in space as long as the window is
perpendicular to the y axis. No corner
of the window need lie on the origin as
might be implied by Figure 3. The user
specifies the location of the light source
by giving its x, y, and =z coordinates.
Finally, the user describes the surface to
be displayed by giving numerical values
for the ten coefficients for the mathema-
tical equation of the desired surface. ' In
practice, most of those coefficients are
zero so the user need only reach an under-
standing of how a small number of them
determine the shape of the surface. The
effects of these coefficients are sum-
marized in the Appendix.

As mentioned earlier, the observer
sees that portion of the surface that lies
above the ground and falls on the far side
of the window. The shadow cast by the
surface onto the ground is determined in a
natural way by the location of the light
source. The manner in which the surface
appears to the user is determined as
follows. The window, which corresponds to
the physical graphics screen, is uniformly
divided into equal-sized picture elements
(pixels), the smallest discrete graphic
elements that the computer can distin-

observer

Figure 3

43

guish. For each pixel through which the
observer sees a portion of the surface
Quadsurf determines the direction in which
a beam of light from the light source will
be reflected off the surface at a point
within that portion of the surface. The
angle between the relected beam of light
and the line of sight of the observer
determines the brightness with which the
observer will see that portion of the
surface. Since the color values of pixels
on the Apple graphics screen cannot be
varied in intensity, variations in bright-
ness over the surface are simulated by
statistical means. Simply, the more
nearly the beam of light is reflected to
the observer's eye the greater is the
liklihood that the pixel observed will be
white. Since the resolution of the Apple
graphics screen is so low (i.e. pixels are
large) this approach yields a coarse
stippling of the surface that only
approximates a high gquality halftone
image. A discussion is given in Section 3
of the potential for transporting that
portion of the QuadSurf package respon-
sible for producing images to other,
higher resolution graphics systems.

2. USER ENVIRONMENT

The user environment is the microcosm
created by the computer for the person
using the computer. Just as a video game
creates a world of its own, every computer
system and every program run on a computer
system creates an environment based on the
manner in which the user interacts with
the program or system. QuadSurf is
intended for inexperienced and non-mathe-
matically oriented users and so was
designed to be easy to interact with and
forgiving in nature. The creation of such
a user environment posed several problems.
Although not all of these problems have
been solved significant progress has been
made since the earliest versions of this
package were developed.

There were three main problems in
creating the desired user environment.
First, any surface to be drawn by the
package is described by a complex-looking
mathematical formula, a second-degree
equation in three variables. Such an
equation has ten coefficients whose values
must be supplied by the user. Steps were
taken to make this process as painless as
possible. Second, the limitations on the
computational speed of the Apple result in
the fact that it takes several hours to
generate full-scale images such as those
shown in Figures 1 and 2. Such slow
"response time" is discouraging to the
typical user because it makes experimen-
tation tedious and delays gratification.
Finally, given the high cost in time of
creating images it would be unacceptable
if images could not be saved, only to have

to be recomputed "from scratch" to be seen
again. This section describes how these
and lesser issues were dealt with in the
design of QuadSurf.

Three features are provided to mini-
mize the intimidation and confusion that
might result from requiring the user to
supply values for the coefficients of the
quadric equation and a few other numbers
that determine window dimensions and the
location of the window and light source.
First, default values that will yield an
image similar to that of Figure 1 are
initially provided for all of the varia-
bles. These default values give the
user a secure base from which work can
begin. The user is encouraged to change
just one or two of those values at first
in order to learn how those values affect
the image displayed. This provides the
opportunity to begin slowly and progress
at a self-determined pace. As usage
proceeds the default values are taken from
the most recently displayed image.

Second, a technique called scanning
on the fly [1] is used to guarantee that
the user does not inadvertently supply
values that will sooner or later cause
program failure or other undesirable
behavior. This technique prohibits the
user, in a reasonably friendly way, from
ever typing anything that might lead to
unfortunate results. 1In fact, this
technique is used throughout the package
but its most significant use lies here.

Finally, the user is presented with a
fixed-format screen for the purpose of
entering the required numbers. This type
of screen display does not roll up after a
line is typed as is typical on many
systems. The screen display consists of
labelled fields that are to be filled in
by the user. The default values described
earlier initially occupy the fields. The
user is free to jump to any one of the
fields and alter its current contents by
using a small collection of commands
presented at the bottom of the screen.
This design avoids the shortcomings of the
usual scrolling of the screen since none
of the numbers that determine the image
ever disappear past its top edge but are
always visible at the same location on the
screen. In addition, one of the editing
commands allows the user to flip the
display between a page of instructions and
the data entry page.

The second major difficulty in the
design of the user environment was the
unfortunately heavy computational effort
the Apple must expend to compute a single
image, typically several hours are re-
quired. To minimize the impact of this
delay on the user a facility is provided
for producing small-scale renderings of
images. These are simply miniature
versions of full-scale images and so
contain proportionally less detail but
take much less time to compute and dis-

play, typically a few minutes. The user
is given the opportunity to determine the
most suitable trade-off between the size
of the image and the time it takes to
compute it by choosing the relative sizes
of these thumbnail sketches. When the
user has created the desired image through
the use of such sketches a facility for
automatically generating a full-scale
image can be invoked. This allows the
user to have the computer work overnight
or during other l1ow demand periods. A
future version of the QuadSurf package
will allow the user to have a collection
of up to 17 full-scale images computed
automatically so that the computer can be
left to do its heavy work, say, over the
weekend.

Finally, in light of the high cost of
computing a single image it would be
unacceptable if there were no means of
preserving images once they were computed.
Quadsurf provides a simple facility for
saving images (of any size) on a disk and
for subsequently displaying those images
whenever desired. It takes less than one
second to transfer a stored image from a
disk to the grahics screen so the user can
easily review the fruits of his or her
labor. A number of other features are
provided to help the user maintain a
collection of images. Of greatest impor-
tance among these is that the parameters
used in the creation of each image are
stored along with the image on the disk.
Since about twenty numbers are used to
determine the properties of an image it is
essential that the computer itself main-
tains such a record. As mentioned ear-
lier, QuadSurf uses the parameters asso-
ciated with the most recently displayed
image as the default values for the fields
in the data entry portion of the package.
In this way the user can recall and modify
an existing image without having to re-
enter all of the parameters associated
with it. The user need only specify new
values for those that are desired to be
changed.

Given the speed with which existing
images can be transferred from a disk to
the graphics screen it was reasonable to
provide a means of automatically sequen-
cing through a collection of images in
order to provide a form of animation.
Since at most 17 images can be stored on
one disk (and for other reasons) a "film"
of at most 17 frames can be created. At a
rate of 1.1 frames per second the film
lasts only 15.5 seconds but the computer
repeats the sequence of frames until the
user tells it to stop. The imaginative
user can use this facility to create
interesting "film loops".

Some simple image management (i.e.
file management) facilities are also
provided for listing and changing the
names of ‘images stored on a disk and for
deleting images from the disk. These

45

duplicate some of the Apple Pascal opera-
ting system's file management facilities
but they eliminate any need for the user
to leave the QuadSurf program to perform
such operations. Thus the user need not
be familiar with the operating system in
order to make good use of QuadSurf.

3. LIMITATIONS AND TRANSPORTABILITY

The QuadSurf package has several
shortcomings that result from fixed design
objectives or limitations of the computer
system for which the package was designed.
Two of these, the speed with which an
image can be computed and the resolution
of the graphics screen, have been men-
tioned earlier and will be discussed
further. Three other shortcomings of
QuadSurf are the small variety of surfaces
that can be computed, the surface drawing
algorithm is not particularly sophisti-
cated (in contrast, see [2,3]), and no
provision is made for drawing more than
one surface in any one image. (Although
the surface shown in Figure 2 has two
disjoint parts it is a special case.
is meant here is that, for example,
QuadSurf cannot draw two spheres in the
same image.) Each of these shortcomings
was forseen and accepted in order to
maintain the feasibility of the project.
A discussion of these issues is outside
the scope of this paper. This section
treats the issues of computational speed
and screen resolution in terms of the
potential for transporting QuadSurf to
other graphics computers.

QuadSurf would be a much more useful
package if it were available on a computer
with a higher resolution graphics screen
and with better facilities for floating-
point arithmetic. Even though QuadSurf is
written in Pascal, a fairly well-standar-
dized language, transportability is still
an issue for three reasons. First, UCSD
Pascal, the flavor Apple supports, has a
few nonstandard features which QuadSurf
uses and so the program would require some
localized mol@ifications. However, this is
the least of the problems. QuadSurf
depends heavily on the particular way the
Apple Pascal system does disk I/0O and on
the particular collection of machine-
dependent graphics commands that QuadSurf
employs to display images. These depen-
dencies are too involved to discuss at
length. It is enough to note that
QuadsSurf depends on disk format, disk
directory format, the locations in memory
of graphics display pages, and various
other absolute addresses in memory that
are part of the run-time environment of an
Apple Pascal program. However, one of the
design features of the package is that all
of these dependencies are restricted to
the user interface and file manipulation
facilities provided by the package.

What

The QuadSurf package can be separated
into two main parts of roughly equal size.
The first of these consists of the outer-
most levels of the program and serves to
create and maintain the user environment.
This portion of the program would be
difficult to transport because of the
dependencies mentioned above. However,
the second part is strictly responsible
for computing images and itself does very
little I/0 and uses but a small collection
of machine-specific graphics commands.
(Indeed, this portion was first implemen-
ted on a Tektronix 4051, subsequently
translated into Pascal because of the
greater readability of that language and
transported to the Apple.) This portion of
the program is sel f-contained and could
most easily be transported to another
system. The implementor would need to
create a new user environment to go along
with the surface drawing algorithm but
this environment could be as simple or
complex as desired. Thus the computa-
tional and graphical limitations of this
package can be overcome by transporting
its core to a more powerful computer. The
other issues remain as subjects of future
efforts.

4. SUMMARY

The QuadSurf graphics package is a
microcomputer-based facility for creating
and maintaining collections of halftone
3-dimensional images and is designed for
inexperienced and non-mathematically
oriented users. The success of the pack-
age with respect to the last of these
goals remains to be determined.

APPENDIX

The types of images QuadSurf can
produce are now briefly cataloged and
described. A more comprehensive treatment
can be found in most any calculus text
that contains a section on analytic
geometry. .

In general, QuadSurf can draw what are
known as quadric surfaces. Such surfaces
can be described by an equation of the
form

Ax2+By2+Cz2+ny+Exz+Fyz+Gx+Hy+Iz =J .

The choice of values for the coefficients
A, B, C,..., J determines the shape of
the surface that Quadsurf will draw. In
the classification below at least six of
the coefficients will be assumed to be
zero. The user is left to experimentally
discover the effects of nonzero values for
those coefficients. The remaining coef-
ficients in each case are assumed to be
posi tive numbers.

46

1) Elliptic cylinder: Ax2+By2 =J .

If A =B then the surface has a
circular cross section, otherwise
it has an elliptical (oval) crces
section.

2 2 2

2) Ellipsoid: Ax“4By“+Cz® = J .

a) If A =B =C this is a sphere
of radius J (see Figure 1).

b) If two of A, B and C are equal
and the remaining coefficient is
less than the other two the surface
resembles a football.

c) I1f twoof A, B and C are equal

and the remaining coefficient is
greater than the other two the
surface resembles the earth: a
slightly "squashed" sphere.
3) Elliptic hyperboloid of one sheet:
I-\x2~l-By2—Cz2 =J .
An elliptical cylinder with a
smoothly narrowed "waist".
4) Elliptic hyperboloid of two sheets:
sz—ByZ—sz =J .
This surface can be thought of as
the surface of case (3) pinched so
tightly that it separates into two
pieces (see Figure 2).

5) Elliptic paraboloid: Ax2+By2-Iz = J .
This is a surface resembling just
one of the two pieces of the surface
of case (4).

6) Elliptic cone: Ax2+13yz—Cz2 =0 .
This is a surface resembling the
surface of case (3) but pinched
down just to the point of
separating. It resembles two cones
attached at their tips.

7) Hyperbolic paraboloid: Ax2—By2-Iz =0
This is a saddle-shaped surface
extending infinitely in all
dimensions.

Using the equation for an elliptic
cylinder as an example, two observations
can be made that also apply to the other
surfaces described in this list. First,
the values chosen for A, B, and J
determine the cross-sectional area of the

surface. For example, if A =B =J=1,
the cylinder has a radius of 1 unit. By
increasing J or decreasing A or B the

cross—-sectional area of the surface will
increase, and vice versa. Second, by
exchanging the selection of coefficients
from the general form of the equation the
orientation of the surface can be altered.
For example, an elliptic cylinder with
equation

Ax2+By2 =J
will be drawn by QuadSurf as a cylinder
standing on one end, that is, oriented
along the 2z axis. The equation

By2+sz' =J
describes a similar surface but one lying
on its side extending to either side of
the viewing window and

Ax2+cz2 = g
is an elliptical cylinder also lying on
its side but extending through the plane
of the window.

REFERENCES

[1] Seidel, S. R., Scanning on the fly:
An approach to the user interface,
Comput . Educ., (to appear).

[2] Potmesil, M., and Chakreverty, 1.,
Synthetic image generation with a
lens and aperture camera model,
ACM Trans. on Graphics 1, 2 (April,
1982), 85-108. -

[3] Blinn, J. F., A generalization of
algebraic surface drawing, ACM
Trans. on Graphics 1, 3 (July,
1982), 235-256. -

47

DESIGN FOR AN ARTISTS' WORKSTATION FOR THE MICRO-COMPUTER

by David Cook

Diaital Image Corporation
rand Rapids, Michigan

_ABSTRACT

in this
software
presented.

paper, a design the

an

description for
involved in artist workstation is

This paper investigates the uses of
scanners and functions incorporated into a highl
defined user interface for the wmanipulation o
graphic images. The results shows tha complete
?raph1Ci software systems can be developed for ver
ow

cost micro-computers which can rival, if no
better, currently available and costly main-frame
systems,
INTRODUCTION

In. technology’'s onrush of -cosputer raphics

hardware and software we raplatedl{_ hear that in

order to have truly good, high qualit graghzcs, we

need massive number crunching computers to handle

fast fourier transforms and other complex

algorithmeic strategies. While it is true that
can in turn

larae machine running large programs
produce very good graphxcl, the expense of such a
systea is much beyond mbpst budgats. Three years
ago, Digital Image Corporation, a new conpanr

decided that for their first grojnct they wou &
attempt to produce high quality computer graphics
for advertising, slide shows and television.
Realizing that an equipment investment of #$100,0080

or more was required to buy a commercially
available complete graphic system, it was also
decided that the company would also design their
own graphics systea based around the 180 wsight bit
microprocessor. Since time was a crucial factor it
was decided that all the hardware should .
current, off-the-shelf equipment, with the software

being designed in-house.
COMPUTER EQUIPMENT

Cromeaco 12D, 188 based computer systen
*+ H4K RAM - Main user memory
ITUART board (contains 2 pa
* Two § 1/4 inch floppy dis
Beehive CRT

EPSON FX-B@ graphics printer

GRAPHICS EQUIPMENT

Cromeaco SDI graphics boards
b colors out of map of 4095)
Two 48K RAM image planes) .
Via Video frame grabber with B&W RCA video camera
Houston Instruments HIPAD bitpad
Aydin Controls RBB monitor
3% color encoder (REB to NTSC converter)
Matrix Camera (produces 35mam slides of RGB image)

rallel ports)
drives (384K each)

After an initial six months of software
development, the system was turned over to slide
production with further software development
pccuring in non-production hours. At the time of

this writing, we have just isplementad version 4.8
of our software, One of the distinctions between
our wsystem and the larger comsercially available
‘canned’ systems 1is tha we had to roduce a
oroduct using our own software. Havina te sat our

CH1930-7/83/0000/0048$01.00© 1983 IEEE

48

own code hai made us painfully awire of our
short:onin?l in the initial design., This document
will describe the basic problems encountered in
designing a graphics system for an eight bit
computer. We will deal in concept, inplementation
examples will be in pseudo~code instead of 188
assembler in order to make the ideas universal to

all coaputers,
BASIC PROBLEMS

The basic probleas we sencountered in designing a
graphics package for a eight bit processor were:

1) Resolution
Would the product contain enough resolution to
sell professionally in the television and 35am
slide markets?

2) Speed
ngld the hardware be fast enough to produce
the required graphics in a time frame which was
profitable?

3) Ease of use
Would the system be useable without the
operator needing two PhD's from MIT?

4) Versatility
Would the system produce offectival¥ without
restricting the artists creative potential?

To solve these problems on a wmicro-computer
required a tightly designed software systes based
around graphics theories which differ from the
currently accepted standards.

THE SOFTWARE

The graphics software consists of several separate
rograms. FONT is designed to draw vectored stroke
ables, This handles all lettering (fonts) and

special images such as the 2D wireframe outline for

a shape used to create a solid. SPECIAL PROGRAMS

consists of several algorithms for mutating raster

images such as tilting, skewing, block pixin?,
sphere generation etc. These are used, like FONT,

to generate basic shapes or sffacts, éHODT is a

gragran which handles down loading an image to 35mm
ils, The +final program, MENU, will be the topic

of this pager. It is the hub of the system and is
used to take all the basic components provided by
the other software and modify them to create the
final image. 0On the average, the user spends most
of the time in MENU, therefore speed and efficiency
are of priae concern,

BRAPHICS PRIMITIVE BET, BASIC DESIGN

Our conguter included both 1788 ABSEMBLY LANGUAGE
and ORTRAN v, Speed and efficiency
considerations made us choose assembly language for
implementing the primitives., Since we wanted our
primitive set wuseable in both languages , we
endowed all primitives with FORTRAN call compatible
parameter lists. Additionally, since our version
of FORTRAN treats paramater lists containing more
than three paramsters differcntlr than lists with
three or less paraseters, all calls contain no more
than three parameters, Each parameter may be

either scaler or vector. Any routine requiring
nore than three parameters which can not be
specified in a vector are usually igo:ifind through
a second routine which makes the data available to
the ¢irst routine through a global data area.

BASIC CONCEPTS

The raphics primitives are divided into the
following four basic groups:

1) Environment maintenance primitives
2) Reality interface primitives

3) Image space manipulators

4) Color space manipulators

Group one, the environment maintenance functions,
are sia ly commpands to select work pages, display
pages, stack usage and so on. Group one is highly
dependent on the actual graphics hardware selected
and therefore will not be discussed.

Environment Maintenance Primitives:

CPPABE - Copy current page to alternate page.
Display the alternate or flipped page.
Display a particular graphics page.
Turn graphics DMA off.

Turn graphics DMA on.

Exchanges one page for another page.
Write B:xel via currently set function,
Move FORTRAN stack for graphics use.
Initilize general graphics environment.
Set bit or nybble mapped resolution.
Set entire dxspla; to high or low
resolution (high=/56x4B82, low=378x241).
Turn the screen off

Turn the screen on.

Set logical function for ISM commands.
Single neighborhpod pixel average.

Set target page and scanners ISH commands.
Open a window from page zero to page one.
Work on the alternate or flipped page.
Work on a rarticular graphics page.

Write Rxxe .
Read the color of any individual pixel.

Broup two, reality interface functions, are
composed of bitpad interfaces, frame grabbers and
inage-to-disk/disk-to-image routines. hese fairly
standard algorithas are also extremely hardware
dependent. In a later part of this paper, the two
major routines, BITPAD and BITBET, will be
discussad.

—_—l@E
m
LI I N A I N I I O |

MMEEE—NWWL DE=GMMODITIO

Reality Interface Primitives;

BITGET - Get decoded data from the bitpad,

Get non~decoded data from the bitpad.
Dilglay or inhibit display of the cursor.
Brab a small frame from the video caamera.
Grab a bif frame from the video camera.
Grab a tilted frame from tha video camera.
Set @arallel port for bitpad operation.
Reset the parallel port for redefinition.

final two grougs image and color space
ipulators, will constitute our main focus as
se groups contain the most useable concepts.

IMAGE SPACE MANIPULATORS (ISM)

Each of the two image planes may be divided into
ln{ number of sub-image areas, hess areas are
called boxes and are defined by entering the lower
left and urplr right coordinates of the desired
area, All of the ISM primitives require a miniaum
of the following information,

1) Bource box coordinates
The area containing the image to be modified
by the I8M function.

2) Destination box coordinates
The area which will receive the results of the
I8M function,

3) Color vector
The color vector has different aeaning to
different ISM primitives based on their
individual functions. However, it usually
specifies which colors in the source box are

to be modified,

4) Mathematical/Boolean functions
Haw the source box will integrate with the
destination box, Choices are: REPLACE, ADD,
SUBTRACT, XOR, DR, and AND. Thc.fgngtfon in
effect al the'time of the ISM primitive call
will cause the result of the IGM to be ADDed,
SUBTRACTed, XORed etc. into the destination
area. Funcfion is set by the routine SETFUN.

5) Box scanners
Modifies how the source box and destination
box are scanned. Currently we have eight
separate scanners, Source and destination
scanners need not be the same., This allows
the user to mirror or rotate a raster image
90, 180, 278 and 340 degrees.

4) Source and destination pages .
Specifies that the source and destination
boxes exist on the same or separate pages.
This allows all ISM primitives to take an
image on any page, modify it, and place the
result (via the function and scanners) to
any page. Both scanners and Eages are
specified by the routine TARGET,

The first three data elements are included in the
ISM primitive calling parameter list in the format:

CALL ism (source box,destination box,color vector)

The remaining thrae elements must be specified
through their corresponding routine before calling
the ISM primitive.

1SM _PSEUDO-DESIGN

8ince most all of the ISM primitives are similar in
design and differ onl in the functions they
perform, wa can express thes in a pseudo~language
shell, The various functions can be placed
interchangably in the shell below. Here then is
th: .E:sic program structure for most of the ISM
nitives:

P
é source_box,destination_hox,color_vector)
color _vector address

destifnation _bBox _address
RT source_box TO memory_coordinates
EVE destination box _address
RT destination_box TO memory_coordinates
EVE color_vector_address
GET source_scanner _choice FROM global_data_area
CONVERT source_scanner _choice

scanner _calling_address
BET destination_scanner_choice FROM
Elobal_datl area
CONVERT destination_scanner_choice T0
scanner calling address

DO UNTIL ND MORE SOURCE™ECAN POSITIONS

8ET display TO source _page

READ source color FROM

current_source_scanner_position
CALL source_scanner
(move fo next position in the source box)
BET display TO destination_page

r
s (
EGIN
SAVE
SAVE
CONVE
RETRI
CONVE
RETRI

particular ISM pFinitive function
(see descriptions below)

CALL destination_scanner
(move to next position in destination box)
Esgb Do i

As amentioned previously, the source_page /
destination_page and source_scanner /
destination_scanner are set prior to calling the
ISM prisitive through other grilitiV.l and are
loaded globally by the ISBN itself¥.

I8M PRIMITIVE DESCRIPTIONS

The I8M descriptions presented below contain the
replacesent pssudo-code for the ISM shell a
sathesatical description and an Eng!lsh
description. The follaowing kay contains symbols
used to describe ISM primitive functions:

RP = Resulting Pixel: The resulting value froa the
18M function for any given pixel within the
scan area.

SP = Source Pixel: The current source scan position
pixel value,

DP = Destination Pixeli The current destination
scan position pixel value before execution.
[¢] = Function: The curruntlx set function, one
of the following: REPLACE, XDR, AND, OR,
SUBTRACT, ADD.

then are the ISM primitive descriptions:
COPY: COPY source box to destination box
FUNCTION: RP = (DP [f] SP)

PSEUDD:
IF source_pixel _color 1S FOUND IN color_vecter
THENvPLOTpsnurEe pixel TO destination_Box VIA
ENDIF function AND scanners.

COPY takes each pixel in the socurce box and
to ses if the coE
not, no

Here

checks
or is set in the color_vector, I+
is taken for that pixel. 1f the
color is found, the pixel is written to the
destination area via the function, with placement
determined by the scanners.

action

AVE: Average source box with destination box
FUNCTION: RP = (DP [41 ((SP + DP) / 2))

PSEUDD:

IF source_pixel_color 1S FOUND IN color vector
THEN ADD destination_pixel TO source_pixel
DIVIDE result BY TWO
PLOT result TO destination_box VIA function

ENDIF AND scanners

AVERABE will take sach pixel in the source box
which also exists in the color vector and calculate
a mix, or average, between itself and the
correspond:ng g!xel in {hl destination box. The
result of this calculation is written into the
destination _box via the function with placeaent
determined 6y the scanners.

FADE: Slow average source to destination box

FUNCTIONs IF SP = DP THEN RP = (DP L[] DP)
IF SP > DP THEN RP = (DP [f1 (DP + 1))
IF 6P < DP THEN RP = (DP [f1 (DP - 1)}

PSEUDOD:
If source_pixel_color I
THEN IF source”pixel [
destination_pixel
THEN ADD ONE TO desti
LE
R

FOUND IN color_vector
BREATER THAN
tion_pixel

S
8
na
LSE
IF source 18 %S THAN diltinatiunrpixll

ixel
EN SUBTEACT ONE F

ENE?F M destination_pixe

PLOT destination_pixel via function and scanners

ENDIF =P Fann
FADE is basically a slow AVERABE. FADE takes each
pixel in the scurce box and checks to see if it is
set in the color_vector. If the color is found,
FADE makes the corre:gondine ixel in the
destination _box ONE MORE LIKE the source pixel.
This allows two images to be faded from one to

another in 15 steps.
CEQC: Color EQuals Color
FUNCTION: RP = (8P [${] value)

PSEUDOs
IF source pixel _color I8 FOUND IN color_vecto
THEN PLOT sourCe_pixel MODIFIED BY value VIA
ENDIF function TO destination_box

CEQC is a raster oriented IF statesent which allows
the user to amodify onlx particular colors in the
display via a value predetined by the routine CEQCR

r

50

{value)., For example, the user may wish to turn
all odd colors to even colors., To do this the user
need only set the odd colors ON in the
color_vector, set the function to ADD amd the value
to one, This will add the value one to all odd
colors in the source rastor area and plot the
results in the destination raster area. 1 the

function were set to REPLACE, all odd colors would
be replaced by the color one.

The following ISM primitives differ from the last

four in that they perform more complex functions
aadlsay alter the format of the ISM primitive
shell.

FUZZ: Pixel average (smoothing)

FUNCTION: RP = 8P £§1 ((SPL1,1148P[1,0]48PL1,~11+
pre,-11+45pf-1,-11+48p0-1,082+
sPL-{,13+8PC8,1{1)/8)

PSEYDO:
IF sou lor 1S FOUND TN color vector

(el co
stination_pixel EQUAL TO ZERO

neighborina %ixll
on_pixel EQUAL TOD destination_pixel
hboring_pixel _color

T
9

on gixll EQUAL TO destination_pixel
Y EIGHT

ion_pixel VIA function AND scanners

FUZZ allows the wuser to exercise several image
enhancement algorithes such as smoothing,
edge-detection and color wraparound on the
source box. Fuzzing is one of our most important
effect” generators and is responsible for improving
resolution through snoothing. In using functions
with FUZZ, glows, neons, basic textures and iligl
cleanup may be per*ornod. Basically, FUIIl extends
an nine pixel niighborhund through the image area.
As the neighborhocd mcves through each pixel in the
scan area, the eight pixels surrounding the center

ixel are averaged, and the result is placed over
he ninth or center pixel., If the result is
SUBTRACTED from the center pixel, the resulting
image will be edge-detected. Other functions
ertorm other useful nmodifications, For

information on inplenentin% FUll on
micro-cosputer, please consult the JANUARY
issue of treative Computing,

Rore
2
‘83

KEY: Pattern fill, complex copies
FUNCTION: RP = (DP [f] SP)

PSEUDO: (Note partial shell defination included)
Kgéeiaource_box,destination_box,color_vector)

SAVE color_vector_address

Same as g!n;ral ISM shell

CONVERT destination_scanner _choice T0
scanner calIina address
DO UNTIL NO MORE SCAN POSITIONS IN
destination_box
SET display TO source page
READ source_color FROM .
current_source_scanner position
CALL source_scannef (move to nex
position in the source box)
BET display TO destination page
READ destination_color FRON .
current_destination_scanner position
IF destination_pixel _colar 1S FOOND IN
color vector .
THEN PLOT source_pixel TO destination_box
VIA function

ENDIF
CALL dastination_scanner (next position
in the destTnation box)
1F destination_scan AT _START OF NEXT SCAN LINE
THEN SET source_scan TO NEXT SCAN LINE

E%gElourcc scan AT END OF CURRENT SCAN LINE

THEN SET source_scan TD START OF CURRENT
SCAN LINE

KEY, while looking like COPY, is actualll COPY in
reverse, While "COPY allows the user to copy the
tolor _vector colors_ from the source_box to the
destination box, KEY will copy ALL the colors from
the source_box only ONTD the color_vector colors in
the destination box, Thus, where In COPY, the user
can specify which colors are to be copied, in KEY,
the user specifies onto which specific colors the
key is to occur. Furthermore, if the source box is
a different size than the dgs{ination_bug, KEY will
repeat the source_box within the destination_box
until it is completely filled. If different
scanners are specified for source and destination
boxes, KEY will rotate the source area before
Elott:ng it into the destination area, This allows
EY to rotate any n_by m image into a nl by mil area
without smearing. The other ISM primitives require
that the source box dimensions be swsimilar to the
destination_box dimensions (ie source = n by m,
destination may be n by m or m by n). If this is
not the case, the source box 1s smeared into the
destination area, KEY overcomes this effect by
rotating each source scan line before plottin

enabling it to take a n by m box, rotate it an
plot it into a nl by ml area without smearing.

3D: Intensity as a function of space

FUNCTION: RP = DP [f] SP where RPIx,y] =
DPL((SP#xm)+x), ({SP%ym)+y}]

rce gixel_culor IS FOUND IN colar_ve
MULTIPLY Source pixel color BY x_mul
estination_pixel_x_codrdinate YO RES
PLY source pixel color BY y multiRli
estination_pixel_y_coordinafe TO RES
T source pixel color TO destination bo
scanners AND function AND translafed
coordinates
ENDIF

3D takes the desired pixels in the source box and
adds their respective intensities to the x and vy
ctoordinates of the corresponding pixel .in the
degtination_box. The user is allowed to specify a
nultiplier “for both the x _and y axes prior to the
call;n? of 3D by callinﬁ PUT3D (xm,ym)., If either
multiplier is zero that axes is turned off and
extrapolation occurs for that axes as if copy were
called. Figure | shaws a before and after image of
a tiled surface consxsting of two colors, one and
13, The after image shows that the color one tiles
are shifted one pixel in the x and y (xm,
while color 15 tiles are shifted 15 pixels in

and y. If a xm,ym .

tiles would be lhxféed two pixels and -color 1§
tiles would shift 30 pixels. This trpo of effect
has many uses. First, it allows a 2D 1mage to be
extrapolated into a 3D image by using color as
depth information. Secondly, since this
extrapolation is stronger for the higher colors
shifting them further awax from dimmer colors, it
will leave shadows from the shifted position. The
shadows will fall as predicted by where the
hilights +fall in the tmage. In fact, if more than

h

[L%
he «x
of two were used, color one

ong lighting source is hiftting the image, amultiple
shadows can result, While this method is not
nearly as controllable or accurate as raytracing,
it provides a small, slow processor with a very
high speed method of obtaining a similar result,
It should be noted that the internal workings of 3D
ALWAYS ADD the color to the coordinates., This

neans that in order to obtain proper treatment of

the image, the user should specify both source and
destination scanners be left to right-tog to
bottonm, f the

otherwise overgrinting will occur.
(]

scanners are reversed t image will be plotted

away from_ the viewer as opposed to towards the
viewer, It should also be noted that it is
undesirable to 3D map with color zero as this will

often delete part of the resulting image (color
z?ro ux}l not shift in the x and y as it ?: a value
of zero),

51

Finall several other ISM primitives exist which
allow lﬁe user to modify only a source area. These
primitives do not use scanners or functions in the
same way as the previous ISMs do.

SHIFT:

SHIFT is identical to COPY in that it will copy a
source box to a destination area (only on the same
page). It differs in that it replaces each source

gixll with the background color after the shift,
hifts can occur in any direction at any juap
factor but the user must |p|c1fg the proper
scanners (to avoid overwriting) efore calling
SHIFT,

FIND:

FIND is a method of locatin
on the screen. FIND is called with the desired
coordinates of a source_box and will attempt to
find a non-background colored image within that

a desired rastor isage

coordinate space. no image "is +found, the
coordinates are returned unchanged. If an image is
found within the source area, the coordinstes are
changed to fit the image on all four sides. This
routine does not wuse scanners and perforas the
search two pixels at a time making it extremely
fast. The worst case find for locating a single

pixel within the entire screen area occurs within 2
seconds. This is our fifth find algorithe and
represents a speed improvement over the last
algorithe of over 8@ percent.

XORBOX:

XORBOX will take a source_box and XOR it with the
value 15, This routine does not use scanners and
is extremely high speed. This wmay be used for
showing the user which boxes are currently in
effect,

BETBOX/PUTBOX:

GETBOX and PUTBDX allow the user to store up to 96

separate box coordinates in a small unused portion
of the image plane, Since our system consists of
two image planes, a total of 192 box coordinates
can be stored and retrieved. This allows programs
§° :Rsily information back and
orth.

communicate box

COLOR SPACE MANIPULATORS (CSM)

CSM routines exist for manipulatin

These routines are the basis for severa

higher lasvel routines which perfors shading and
hue:ng. All data is squlied to the routines as
one byte integers. olors are specified as red,
green and blue gun values where each value is a
single byte with a value between zero and 185,
Colormap positions are also single bytes with a
value between zero and 15. Therefore, a grey scale
would look like:

Four basic
colors,

Color R 6 B
[} o 0 @
i 1 1 1
2 2 2 2
14 14 14 14
15 15 {5 15

While a map shaded from red to yellow with a blue
background may appear as:
Color R 6 B
[} @ P15 (Background)
i 15 8 @ (Red)
2 15 1 @
3 15 2 @
4 15 3 0
5 i5 4 0
& 15 § @
7 i35 6 @
8 15 7 @
9 15 8 @
1@ 15 9 0
11 15 10 @
12 151t @
13 15 12 @
14 1513 @
15 1515 @ (Yellow)

While the following four low-arder primitives
described below are extremely simple routines, they
are the foundation for wmuch more complex color
manipulation routines as described further in this
paper.,

DEFCLR: DEFine ColoR

FUNCTION: cm(map+®) = RED (cm = colormap)
cai{map+l) = GREEN
cmimap+2) = BLUE
PSEUDD:
DEFCLR (map,rgb_stack)
BEGIN
DO WHILE VERTICAL BLANKING
S8ET color_map INDEXED BY map PLUS ZERO TO
rob_sfack(@d)
SET color qla INDEXED BY map PLUS ONE TO
rob_stack(1}
SET color naﬂ INDEXED BY map PLUS TWO TO
rogb_stack(2)
END DD
END

DEFCLR allows the user to set an individual color
map position to a red, gqreen and blue setting.
'Rgb_stack’ must be a thres blt. stack containing
the desired R6B values (each between zero and 19))
‘Map’ must be a single byte value between zero and
15 indicating the desired color map position to

sodify.
SETMAP: SET the entire color MAP
+i) = RED(8-15)
em(@-15,2) = GREEN(@-15)
5,3) = BLUE(@-15)

PSEUDO:

SETHMAP (map_stack)
BEGIN
DO _LOOP=15 TIMES

DO WHILE VERTICAL_BLANKING
SET color_map INOEXED BY LOOP PLUS IERO TO
na?_sfac (LOOP,®)
SET color naﬂ INDEXED BY LOOP PLUS ONE TO
na?_siac (LOOP, 1)
SET calor_map INDEXED BY LOOP PLUS TWO TO
nap_stack (LOOF,2)
END DO
END DO
END
SETMAP allows the user to imn!diatelz set an entire
color mapy 'map_stack’ must be a 16 by 3 byte array
:nntainina the” R,6 and B values for each map
position 10-15), this routine is extremaly fast as

it sets all 14 colors within one vertical blanking
interval making it ideal for higher order color map
animation routines.

BETMAP and PUTMAP allow the user to store up to 96
separate color maps in a small unused Bort;on of
the image plane. As with BETBOX/PUTBOX, if both
inage planes are used, a total of 192 uags nay be
stored. Map storage in no way affects box storage
or image display. This is the only way for
programs to cosmunicate the color wmaps and box
coordinates to each other.

The power of the primitives can be seen by the fact
that each ISM primitive can handle many separate
functions. Just on functions alone, eac
routine is capable of six different eléiects, one
for each of the six possible boolean funclions,
When combined with source page/destination page and
source scanner/destination scanner, the number of
possible effects is greatly increased. However, in
order to provide the user a sane way of using the
rimitives, an overall gridwork had to be laid over
ghe prinitfve systea, his gridwork consists of an
extrenely gouer ul user interface which couples the
artist to the ?rtnitivus allowing complete freedos
to access al of the primitives powers, Menu,
therefore, is the only program to use all the
primitives.

Physically, aenu is
cnngonentlx the CRT
con

composed of three amajor
: screen which contains 2
inuously running environment monitor informing
the user to the currently set parameters, the
bitpad surface yhich contains the menu pad, and the
RBB monitor which displays the complete image.

THE BITPAD

The bitpad surface is physically composed of three
components: the digitizin surface, the button
area, and the stylus. The digitizing surface is
the area in which the user points and draws with
the stylus, The button area is on the left of the
bitpad and consists of four huttons which control
the stylus. The first button is _the RESET button
and resets bitpad operations. The other three
buttons are explained later.

The bitpad _is controlled by two primitive
functionsy BITPAD and BITGET. A call to BITPAD
will return the current x and y coordinate
addresses of the stylus as two values between one
and 10,708 each. long with the x and K position,
the blépid returns the status of the stylus
indicating if the stylus tip is touching the bitpad
surface as well as the condition of three switches
mounted in the bitpad surface.

BITBET, in most cases, is used instead of BITPAD as
it performs_ several different functions besides
calling BITPAD +for the wuser. BITEET alliows the
user to treat the BITPAD surface in two separate
ways, 1f the user is in STREAM mode (stream button
on BITBET will track the stylus with the cursor.
14 the stylus is depressed, he cursor will Dbe
turned off and the x and y coordinates will be
returned., These coordinates will be extrapolated
to fit screen coordinates (1-378,1-241), 3

is in POINT or SWITCHED STREAM mode, BITBET

not display the cursor and will {reat the

user
will
bit
divided into 2! rows by 21 columns.
styl
coor
dif

pad surface as if it contained 441 hutton areas
. Dlprns:ing the
us into one of these areas will result in their

dinates (1-21,1-21) to be returned. The

ference batween POINT and BWITCHED STREANM is
that in POINT the stylus must be depressed for each
button desired, while in SWITCHED STREAM, as long
as the stylus is defressed, the button coordinates
are fed continuously to the host. BITBET perfaras
one further operation. A separate routine, BITAVE,
can be called to toggle an averaging bit in BITBET.
1f the bit is off {,FALSE,) then BITBET behaves as
mentioned above. If the average bit is set
(.TRUE.) then each point in STREAM nmode is
averaged with the most recent point and any new
gnints which are further than 15 pixels away from
he most recent point are discarded. This allows
the bitpad te te useful even in a noisy
electromagnetic environment such as those often
present around poorly designed RGB monitors.

MENU STRUCTURE

As mentioned earlier, MENU can be thought of as a
controlling gridwork, or interface, between the
user and the primitives., At the heart of this
ridwork is a 441 word (B82 byte) table divided
nto 21 rows by 21 columns. Each i
address pointer to the routine which will
the corresponding bitpad button (via BITGET).
the pointer is zero, no routine exists for that
button. Otherwise, the address is retrieved and
jumped to. This direct prr0l¢h to the jump table
allowed us to easily layout the bitpad buttons
until a comfortable position was found for each
command. This also allows more than one button to
reference the same command making the layout wmore
versatile by limiting the amount of operator aras
travel around the bitpad surface.

MENU divides the bitpad buttons into several
categories (figure 2a and 2b):

i) Ke¥pad commsands
2) Color commands

3) Box commands

4) Pen commands

5) Control functions
6) Other functions

The CRT is controlled by MENU and contains several
areas, Important information in each area is
displayed as full intensity, or ‘'bright’. An

unimportant information is always displayed at hal
intensity, or ‘dim’.

The five areas provided by MENU on the CRT
are (figure 3):

screen

1) Keypad vector
2) Color vector

3) Page zero vector

4) Page one vector

5) Control indicators

The last line on the CRT s
computer-to-user message center. Errors, warnings
and notices are placed here by MENU for the user,
In designing the current version of menu we decided
not to give the user audible feedback of button
hits, ~ In older versions, the ‘beeged'
|ver¥t1n| the user hit a valid key. However, after
eight solid hours of use, most operators went beep
crazy. MENU now only beeps when it wants the user
to look at the message line, To further enhance
the operator-computer interface, MENU requires the
user to type into the keyboard only for ilenames.
This keeps the operator positioned at the bitpad
for most of the mession, instead of bouncing back
and forth from keyboard to bitpad.

KEYPAD COMMANDS - THE KEYPAD VECTOR
divided

reserved for a

The keypad section is into several

sectionsi

1) Numeric keypad
2) Sequence keys
3) Control keys

These keys are clustered in the center of the

bitpad surface for accessability as these keys are
the most frequently used. They function in two
ways, First

by allouing the user to specify how
commands are fo be executed. Secondly, by allowing
the user to use the keygad vector area as a
temporary storage stack for complex operations.
However, to the computer this area is nmeaningless
until applied via one of the vector key operators
discussed below,

The numeric keys include the numbers ‘@' thru
and one non-numeric key- ‘FF‘ for Full Frame.
Depresling any of these keys once causes the
corresponding legend under the knzpad area on the
CRT to be bright. Dcpre!sin? the ey again will
cause it to toggle diam. his allows the user to
specify numeric keys quickly as well as performs
corrections quickly. The FF key will toq?le the
same way with the corresponding FF lagend n the
keypad vector. To the “computer, this key
correspondes to the value 16, to the user, it means
the entire screen inage, or tull frane. ow these
kezs ecome apparent further in the
paper,

SEQUENCE KEYS

The seaunncn
‘=" (THRU),

fy

are used will

keye consist of ‘1-1%', EVEN, ODD and
These kuys allow a ast setup of
certain - sequences. 1-15' will automatically set
the numbers 1 2 3,..15 bright under the keypad
vector., 1f one of the nuabers is already briggt.
it will be inverted to dim. Thus, if 5 thru B8 is
already bright when '1-15‘ is issued, 5 thru 8 will
toggle dim and 1-4 and 9-15 will become bright.
The EVEN key will react the same ul{ invertin

onl{ _the even number keys (8 2 4 4,,. l). The 08D

will invert onlz 13 5...15. The '-' or THRU key
will allow he user to input a consecutive
sequence. When touching THRU he computer will
prompt the user to 'ENTER FIRST NUMBER' in the CRT
Aessage® area. The user then touches the button
cgrrnspondin? to the desired value. After this
first valus {s antered, the message 'ENTER SECOND
NUMBER® is displayed, The user then enters a
second value after which the areas betwesn and
including the two values are inverted.

53

CONTROL KEYS

The control keys caonsist of °'CE' (CLEAR ENTRY)
‘SKIP' and ‘QUIT’. The 'CE’ ke will set all
legends under the keypad vector to dim (off). This
ef2ectively erases any current entries in this
vector. To understand 'SKIP' and ‘GUIT' it must be
first understood that besides the keypad vector
some commands also use the numeric area to inpu
values for other operations, These include setting
scaling factors, jump values and colors. he
‘SKIP' "key allows the wuser to |kir entering a
articular value. The '8UIT' key allows the user
o abort anr operation which is currently
reﬂuesting intormation via the bitpad. Neither the
‘SKIP’ or 'QUIT' keys affect the keypad vector.

COLOR KEYS - THE COLOR VECTOR

One of the easiest ways to agply the keypad vector
is to use it to manipulate colors. However, before
any color may be modified the user aust fnstruct
the computer WHICH colors are to be modified, To
do this, the user sets the knygad vector so that
only the desired colors are bright, To apply the
keypad vector to the color vector the user need
only press the 'C’ key, This will brighten all the
R,6 and B colors which correspond to the bright
kuyfld vector nuambers. Onl bright colors are
modified. Twa other keys aid in manipulating the
keypad vectors and color vectors, the ‘<L’ key will
load the keypad vector from the color vector. In
other words, what is dim in the color vector
becomes dim in the keypad vector and what is bright
in the color vector becomes bright in the keypad
vector. No inversion of the keypad vector takes
place in this instance. e 0> key will
exchange the contents of the kuygad vector with the
colar = vector. This allows the user to keep
secondary color selections in the keypad vector and
swap them back and forth with the contents of the
color vector. Two other keys, ‘C+' and '‘C~', will
rotate the color vector up or down allowing the;
user to manipulate the color vector without going
through the keypad vector for every operation.
Note that only what is bright and dis rotates, the
actual colors do not rotate nor do their settings.

To the right of the keypad area are the color keys,
These keys actually modify the color of a given

area in sose ua{. All color kez ctommands use the
SETMAP and DEFCLR oprimsitives to perform their
individual functions. The following is a

description of esach key in the color area:
‘GREY RBB’','GREY R','GREY B', 'GREY B's

do not require the color vector to
contain bright areas. They are built to be single
ke commands with no setup required. The 'BREY
REB’' key will set the entire color map black and
white. 'GREY R’ only sets the red gun to a linear
scale between zero and 15 (black and white on red
gun only). ‘BREY 6' and 'GREY B’ act as 'GREY R'
on their corresponding guns,

'iRGB'; o R:‘ [G',

The '+ REB’ keY will increment the R, 6 and B
colors for all bright colors in the coler vector,
Dim area remain unchanged. For any given color, if
it increments past 15, it is automat cally wrapped
+ R’ ‘+ B' and '+ B' onl

These keys

'+ B'1

around to zero. ! ,

incresent their respective color guns. Therefore,
i color five had a RGB of 5, 7 and 15 and a '+
RGB’' followed by a '+ 8' was issued, the result

would be a RBB of 4, 9 and @.
‘- R8B', ‘- R’y '- 8"y "= B

These keys act similarly to the above PLUS keys
with the exception that they decrement instead of
incremsent, f a color is decremented past zero, it
is urlagcd around to i35, Thersfore, if color two
has 2 RBB of 8, 5 and 15 and a '- RBB’ is {ssued,
the result would be a R6B if 15, 4 and 14,

‘7 REB°, 2R, ‘28", "2 B4

These kl{l will randomly color all RBB guns or any
individual gun affecting only those colors that are
bright in the color vector. The randoaly picked

values are between zero and 15, Dim areas are not

affected.

"ROLL DOWN', ‘ROLL UP':

These keys will rotate all bright colors in the
color vector, The action is to physically rotate
the selected colors through the color map. Only
bright colors are rotated, Therefore, if only one
color is selected, no action occurs. i+ twao colors
are selected, they are swapped. If three or more
colors are 'selected, they are rotated in the

desired direction. This command has
for colorpap animation if images are

the abilitg
color rotation in mind.

designed wit

"ROLL RIGHT', 'ROLL LEFT':
The RIGHT and LEFT ROLL will rotate all bright
colors in the color vector left or right. In other

words i+ rotatin right, red is moved t
Qriln'to blue and b?ue tg red. 0 green,

SET_RGB:

The SET RGB key allows the user
RyB and B values for each bright color. After
prosnin% 8ET RGB, the computer prompts the user to
enter he RED value for the first bright color,
The usar then presses the desired value on the
klEEId (0-15)" which is followed by the prompt for
BREEN and BLUE. After all three components are
entered, the color is changed and the R,6 and B for

to specify exact

the next bright color is requested. 14 the SKIP
key 1is praessed when requesting a value, that
component (R,B or B) is skipped and the next
component is requested. If QUIT is hit, SET RGB is
terminated.

LITE:s

The LITE key allows the user to determpine what
colors exist in the image currently on the screen,

Upon touching LITE, the entire colormap is turned

o black, Then each color is displayed, one at a
time in white, with a slight pause between each
one. Along with this, the terminal beeps with each
color enabling the user to count the :nforl as they
are dilglazed. To further aid the user, the bottoa
line o he terminal contains the current color
being shown, After all bright colors are shown,
the original color map is assumed.

The LITE ALL k!{ is simniliar to the LITE key with
the exception that it does not sequence through the
colormap, but rather shows all bright colors as
WHITE at the same time while turning off those
colors that are dim in the color vector. This
allows the user to see which part of an image
contain a combination af colors. For example ?6
the user has as bright colors 3,5 and 9 and
requests LITE ALL, all colors except 3,5 and 9 are
made black then 3,5 and 9 are made white and are
dis l|¥|d this way for about three seconds before
restoring the display to the original color map.

121

The 1/2 command allows the user to use one color
Rap or two color maps. Since the wuser has two
ilage pages at their disposal, the user may specif
that one color map is for both pages, or Xhag eac
page contains its own color map. one map is
chosen, the same map is applied to both pages. 1§
two maps are chosen, the maps are change every
time the fage is changed. Along with two maps, the
systea also keeps two color vectors indrcating
which colors are bright in both maps. These
independent color vactors are only in use when two
maps. are chosen. To infors the user which mode is
currently in effect the computer will brighten the
arrows {'¢(--=‘' and ‘=--)'), which aprcur to the
left and right of the calor vector legend, as to
which page the current aag is being applied to. I#
both arrows are bright, the map is applied to both
ages (one map). It only one arrow is bright, then
wo aaps are in effect and the current map is
“pointing to the current page.

54

'HUE’, "1 HUE 7', "{ HUE 151

The HUE key allows the user to interpolate

values between two greviously set values,
colors one and 1% are bright and all other colors
are dim, and the user hits HUE, colors two through
14 will become a linear interpolation between
colors one and 15. In other words, if color 1 is
RED and color 15 is YELLOW and the user hits HUE
{with 1 and 15 bright and all other diam) then
colors two through 14 will become colored from RED
to YELLOW in linear steps. If more than two colors
are bright, the computer will perform a linear
interpolation between the first and second, second
and third etc., to the last. ‘1 HUE 7' will
assume that color one is bright whether it is or
not, This allows the user €p specify a color such
as 15 to be bright, random color it and shade to
color one without having wmodified color one or
having to redefine the color vector. ‘1 15°
acts "as ‘1l HUE ?° except one and 15 are assumed
bright. This allows the user to "keep a theme’' in
colar shading, 1f color one is set to RED and
color 15 is set to YELLOW and color eight is bright
with ‘all other colors bein d;na the user may then

shade

color

random color onl ei%ht an from one to eight
and eight to 13. his would keep a red to yelfow
thepe while throwing in another color to augment

the coabination,
OTHER COLOR KEYS:

In order to aid the speed by which one can setup
the color vector, two keys were included as presets
and map control. The '@ €' key which is positioned
in the upper left hand corner of the keypad vector
will automatically set onl¥ color zero bright and
all other colors dim, he "1-1 ! will
automatically set only 1-15 bright and zero dim.

BOX KEYE - THE PABE 8 AND PAGE 1 VECTOR

To request the computer to modify an image in ways
other than color, the user must aEply the KEYPAD
VECTOR to either the PABE @ or PAGE 1 vectors. The
gaqo zero vector is to the left of the color map,
he paa! one vector to the right of the color nlg.
individual box in gither vector is selected by
Roing to the desired inaan page (via the 'P’

r 'PSA’ keys), selecting the desired boxes to work
on in the KEYPAD VECTOR as described above in COLOR
and hitting the ‘S’ key. This will SELECT the
desired box for work. 1If, for example, the user
depresses the =zero and one keys br:ghgenxna their
values in the keypad legend, and then hits the 'S’

key, the user will observe the sysbol '{’' for page
zero, or a ‘>’ for ppear n

pagl one a ext to the
desired box, (Note €hat the symbol POINTS TOWARDS
the desirad box.) This means that the box has been
selected for work, the color keys, the
(8’ key will load the keypad vector with the
contents of the current page vector, The ‘¢8>’ ke
wiil |uae the contents of the keypad vector wit
the contents of the current page vecter. Once a
box has been selected, it ma% be grabbed, found and
manipulated. Since the 1S primitives allow a
source and destination box, the 'S’ keys define the
source. To define the destination box area, the
user has several choices, If a box is
selected ('8§°), then it is both source and
destination. If, the destination is desired to be
on the altarnaée page the user may hit the :A:
key. This key will se an arrow ('¢’' or
depending on which page they are on) POINTING AWAY
from the current page vector, This indicates that
a box is selecte {the selsct arrow) and is
gointinq to the other page (the alternate arrow).
lon with the key is the ‘<A’ and '<(A>' key
which act just as <§ and ¢8). is desirable
for a box to point to another box on the SAME PRBE,
then the FORCE ('F’) keys may be used. 'F’ allows
the user to input a value from the keypad (number
between zero and 15) which will be entered between
the ‘¢’ and ">’ ositions the current page
vector. Along. with the F key is the 'ALL F' key
which will set ALL selected boxes to the same force
value, The 'IAP F' key will remove ALL force
settings from ALL boxes regardless of selection.
Therefore, the following setup is possible:

As with

simply

NN
e e
i~ AN
MO D
09 a9s

contains x,y,xt,yl
and is a box
d the destination box
Box one is selected and
Box two is selected and
he alternate page, box
coordinates) and box four is
FULL FRAME
Box five exists but has no select
erefore is not active.

coordinates of

aex

points to box two on
selected and points
arrow and t

, 'A+', and 'A-' all act the same way as
and ‘C-' keys by rotating the

p d
keys react similarly by rotating the
up and down.

lower right hand paortion of the
bitpad allow the usar to save even more setup time.
automaticall
_and then select only
‘LEBAL §' key will remove

LEGAL § will
keys only effect the current page.

a legal coordinate

‘PSA', allows the user to instantly
duplicate select and alternate arrows froms one
to another when pa
will be explained later, PSA will
alternate page and will th
and alternate arrows till both pages are identical.
C are not changed, nor are force values,
This is useful when the same
executed from page to

Coordinates
On the first pa
ime by PSA and from t
BOX DEFINITION COMMANDS:
Immediately below the ke

The first of
prompt the

ad are the box defin
ese comrmands ox
user to enter the lower left and
coordinates for each SELECTED box,
enter either a screan
coordinate by placing the bi
stylus to indicate the coordinate
number from the keypad indicating
already existing box, or a combination of
1f for example, the user is defining
box zero, and wants the lower left to
be somewhere from the screen but
e same _as box one, the user may
the STREAM mode
us to the desired lower left position
t the POINT mode button followed b
This will assign the screen coordinate to
the lower left of box zero and the upper ri
box one to the upper right of b
Entry) is entered for a box coordinate, its
coordinates

coordinates

point the st

s depressed, that

ped in definition.
is terminated.

er will disp

particular coordinate is
' T' is depressed

the coordinates next to
and to the right if

and displayed
The dimensions are

display processor as opposed to the GRAB routinae.

BOX GRAB may be found the 'AUTO

if the user wishes to

coordinates,

lines of tex
proper number of boxes and BOX

erases ALL box
coordinates for urrent page, 1]
the current page.
Alternate arrows and forces are not affected.
GRAB then begins coordinates

each set of coordinates are entered,

the coordinates are placed on the screen and the
next box is requested. The 'QUIT’ kez is the ONLY
way to terminate this command if less than 16 boxes
are desired, After all 14 boxes ara entered, or
the QUIT key is wused, the computer will place
SELECT arrows next to each 1lepal coordinate. In
this way, the user 1is not required to count and
select the boxes, just grab them.

At times, it becomes useful to duplicate box
coordinates in other box positions. Uses for this
include positioning a box in the same fositxon as
another box on another page, creating a box in
another location on the same or different_page
which is the same size as another box etc, To the
right of AUTO GRAB are three keys which aid in box
caordinate duplication. The '8-->D' key will force
the source coordinates to the destination box. The
‘D-->8' key will force the destination coordinates
to the source box. The 'DESTINATION SQUARE' key
will force the ugper right coordinates of the
destination box to be the same distance from the
lower left of the destination box as the upper
right of the source box is from the lower left of
the source box. For example:

PAGE @
55 78 100 210 (43x 132) < >

I¥ the user hits '8-->D', then box zero on page one
will contain the same coordinate as the above box.
If the user has forced the value five, then box
five on page one will contain the same coordinate
as the above box. If the user hits DESTINATION
SQUARE, then the destination box (zero or five
depending on the above example!) will have its upper
right coordinate moved till it is the same distance
from the lower left as the source box. This will
mnake both the source and destination box dimensions
t?e same while allowing thea to be in different
places,

To the left of BOX BGRAB is the 'FIND' key, This
command uses the FIND Erimltive and allows the user
to find the image within each selected box on the
current page. In other words, each box coordinate
will be adjusted until each side of the box touches
art of the non-background colored image contained
n the box. I+ no image is found, the box
coordinates are unchanged.

Below the BOX GRAB key is 'AUTO FIND', Depressi
AUTO FIND once will place the word °‘FIND' on
top line of the CRT. This indicates that the F
command is automatically invoked for each BOX GRAB
or AUTO BRAB thus saving the user an extra key hit
for box assignments. Depressing AUTO FIND again
will turn the mode off.

BOX_ADJUSTMENT COMMANDS

To aid the user in creating box coordinates which
are useful, a set of box adjustment commands have
been built in. These commands are located in the
box adjustment keypad to the leét of the numeric
keypad. Twa types of box adjustments are allowed:
coordinate manipulation and rastor manipulation.
Centered on the bottom and lower right of the
keypad are the two coordipate wmanipulator keys
"ADJUST' and ‘MOVE'. ADJUST allows the user to
adjust the exact size of a box definition without

modif¥1ng the image it contains. Upon depressing
ADJUST, the first box selected is xored with the
value 15 allowing the wuser to see the box whi

working on it.. The user is then prospted via
CRT: “Adjusting bow nn - Enter GROW or SHRI
where 'nn’ is the «current box number. At ¢
oint, the user may Eick either the GROW key,
he laft of ADJUST, or the SHRINK key to the ri
of ADJUST., After indicating the mode, the user a
hit any of the eight arrows appearing in the center
of the keypad. In GROW mode, the box will GROW
only on the edge(s) specified by the currentl
depressed arrow. In SHRINK, the box will shrin
on on the specified edgefs). In either mode if
GROW of SHRINK is again egressed, all edges o} the
box will GROW or SHRINK. At any point during
adjustment, the user wmay Eush either ‘SKIP’ or
'NEXT' which will automa ically move to the next
selected box. ‘QUIT’ will stop adjusting and
touching any other command will cause execution of
that command to begin.

The MOVE coammand will begin by xoring the first
selected box. After his, ressing any of the
eight arrows will result in the box coordinates
moving in that direction so that the whole box
moves. NEXT, SKIP and QUIT wark as with ADJUST.
Note that ADJUST and MOVE do not effect the actuai
image. Only the coordinates are effected and the
positioning of the inversion. The inversion (xor)
16 remagved when ADJUST or MOVE are tersminated.
Both MOVE and ADJUST utilize the XORBOX primitive
to first invert the box, and then to invert only
the sides which are being modified.

On the left of the adjustment ko¥ﬁad sits three
centerip? keys. The top is 'CENTER IMAGE'. CENTER
IMAGE will take each box selected on the current
page and center them, one at a time, in the center
of the page. Coordinates and image area are both
effected. The area originally occupied by the

inaae before centerin is replaced with the
bac grnund color, elow CENTER IMAGE is 'H
CENTER", H CENTER will center the image in the
horizontal direction, Only the x coordinates of
the image is centered which results in the innge
becoming centered left and right. Below H CENTER
is 'V CENTER'. V CENTER will center the image in

the vertical, or up and down direction, All the
center keys compute the ampunt of offset for the
1mage to move and then call the SHIFT primitive to
do the movement.

On the right of the adjustment keypad are ‘SHIFT’
and ‘JUSTIFY'., JUSTIFY allows the user to position
any edge of a selected box on the current page on
the same edge of any other box on either page.
Source and alternate arrows as well as force values
are read to determine which box to justify on. The
user is prompted for each sealected box to enter the
desired edge for justification, The eight arrow
keys are used to spncii{ the desired edge. NEXT
and SKIP will automatically move to the next
selected box without :hanq;ng the current box,
QUIT will abort justify and hitting any other legal
command will execute that command,

Above JUSTIFY is the SHIFT command. SHIFT will
shift any selected box a given nuamber of pixels in

n{ of the 8 arrow directions., After depressing
SHIFT, the user is prompted to enter the direction.
Touching an arrow will result in the hox shifting
in the desired direction. The number of pixels
shifted can be adjusted br seven other k!XI
surrounding the keypad. ‘1 JUMP', ‘5 JUMP‘, "10
JUMP* and "5@ JUMP' will set SHIFT to move an image
one, five, 10 or 50 pixels, ‘XY JUMP' will prongt
the user to enter a number of pixels to shift the
box frome the numeric keypad, If the value 127 s
desired, the user pushes ‘L', ‘2’ and ‘7' to enter
the value. The '18°' through ‘1§’ keys are
disabled, Since the user may request one of the
four angled arrows, X and Y 6u|ps may be specified
independently by using ‘X JOUMP” and 'Y JUMP’ which
reauest the number of pixels in the same way as
JUNP, Thus is is possible to move a box n pixels
vertical and a pixels horizontal, JUSTIF and
SHIFT both wuse the SHIFT oprimitive to move the
image.

SCANNERS

Below the box adjustment keypad is the scanner
keypad. The scanner k!yfad consists of two rows of
five buttons each. The left most button on the top
row is the 'SOURCE SCAN’ button., Touching this
button proapts the user to enter the source bhox
scanner. he wuser may hit any of the B possible
source scan_ keys, Under SOURCE SCAN is
"DESTINATION BCAN'., Hitting this key followed by a
scanner key will enter the appropriate scanner as
with SOURCE BCAN. On the upper left hand corner of
the CRY display, the user may notice two legends:

8 SCAN: B-T.,L-R
D SCAN: T-B..R-L

These are updated each time the user aenters new
source or destination scanners. The eight possible
scanners are:

1) B-T..L-R = Bottom to top, left to right
2) T-B..R-L = Top to bottom, right to left
3) T-B..L-R = Top to bottom, left to right

Bottoa to tng, right to laft
Left to right, bottom to top
Right to left, top to bottom
Left to right, tog to bottom
Right to left, bottom to top

reading the legend, the first two directions

-T, R-L etc,) are the first portion of the scan
e executed, The second gort1un of each legend

L-R, ..B-T etc.) is executed after each scan of

first portion. In other words; B-T..L-R

cates that the scan travels from Bottom to Top

ttang.tnin that entire scan pattern moves from
o Right,

ands effected b§ scanners are: BOX FADE, B
BOX COPY BOX FUu11, BOX CEQC, 3

FADE, PAINT AVE, PAINT COPY, PAINT KEY, PAI
STAMP FADE, STAMP AVE, STAMP COPY, STAMP K

AMP FUZ1. canners are set by a call
at the issue of a ISM command.

-T..R-
-R..B-
“L..T-
“Rss T~
-L..B-

e
Do
—S -~
LU BN

oma

~NEe B

[] moDs -4

BX
Nt
EY
to

-t

G

T AN MODO) Che et DNU LS

0O 2D0r—me hTO0m--

h
0
i
e
o
v
A
U
n
A
b

v the box adjustment keypad is found the ISM
COMMAND AREA. This area consists of four lines,
The lowest line is the BOX COMMAND AREA. The
second line contains the FUNCTION area, the third
line is the STAMP COMMAND area, and the forth line
is the PAINT area.

FUNCTION AREA

The function area contains six buttons which read
from left to right:

ADD, SUBTRACLY, AND, OR, XOR and REP

Touching anx one of these boxes will set that mode
for BOX COMMANDS only. The ‘Box F' legend on the
upper left hand portion of the CRT will change to

reflect the new choice. All box commands are
effected along with disk load commands. To set the
function for STANP. and PAINT coamands, the user
touches the 'PEN FUN' to the right of the ISM
COMMAND ARER., The computer wzll.prongt the user to
‘Enter paint function’ after which the user points
to one of the six functions.” The new choice is
entered under the BOX F legend in the 'PEN F/C’
legend. This enables the user to keep two
functions at one time, One for box commands and
one for paint/stamp commands, Setting of the
function occurs when an ISM primitive is executed
gy fifst calling SETFUN with the currently chosen
unction.

BOX COMMAND AREA:

Below the FUNCTION AREA are a series of six keys.
Each key corresponds to one of the ISM rimitives.
Hittin one of the keys will result in the
execut?on of the :orresgonding ISM primitive using
the currently set function and scanners as well as
the boxes specified by the source and alternate
arrows as well as the force values, Thereforae, if
a user wants to copy a box from one page to
another, the proper boxes, function and scanners
should be set up as described eariler and then the
COPY box command should be issued. When
current Rage vectors contain sore than one selec
box, eac ox is executed one at a_ time.
computer will alwa%l display the DESTINATION P
for each box while the command is executing on that
articular box. Therefore, if box zero points to
he alternate page and box one points to the source
age, the alternate page will be displayed while
he command is execut1n? box zero, then the source
age will r|a¥p¢ar while the command is working on
ox one. Display is always returned to the source
page after completion of the ISM command. In this
way, the wuser always ses the result of each
operation while the operation is executing. The
agloued box commands are FADE, AVERABE, COPY, KEY
FUZI and CEQC, For the CEQL key, the replacesen
value for the CEQC primitive is specified by usxns
the PEN_COLOR key described below under PEN COMMAN
AREA. To the upper right of the CEGC key is the 3D
key. This _is a seventh box command which allows
the user to 3D & source box to a destination box.
To the right of 3D, are 3D X and 3D Y, Both of
these keys allow the user to enter a multiplier for
the 3D command. Hitting one of these keys will
result in a prongt for the multiplier value. The
user enters the value (between zero and 25%) via

et er
LTe T
ma oa

the numeric keypad,. Ig’ 18-15 keys will not the user to 'buff’ an area, This effect produces

function, so the number 123 must be entered °1° very good smoke and clouds and can alsoc be user for
followed b{ ‘2" and ‘3'. A multiplier in either or buffing smooth an edge. Since the commands are
both of the axes of zero turns 3D off for that treateg in the same way as their BOX counterparts,
“axes, Any multiplier larger than 128 becoaes scanners and function (PEN F) are in effect. This
negative causing the function to be reversed for also means that the color vector is treatec
that axes. identically as with box commands. For exasple, the
KEY PAINT command allows the user to paint only or
Twa other box related commands can be found two s certain color. Therefore, a full color isage ay
ke%s below FIND and AUTO GRAB. The first, 'I4P be brushed onto any part of the canvas pa?e withou
BOX', allows the user to erase with the background touching other portions of the image. If the user
color any selected (bright) box on the current KEY paints onto the background color only, the
age. Alternate arrows and force values do not brush will appear behind any existing image, even
have any effect, fP'C‘g?‘ ZAPfﬂﬂz.é:_de:tzﬁcti:e, the most recent brush. This allo:st Qe user tc
it requires a confirmation o ittin e key i from themself as opposed to towards.
twice. ~To the ‘right of 1A BOX'is INVERT BOX. paint away fro P
is command w invert (xor) a selecte oxes :
on the gu;rint page ui:h th: vaéu:hlgép A%B;rnat: PEN_COMMANDS AREA R ¢)
arrows an orces are not used. o an nd PAINT commands border two categories,
INVERT BOX exist to save the setue required to do {R:tSTﬁ?P :ox commands and that of pen cngnand|,
the same effect through CERC or COPY. STAMP and PAINT use boxes hooked up to the pen to
enable brushing on the screen. To the right of the
STAMP _COMMAND AREA: BOR/STAMP/PAINT area is the PEN COMMAND AREA. The
i i top left key of this area is the PEN key. Touching
Above the FUNCTION AREA is the stamp area. The this ke uirl put the user in 'PEN MODE'. 1In this
stamp area allows the user to paint on the current node zhe user may paint with a single colored
gage. The user is allows to specify up to 16 paint pixef onto the current page. The pixel is nlaced
rushes by defining boxes around each of the using the function specified by the ‘PEN FUN’
desired brush shapes. Upon touching one of the command (discussed above). To the right _of the
STAMP keys, the user is grﬂﬂgﬁed to point to a ‘PEN FUN’ key is the 'PEN COLOR' key. This ke
brush, “Atter setting the bitpad to STREAM aode, allows the user to specify the color of the pixe
the user points to a brush which must be currentl drawn by the PEN command in two ways. ARfter
assigned to a box and made active with a selec touching PEN COLOR, the user is prompted {a' ‘ENTER
arrow. Upon identifying the brush, the user may COLOR‘., The user may either touch one of the
then paint with that brush by pushing the stylus numeric keys, 0-15, indr:ating that color, or the
anywhere else on the page. Each time the stylus user Mmay put the bitpad in STREAM mode and touch
touches the bitpad surtace, the currently selected the stylus to some portion of the image. The color
brush/box will "be copied via the chosen ISH under the cursor point will be used as the chosen

primitive, The box will be copied so that the
center of the box is at the stylus position. 1§
the stylus is dragged over the bitpad surface

color. PEN COLOR then performs several functions,
first allowing the user to specify a color to be

the to allow the user a
chosen brush/box will be dragged along with it used by the pen, and secondly, to

; ; i eraining the color of a articular
leaving copies at each point "where the stylus gg;gk ::vtg: 2:$e¢: nithout having to resort to the
touches the bitpad surface. Setting the function LITE commands, and thirdly, to allow the user to
for this command is accomplished by 'PEN FUN specify a color replacement value for the CEQC box
followed by the appropriate function. It should be comand (described above) and the PEN FIX coamand
noted that if the user overwrites the brush while (described below). The current pen color is
painting, the brush will be modifed by the paint displayed to the right of the 'PEN F/RT" 1egend on
function which will inturn will aodify itself, the screen. PEN COLOR is always bright, If the
STAMP functions include: FADE, AVERABE, COPY, KEY user is painting with a pen color of one and a pen
and FUIZ. Y is the most used function alfauxng, function of ABD, the value one will be added
the user to make quick and easy durlicgtes of any everywhere the user points, To_ facilitate quick
shape on the screen. For example, in correcting color changes (useful for MACRDS described in
word copy, the user may wish to change a letter EONTROL" COMAANDS below), two keys 'PC +' and 'PC ~'
without leaving . It the letter exists have been developed. PC + will increment the
elsewhere on the screen, the user may define it as current pen color and PC - will decrement the
a box, hit STAMP COPY and touch the cursor anywhere current pen color. If zero or 15 are exceeded, the
?;t"i" the box e dcfini?g the ?'tt:; as 2 ':?h' gen color is uragpad around, PEN uses BITPAD,

en moving near the area to receive the correction rawing.

and touching the stylus again will place the letter URGOR and FXDOT to do the actual drawing :

on the screen centered under the stylus, e user ight of the PEN key is the PEN FUII key.

would then find the stasped letter and shift it Ty Ebe, right ol tMSEUII ‘primitive {which on y

into position, This type of edit takes less than a fuzzes a single neighborhood) to only fuzz a eigh

minute to perform and can be applied to any shape, pixel neighborhood, The ninth, or center, pixel is

The user may even define the entire page to stamp centered under the stylus point., Bcanners,

and stamp it at an offset to itself producing function and color vector all have meaning. This

infinitely repeating patterns. allows the user to go into an existing image and
ugere desired by the user. Where

spooth edges onl
FUI1 BOX EDHHAND will smooth an entire box
PAINT CONMAND AREA: :c:n tgz portions which do not require snoothing:

i h the user points to.
To provide a more general lxltnn for painting{ the PEN FUZZ will only smooth where the u P
0 0

PAINT commands were developed and added the the right of PEN FUZZ is PEN FIX. PEN FIX is

To
STAMP commands. Paint commands include:r FADE . B ecifyin
AVERABE, COPY, KEY and FUII. 1In the paint CEQC hogked up to the stylus point. By 3¢ 9

A modify in the color sa a function
coamands, one page is kept as the brush page. The 3?: péﬁl?ﬁﬁ and a ranaccnent color vig'PEN COLOR,
other page becomes the canvas page. o select a the user will only alter the colors specified by
brush the user would first selgct all possible the color map with tKe current pen color. This is
brushes on the brush page, Then goin to the very important in cleaning up an image. The user
canvas page, the user places the ALTERNATE ~ARROW may wish to remove only color five from a complex
P°1"t1"8 to the desired brush(es) on the other arsa. To do_ this, {neuser would brighten colar

age. rawing is the same as with stamp. Only

i i sap, specify a replacement value
oxes pointed to by the alternate arrow will be ;ivezzputh:nco:?rh géu pcoLnx andp specify a PEN
drawn. If more than one alternate arrow exists, FUNCTION of REPLACE. Then any area the user points
each brush will be drawn centered on sach other. to while in PEN FIX will convert aonly color five to
In other words, if the user selects three brushes, color zero.
goes to the canv;r eage and points alternate arrows

at all three, & hree brushes will be ysed, wmach CONTROL COMMAND AREAS

overlngging the other to produce a composite brush.

I+ AVERABE PAINT is used with three brushes, each The bitpad consists of five separate control
will appear transparent allowing the viewsr to see coasand areass

each image through the others. ADE painting using
a brush which is a very small metallic box allows

57

1) RESOLUTION/WINDOW CONTROL
2) CAMERA CONTROL

3) PABE BACKUP CONTROL

4) DISK CONTROL

5) MEMORY CONTROL

RESOLUTION/WINDOW CONTROL:

Above the PEN COMMAND AREA is the RESOLUTION and
WINDOW CODNTROL AREA, Qur particular hardware
allows sets of sight pixels to be declared as high
resolution. While the rest of the screen_ remains
low resolution. The #first key, °'HI REB’, will

lace the entire screen in high resclution (156 «x

82), To the right is ‘LOW RES’' which places the
entire screen in low resolution (378 «x 41). To
the right of LOW RES is ‘RES BOX'., RES BOX takes
all selected boxes on the current page and fits an

inverted resolution area into them, Therefore, a
selected box when RES BOXed will §1i from {ts
current resolution to the inverted resolution. The

area’ which ig affected is as close to the box size
as possible within the eight pixel per resolution
area rule, To the lower right of RES BOX is the

RES ON/OFF' key., This key allows the user to
sgec1fy the entire dlsglay or the currently set
high resolution areas o be displayed in low
resolution. This allows the entire screen to be
displayed differently than it is configured. To
the right of RES ON/OFF is 'WINDOW'. WINDOW takes
each high resolution area on the screen and opens a
window to the alternate page in its position.
Therefore resolution areas may also specify windows
depending on the mode. Both RES ON/OFF and WINDOW
are hardware doacndlnt commands and make use of the
NYBBLE and WINDOW primitives. Windows are only

effactive from page zero to ﬂnqc one. Windows na
not be opened on page one. The top line of the CR
contains two positions devoted to RES ON/OFF and
WINDOW. If the option is not -enabled, the
corresponding legend is blank. I an option if
enabled, the word °'RES ON' and/or ‘WINDOW' is
displayed bright.

CAMERA CONTROL:

Above the PAINT keypad is the camera keypad. The
leftaost key s he ‘'SMALL’ command. This
corresponds to the FRAMEL primitive. If this key
is hit, the user is prompted to confirm by hitting

the key again. Once confirmed, a 256 x 241 camera
area is scanned onto the center of the screen., To
the right of SMALL is 'LARBE'. This takes a 189 «x

128 camera area and displayes it twice the size
over the entire frame. The third key is the TILT
camera load. LT takes 189 in the X axes and

blows it twice the size but takes all 241 in the Y
axes making the X axes appear tilted 45 degrees.

PAGE BACKUP CONTROL:

To the upper right
three pa?n ackup keys.
ickiy b

of the numeric keypad appear
These keys allow the user

to qu ackup and restore the current Eaac with
the alternate page. The first key is 'COPY § TO
D'. This key requires a confirsation of hittin
the key again. Once confirmed, the entire curren
(or source) page is co i'? to the alternate (or
destination) page. ncluded in the backup is the

entire source page resolution area and colormap/hox
storage area. The second key is the 'COPY D TD §8°
key which allows the destination (or alternate)
page to be restored on the current <(or source)
age. This command_ also_ requires confirmation.
he third key is 'SWAP B8 WITH D°. This ke
requires no confirmation and will perform a hig
speed swap. of both image planes. All three
commands are extremsly high speed, completing their
opsrations in under “a second. Colormaps,
select/alternate arrows, force values and functions
are all t?norld. These keys uss the CPPABE and
EXPABE primitives to perform their functions.

DISK_CONTROL AREA:

At the top of the bitpad towards the center are the
eight disk control keys. The first 'LOAD’ allows
the user to lcad an image from disk. The command

Bronptl the user to enter the filename from the
eyboard. Once entered the corresponding image is
loaded using the currently set BOX FUNCTION onto

the current page. After the load, the colormap the

58

image was saved with is assumed ONLY IF the

currently set function is REPLACE, Once an image
is loaded, the filename of that image is placed 1in

the upper left hand corner of the CRT. 1If the file
is a write protected file, the symbol '(P)’ is
laced after the name., A image filename may be up
o eight characters long.

To the lower left of the LOAD key is the 'LAST
LOAD’ key. This key will load the last file saved
or loaded. In other words, this key will load the
file indicated by the name at the top of the CRT,
This saves rotypingh in the filename and is very
useful when ORing a file in and XORing it out to

produce a mask.

To the right of LOAD is the ‘SAVE' k|¥. Touching
this klz will prompt the user for the ilenane to
save the current image on. If the file already
exists or is protected, the user is asked to
confirm the action by touching SAVE again.
lower right of SAVE is the 'LAST SAVE' ™ key.
key acts as LAST LOAD except it resaves the current
image on the last file loaded or saved.

Below LODAD and SAVE are two keys 'INC’' and 'DEC’.
These keys help to keep the user from going to the
keyboard more than necessary, Mosf slides have
nore than one asspciated inage file. For exasple,
a single slide may be composed of four separate
exposures, Each exposure is saved in a separate
image file, Thus, a slide namtd ‘CHART!' amay be
sade ug of CHART1A, CHARTIB, CHARTIC and CHARTIB.
INC allows the user to increment the last letter of
the current filename on the upper left hand corner
of the CRT. DEC allows the user to decrement the
last letter of the filename. This allows the user
to move fros CHARTIA all the way to CHARTID and
back without ever going to the keyboard.

Below INC and DEC are 'A: DIR' and 'Bi DIR', These
two keys allow the user to receive a directory of
disk A and disk B, The CRT displaz is erased and
the directory is displayed. The wuser is then
prompted to enter any character from the keyboard
at which time the CRT is again erased and the
original display rewritten.

MEMORY CONTROL AREA:

To the uap!r right of the numeric keypad is the
memory eypad. The memory klasad consists of five
keys: 'MEM , 'BET’, 'DEL', 'LOUP‘ and 'RUN’‘, The

seaory feature allows the user to have the computer
watch-and-learn a articular sequence. Once the
sequence has been entered, the user may reguest it
repeated up to 999 times. Up to 14 different
sequences may be remembered at one time by the
computer, ach sequence nnn consist of as many
instructions as needed until the stack is used up.

The. MEM key turns nelorn on and off, Tuuching the
key once will place the "MEMORY' legend to bright
at the upper right hand corner of the CRT. When
semory is on, -each keystroke entered is executed
and resemsbered by the computer, If an error_is
entered, the user may hit the MEM key again. This
will turn memory off and delate the entire seguence
allowing the user to start over. If a sequence is
entered correctly the user wmust_ assign the
sequence to one of the macro spaces, To do this,
the user hits the SET key., SET allows the user to
set the current memory to a macro number. The user
is proapted to enter a number from the numeric
koygad.. Legal values are zero thru 15. Once the
number is entered, the macro is stored under that
nusber_ and the nnnorz legend is erased and turned
off. To run a macro, the user need only hit the
k|¥. The computer will request the sacro
number from the numeric keypad. Upon receiving the
number, the macro will be executed once. To run &
macro esore_ than one time, the user should hit the
LOOP key. The computer will request a value from
one to 999 be entered from the numeric keypad.
Once entered, the loop value will be displayed to
the left of the MEMORY legend area. The user ua‘
then use the RUN klz to specify the nmacro whic
will be repeated until the loop value is zero. The
DEL kor‘uill delete anz macro by allowing the user
Y

to spec the undesired macro ¢rom the nuaeric
ke{pad. ny macro which uses ADJUST BOX or MOVE
BOX will inhibit the inversion of the box to
improve speed. Macros are extresely useful for

“ To

regeatmg large borin tasks and for creating
au

omatically run animation sequences.
OTHER _FUNCTIONE

Included in the bitpad amenu layout are several
other function keys which aid the user in
manipulating the display and environment.

As mentioned before, to the right in the numeric
keypad is the ' key. This ke¥ will flip the
displa; to the alternate page each time it is hit.
The ‘PAGE @'/°'PABE 1' legend will alternate fron
bright to dim to indicate on which page the user is
currently. 1 two colormaps are in effect (1/2),
the proper colormap is assumed. The P key also
handles the internal switching of source, alternate
and force vectors from the page zero vector set to
the page one vector set.

The uR?er left_hand corner of the bitpad contains
the 'CRT’ key. Touching this key will cause all
information on the CRT to erase and then reappear.
This allows the user to verify what appears on the
CRT. This is helpful for problems due to data
transmission error or keypunching error.

To the right of the CRT key the 'I10° key.
Touching "this button once will erase the CRT and
display the message 'HIT CRT OR ID TO REDISPLAY',
This mode will “inhibit the computer from sending
any information to the CRT. In this mode, the user
is operating blind as far as box coordinates and
colormap values and other legends are concerned.
This command is used to speed up the s¥stem,
QSR!CiaIly wher modifying colors, When IO 1is
inhibited and the user is rolling the coloreap

color will rotate with speeds "in excess of b4
colors per second. This command will also allow
macros to run faster by inhibiting all display of
new coordinate updates, etc.

To the right of the 10 key is the '7AF° key, This
key requires the user to confirm by hitting the key
twice. DOnce confirmed, the current Bage is cleared
with color zero, To the right of IAP 1s 'IAP ALT’,
After confirming this key, the alternate page is
cleared with color zero. This allows the user to
delete the alternate page without having to go to
the alternate paﬁe before executing a comsand which
will result in the alternate page being modified,

the wupper left of the bitpad under the CRT keY
are two keys, 'FAST’' and 'SLOW'. These keys wil
set the bitpad BITAVE) to fast
operation, In fast, the bitpad coordinates are
simply returned to the user when in SWITCH STREAM
node. In slow mode, each point is averaged with
the last point and any points further than 15
pixels away from the last point is discarded. This
allows more accurate drawing with the stylus. This
on}z effects the bitpad when the SWITCH STREAM
switch is in effect.

is

(via or slow

The final key is in the upper right hand corner of
the bitpad. This kez phg!ically contains the area
of four keys grouped two two. This key is the
‘ : " key and will exit the user to the operating
systea.

FUTURE FUNCTIONS

Our software system is forever being modified and
improved, Because of this, we have several
functions which current;x exist as FORTRAN test
rograms that are waiting to be converted into
SSEMBLY LANGUAGE primitives and incorporated into
MENU, Several such functions require mentioning.
The tirst, FILL is a adaptation of the SMITH
algorithm as presented in the SIGGRAPH '79
proceedings.

This is a ver{ high speed horizental
scan line flood fill algorithm which uses less than
a 2K stack for worst case fill. MENU currently has
a 2K fill stack reserved for this function.

The second routine to be included is a
algoritham. This routine is basically FUIZ in
reverse. An image is nnlar?ld by glottinq each
gigel leaving a background pixe in etwaen. in
his way, a 2 x 2 pixel area is converted to a 3 x
3 pixel area. f scanner is then
envoked to average intensities of the four

smooth zoon

neighborhood
the

59

existings pixels in order to create the wissing
data. This has the effect of 20oming up a raster
image while keeping all edges smooth and defined.
Instead of duplicating pixels when 2ooming, this
routine interpolates the five wmissing pixels to
determine the gropnr data which should exist there.
This keeps the edge and prevents the zoomed 1na?e
from becoming blecky. The following example will
help clarify the effect:

Before zooming:
PP

= 1,9 - Four pixels valued 1,9,4 and &

PP = 4,4 in @a 2 x 2 area.
First zoom step:)

PhP = 1,0,9 - Image is zoomed leaving

bbb = 0,0,0 background pixels between

PbP = 4,0,6 the original pixels
Last zoom stegz))

PPP = 1,5, - Background inforsation is

PPP = 2,4,7 interpolated by averaging the

PPP = 4,5,4 endpoints.
Finaily, no rovisions have been included for
laving multiple maps using the GETMAP/PUTMAP
primitives, ~These will be included with a quick
recall method allowing the user to be able to

ripple through all 96 stored maps.

system allows the user to have
extreme amounts of control over the, raphics
environment certain measures have been included to
insure ease of use,

Because the nmenu

As described earlier in the paper, the CRT is
divided into nanr bright and dim areas. Only
bright areas are ot importance to the user, This
allows the wuser to quickly focus the eyes on the
desired area of the CRT without having to search
around. Secondly, all legends output to the CRT
are always cursor addrassed as apgosad to scrolled.
This always keeps information in the same place on

the CRT reducing the amount of searching required.
The CRT cursor is turned off to keep it from
becoming distractin?. Display updates are all
handied by assembly language routines which talk at
19.2K baud to the CRT. "This makes legend updates
extremely fast and allows the entire screen to be
rewritten (CRT key) within five seconds.

To keep a rapid flow of commands from the user to

the conguter, all commands which keep you in a mode
{ie, HIFT, ADJUST, BET RGB etc..) are abortable
by using the QUIT key or b just hitting another
ke to immediately execute another command. Keys
such as AP IAP BOX

which require confirmation
to be hit twice. The

etc., only require the ke
CRT always pauses at leas two seconds before
re?uestin a confirmation via the legend
'(CCONFIRM?>>', Confirmations are only allowed in
the POINT mode which means that the confirm button
noz't accidentally stream in via the SWITCH STREAM
node.

However, no matter what precautions one takes in
designing a software package, some amount of
obscurity aluaxl occur, In our system, the weak
oint is in he conglexity of he cosmands.
perators often forget that smear scanners are in
effect, or that XOR is set instead of REPLACE. To
help reduce the amount of incorrect keystrokes, no

command is executed if the basic components for its
execution are nat present, For example, if colors
are to be set and no color is bright in the color
vector, the color command will bI!E and display a
‘missing color map’ error on the CRT.

Another roblea which presented itself to us was
the fact that the systea was too powerful,

takes a new operator about two months to becoae
effective on the computer {working around

production). The reason for this is the large
nusber of possible effects for each command. You
tan e a potential operator the purpose behind
taking &4 rastor image, assigning it a box, edge
detecting only color {x and xor plotting it back on
itself rotated 180 degrees, but it still takes thenm
time to experiment with fhe effects and all their
functions before they realize the use of such a

sequence. The obvious solution to this problem is
large amounts of high quality - documentation
express;n% all useful controls and functions using
pictures to convey the actions,

PROGRAMMING PHILOSOPHY

In designing coamputer graphics software for small
systems, one must be careful as to the approach
taken with the actual programming. While
structured Erogramming is a good practice keeping
to all the structured programming rules will resul
in a prograas which runs slowly and poarlg. The
method we adopted for our system was that of a
powerful primitive szstem which_ allowed the
primitives to call hemselves. To handle global
events such as scanners and functions, each
primjitive which wuses them, when called, calls
$SCAN$. $SCANS$ is called by placing in the
register the value zero (for source scanner) or the
value one (for destination scanner). The
register should point to the position in the
rimitive itself where it calls the actual scanner.
he $SCAN$ function then writes into the address
pointed to by the HL register the address for the
proper scanner. Therefore, each oprimitive when
called immediately calls $5CANS to ‘write’ the
roper CALL address into the primitive code itself,
n__the same way, the +function specified to the
SETFUN routine is converted by SETFUN to a one byte
instruction {ie NOP; ADD A,D; SUB A,D; XOR A,D; OR
A,Dy AND A, and stored in a gfobll location
labeled $$FUN., When a primitive is called which
requires a function, it 1loads the function from
$$FIN and writes it into the ares needed in itself.
This area is reserved with a NOP instruction. This
means that when each ISM primitive is executed, it
actuall¥ rewrites itself to perform for the
currently set environment parameters. This saved a
large amount of code from ever being written.
However, self modifying code is also a bad
programaing practice. t must be seen that when
grn ramping for an application which requires a
ight hardware/software integration, certain
?rograaning practices must be weighed against
actors such as speed and efficiency.

CONCLUSION
Qur design has shown that to force the most amount
of war out of the hardware, each software

primitive must be designed to allow the most nuamber
of functions possible within that primitive. 6reat
care must be given to the computer/user interface
to help ease the possible obscurities which ma

result., Care must also be taken in using eac

device to its greatest potiential. Functions such
as screen area should not be duplicated as many
manufacturers do by placing the screen area in the
bitpad and displaying the menu choices in the image
plane. This is a great waste of both speed and
space and should be avoided by careful planning of
the available devices.

Finally, it can be seen from the presented s¥sten,
that an extremely advanced graphics software
package can be implemented on a Emall coaputer
systen, The advent of secondary sources of image
boards designed for small computers such as the
APPLE I1 and 1IBM PC etc., allows Brogrnnnors to
create highly advanced artist workstations for less
than $4,000 dollars. Together, the new hardware
cnnbinla with new software can make for a complete
product which will outperform much of the
currently, comsmercially available equipment that
costs hundreds of thousands more.

ACKNONWLEDGEMENTS

1 would like to thank Deborah Sellers, Andrea
Swatish and Walter Wright for their valuable time
spent in suggestions and corrections on this pager
and Bill omanowski for fresh ideas includin he
3D algorighm. Also, thanks to our EPSON printer
for oprin ine this paper and diagrams many times
without brea ina down., And a final thanks to J.
D. Fnlel and A, Van Dam for their wonderful book
‘Fundamentals of Interactive Cosputer Graphics

which has provided valuable insigﬁtl on agl the
algorithms that could never run on a
micro-computer.

Hom-anmtiziizsed two color grid
before 30 mapping algorithm.
benze bilack aresas are color 15

Light btack areas are color one

HFTER

Nor-antialiazed fwe color grid
after 30 mapping algorithm.
Motice the shift of the coior IE
tiles leaving the shadow area in

theic original position.

lPrintout iz performed by an EP30OH printer thus all shades are reversed and non~aﬁt%aliased.]

FIGURE 1 ~ Tiled surfaces before and after 3D treatment

61

HIPAD™ DIGITIZER
) SN S ; Sk‘r T
houston L | J l . MIsC
instrument [orsk kevs
H '
misc | | camera | ResoLuTION
RES
S— ——
STAMF KEVS KEVS MEMORY !<E*.-'s|
FUNCTION KEVS BOX KEVS
" BOK KEWS BACKUP |
T
NN SEQUENCE KEVS T T
as B e e O
L e | L 4 i COLOR
ADJUSTMENT NUMERIC | CONTROL KEVS
KEVS KEYS KEYS
- 1 L -] I
L) RESET — S nREaN
D POINT LIPS BOX IBO'X D'EFl
] SWITCH | KBV DEFINITION]

STREAM
[] STREAM

+ > L] i L
kevs | | CONTROL

KEYS

'l i A

FIGURE 2a — Bitpad surface:

Buttons and menu/screen area

62

£9

cer] Jo] Jzer] [ERR] LOKD SAUE
CRET 1 oc e |LAeT EXIT
LoaD § INC SAUE
#: B
DIR DIk
o RS
FasT|sLou am | Ls [TILT LI R B
RES
o-F | ¥
FaDE| AUE |copv | kEY |FuzZ Pen | f5a5] BS54
Faoe| ave |corv] ke | Fuzz i R S Loor| mem | set | oL
o0 | sue | anp | or | xor | REP so | 3P 1 3° RUN
NEY JCOPY] ces
FADE| AVE {COFY| KEY | FUZZ|CEGC %'fé [,D_gf*s 50
20 skre PPEEL aurr SR,

1 N TR B G) =1 -1 T . |GREV] GREV|GREV]GREY
Jump L aumpd Jume {aume] June i-1SJEVEN) ODD | FF | CE F c2iree] v | 5 | B
T : : . : I SET + + + +
S dl BRI I) 1z 1z s s | o fec f<ce ek lessl 2 51 &
e | « |next] — Joust s | s J1e |11 | s <5 Jess LtE | ree] 2 | 5 | &

A : el = 1 2 1 21 ¢
™,

T 1} L o [move 4+ | s s |7 o fea eas st lreel 21 21 &

e | "o 7 B N ALL | ZAF 17 18
gune] 26 | 809 | 5% | e e j 1]zl FlE] wue | HUE | hie

ROLL | ROLL[ROLL] ROLL
T N
SCAN]; =3 BGX |AUTO —
Call (Y P R FIND lorag] oRap seojoes) o]
SCAN T==ry FE=H EIE AUTG
0 e P ol .. FIND
ZAF U GE B I ZERD] LEG
BOX B0 + + + + b3 g
c | s| n| F

digital image]

FIGURE 2b ~ Bitpad surface:

Menu key closeup

FICTURE [F*] FIND RES OFF MEMAORY
SCAN Eox Fun: HOR an 18
SCAN Fen REF 15
3 COLOR MaP —2
WOk R v Howy {ei] X Y Box Y
aa 22 Y& 22 1¢ a a 33 149 27 27
=3 182 128 23 37 @ 5] 288 191 Y& &
184 2@z 217 23 1E 1 a ¢ 134 o4 s 27
224 22 41 43 29 Z a la el 48 21
127 a2 122 ES 38 3 a
298 144 148 2B 5 4 2 < 138 188 23 E1
18% 117 117 1 1 g a ¥ Bl 162 4@ 33
184 117 117 1 1 [a
7 2
] a
a a 182 73 7344
lg @4
11 @
133 8¢ 281 125 33 el 12 @
234 17z I 28 €5 26 13 @2
15 @
FF 1 IPE 2M] 378 241 1 241 278 241
FIGURE 3 ~ Menu CRT display

DEVELOPING A 3-DIMENSIONAL ANIMATION SYSTEM FOR THE
DIGITAL 11/23 MICRO COMPUTER

Marla Schweppe

Art Education Department
The Ohio State University
Columbus, Ohio

The animation system currently in use in
the Art Education Department at The Ohio State
University will be the topic of this presenta-
tion. The hardware configuration, the software
or animation tools which are currently in use
and the new projects under development will be
discussed. This discussion will include data
generation, the creation of 3-dimentional
scenes, the process of animation, and the final
product. The courses offered here in computer
animation will be briefly outlined and anima-
tion produced by students working on the Digital
11/23 will be shown. The possibilities and
limitations of doing animation on the 11/23 will
be discussed in depth.

- This presentation is designed for people
with a general understanding of computer
graphics.

The computer animation group in the Art
Education Department at The Ohio State Uni-
versity has a Digital Equipment Corporation
PDP 11/23 microcomputer system. Students also
have access to a VAX 11/780 through the faci-
lities Computer Graphics Research Group. The
11/23 animation system is basically a limited
version of the animation software available on
the VAX. The 11/23 is used primarily in the
introductory computer animation class. The
environment is a research one. This means that
new ideas are constantly being tested. The
animator therefore has an opportunity to make
contributions to the development of new software.
However, this also means that the software is
in a constant state of flux.

Hardware Configuration

For the first two or three quarters stu-
dents design their animation on the PDP 11/23.
This 11/23 has a 16 bit micro processor, float-
ing point, memory management, a quarter mega
byte of memory, and four serial interfaces.
The interfaces go to three terminals, two
VT100's with VI640 retrographics boards and an
Zenith H-19. The fourth serial interface is
used for communication to the VAX (mail and
shipping files back and forth). The VT100's
with 640 x 480 line drawing capability and the

CH1930-7/83/0000/00655$01.00 © 1983 IEEE

65

H-19 which gives a very coarse image are the
principal display devices. There are two,
double~density, floppy drives with a half a mega
byte of memory each and ten mega bytes of memory
on four surfaces of hard disc.

Software/Animation Tools

The system uses UNIX Version 7 DEC modifi-
cation 2.1, the C programming language with a
math library and the Bournme shell. The animation
software was written locally, originally for the
VAX and was transported to the 11/23. The local
software includes scn_asswblr2, which allows for
the manipulation of objects and view parameters
and a data generation programl.

Data Generation

Data or objects can be created using either
the data generation program developed by Wayne
Carlson and modified by Paul MacDougal or by hand.
In creating data by hand the animator must specify
points in x, y, 2z space and connect those points
to specify polygons., This is done in an ascii
format. The data is then transformed into a bin-
ary format for later use. We also use an ascii
description file which contains necessary infor-
mation for the animator. It includes information
like the name of the binary file, a comment, the
display algorithm to be used and the bounding box
of the object. Currently there is only one dis-
play algorithm which outputs to the VT100 retro-
graphics display or the H-19. Later, with a color
display and therefore different display algo-
rithms, the data description file will also con-
tain some information about color. Since the
ascii data files take up a fair amount of space
in memory, these are usually deleted leaving the
binary version of the data and the ascii descrip-
tion file. 1If for some reason the ascii data
file is needed again it can be converted back
into the ascii format. It is also possible to
have more than one ascii description file point-
ing to the same binary file. For instance, dif-
ferent display algorithms or color maps could be
specified for the same piece of data.

Three types of data can be created using the
data generation program: solids of revolution,
tubular objects, and projected objects. The data
generation program (DG) uses menu selection in
combination with input from the terminal. In the

2d drawing mode the user specifies paths and pro-
files for solids of revolution, 2d paths for
tubular objects, and profiles for projected ob-
jects. There are menus for each type of object
that allow the artist to adjust various para-
meters. When an object is output from DG, the
binary data file and the ascii description are
created. The animator can convert this binary
file to ascii format if s/he wants to change
the object by changing the coordinates of some
of the points.

Scene Description

In order to describe scenes we use a program
called scn_assmbly which was developed by F.C.
Crow for use on the VAX and transported to the
11/23 by Michael Girard. Scn assiblr allows the
animator to instance a piece of data as many
times as s/he wants by simply calling it any
number of times. It then allows all objects
called to be placed, rotated and scaled inde-
pendently in three dimensions. Once the scene
is created the animator can decide where the
eyepoint should be and in which direction it
should be pointed. The animator can also control
the view angle, which gives the effective control
of a zoom lens going from wide angle to tele-
photo. The user can ask to see the scene from
any direction at any time and can then make the
necessary adjustments to get the desired effect.

Scn_assemblr can be used in an interactive
mode or it can take input from a file. In the
interactive mode, the commands are typed in line
by line. This mode is useful when initially
creating a scene. There is a command which
causes the current status of all parameters to
be output to a file for later use.

The mode which allows input from a file is
useful both for viewing of a single frame which
was created in the past and stored in a file,
and for doing animation. Animated movement is
created by moving an object or objects some
amount from frame to frame. Therefore it is
preferrable to write a script for input into
scn_assmblr which will describe one frame after
another, display the frame on the screen and send
a signal to click the camera. 1If the animation
is to be recorded on 16mm film as we do, 24
frames per second must be generated. This means
there are 1440 frames for a minute of animation.
There are several systems available on the VAX
which generate these long files that describe
each of the frames. One is a key framing system.
One 1s a skeleton animation system and another
simply does linear interpolation for independent
objects. For the present the scripts for ani-
mation are being created by an adhoc method. The
animator writes a C program with lots of print
statements and arithmetic expressions that gen-
erates a file in the proper format for sen
assmblr. This method requires that the animator
have a fair amount of programming experience.
Animation students have also put their program-
ming skills to use writing subroutines that per-
form various functions like ease-ins, ease-outs,
acceleration and deceleration.

The Development of the System

The main objective of the development is to
create an environment where students can become
familiar with the tools for computer animation in
a way that is easily transferrable to later work
on the VAX., At the same time, the system must
include enough tools for the beginning student to
create interesting animation and to transfer work
done on the 11/23 to the VAX for later use. For
this reason, the software currently implemented
on the VAX was transported to the 11/23. 1In order
to transport scn_assmblr the limit of objects
allowed was lowered from 64 to 16 and the number
of points and polygons per object was lowered from
several thousand to 700. In order to tramsport
DG, the option to create objects by lofting was
eliminated. The mode of interaction was trams-
ferred from a Megatek to the VT100 with keyboard
control of the cursor. The code for DG also had
to be rewritten into modules that would fit onto
the system at the same time as the data being
created. Many programs available on the VAX will
not be tramsported to the 11/23 due to size limit-
ations, but others are under evaluation. The
curtent display algorithm includes clipping, per-
spective and the vemoval of backfacing polygomns.

Future Improvements

A Peritek Frame Buffer and a Barco monitor
will provide a 512 x 512 x 4 display with 16
colors chosen from 4096, Most of the user inter-—
faces now available on the VAX will be transport-
ed. 'TWIXT, a 3d keyframing system written by
Julian Gomez, is one example of such an inter-
face3. This system allows the user to specify
key frames of an animation and the intermediate
frames are generated through linear interpola-
tion. A version of TWIXT works from a keyboard,
and will be transported to the smaller machine.
TWIXT on the VAX interacts with a Megatek in near
real-time display. This capacity allows for fast
feedback and debugging of animation. Only single
frames can be displayed on the 11/23, The only
way to provide real-time playback for animation
done on the 11/23 is through film. The skeleton
animation (SA) system developed by David
Zeltzer® is also planned for transport.

Outline of the Beginning Computer Animation Class

The beginning Computer Animation class is
designed for students with a background in art
and computer science. Students are also re-
quiired to take a survey course in Computer
Graphics which familiarizes them with the history,
state of the art and basic terms of computer
graphics. The introductory class presents a wide
variety of information. During the first quarter
the student must become familiar with the system
and local software, basic film techniques, the
theory of additive versus subtractive color,
temporal-spacial skills and programming skills.
Relative to system software, the student must
learn the UNIX operating system, the editor, and
the C programming language. They must become

familiar with the application of basic film tech-
niques like cuts, pans, and zooms through control
of the eyepoint and direction of view. Conven-
tional animation is studied in depth in order to
develop a sense of timing and motion control.
Most students must switch their thinking from
using subtractive color as with pigment to using
additive color.

The student first creates a scene using
primitive objects (balls, cubes, cones, pyramids
and cylinders). The student draws the scene in
orthographic projections before beginning work
on the computer. Two objects in this scene must
be in contact with each other in order to demon-
strate control over placement., Three, well-
composed views of the scene must be displayed on
the screen. This demonstrates control of the
eyepoint and direction of view. This assignment
familiarizes the student with scn_assmblr without
having to know any other programs.

The second assignment requires that the
student build three objects using three possible
options of the data generation program. This
assignment familiarizes the student with the kinds
of objects that are easily built in DG.

Assignment Three requires that the student
build an object by hand. Thé object must be
drawn in orthographic projectioms. If it is a
complicated object a rough model may need to be
built as well. The object must be one which
cannot easily be built using the methods of DG.
This avoids wasting a lot of time building an
object by hand that could have been done more
quickly in DG.

Controlling movement is crucial to animation
so the last two assignments require the student
to demonstrate motion control. The first re-
quires that the student use one or two objects
in 10 seconds of animation. A storyboard of
the animation is required. This gives the stu-
dent practice in visualizing an animation from
start to finish and forces them to control the
movement and timing in a structured rather than
an arbitrary way.

The second animation allows the student to
use up to the maximum number of objects (16)
and encourages the student to create an environ-
ment as well as have moving objects.

Summary

A microcomputer can be a powerful tool for
doing animation. The animation will not compare
to that utilizing complex display algorithms and
large data bases generated on larger systems.
However, 1f compared to the many conventional
animation techniques, the animation that is
possible on a micro should entice many artists.
Much, state-of-the-art computer animation done
today is designed to produce special effects.
The micro, with current capabilities, 1s less
useful in creating animation for these purposes.
The relative low-cost of micro systems however,
should make them more available to artists to
develop standards and an aesthetic based on the
system's potential.

67

References
1. Techniques for the Generation of Three Dimen-

sional Data For Use in Complex Imape Synthesis,

W. Carlson, Ph.D. Thesis, The Ohio State Uni-
versity, September, 1982.

"A Comparison of Antialiasing Techniques,"
F.C. Crow, IEEE Computer Graphics and Appli-
cations, January, 1981.

TWIXT User's Manual, Julian Gomez, Computer
Graphics Research Group, Columbus, Ohio,
September, 1983, Unpublished.

"Motor Control Techniques for Figure Anima-
tion,”" D. Zeltzer, IEEE Computer Graphics and
Aoplications, Vol. 2, No. 9, November, 1982,
£g. 53-59.

3-D Computer Graphics for Artists

Judy Sachter

Department of Art Education
The Ohio State University
Columbus, Ohio 43201

Artists need to understand the techniques and
limitations of computer graphics in order to fully
utilize this new medium. While graphics software
may differ from system to system, this paper
addresses basic concepts in 3-D computer graphics
that are independent of a particular language or
graphics device.

1. Introduction

Computer graphics opens up a totally new
medium for the artistic community. In order to
fully utilize this new medium artists need to
understand its techniques and limitations. The
nature of computer graphics demands a variety of
both technical and aesthetic skills. Artists
have to learn where previous artistic skills and
concepts will or will not transfer to this new
medium. It is important for them to become com-
fortable with the computer environment, both the
hardware and the software. They need to fami-
liarize themselves with the use of the computer,
the operating system, the text editor, and the
graphics language as well as the input and output
devices available on the particular system they
are using.

As artists see the world (real or imaginary)
they create an image of this world in their
minds. This image is transformed mentally into
a visualization, and rendered in a particular
medium either two or three dimensionally by the
artist. In 3-D computer graphics it is necessary
to create a mathematically model of the world in
the computer memory. Creating objects in this
'digital” world is similar to creating sculpture
or architecture. The artist needs a good under-
standing of space and form. These objects can
be painted and manipulated by changing their
size, position in space, and their orientation
(rotation) in space to create a scene. This
scene is similar to setting up a stage with
actors, props, and background for film or theater.
The light or lights are placed for the best
effect. Then the artist chooses a window from
which he will view this world and where he is
looking. This building of models, and organiza-
tion of space, color, light and view are where
the artist has control, the rendering of the
shaded 2-D image is all done by programs or
algorithms.

CH1930~-7/83/0000/0068$01.00 © 1983 IEEE

68

Artists consider the level of realism of
their work in relation to the subject matter, the
materials used, the amount of time they have, their
skills at rendering realistically, the amount of
detail necessary, the expressive content, and how
it will be perceived by an observer. This is also
true in computer graphics. Computer scientists
must take into consideration the level of real-
ism needed for a particular application, the
amount of detail recorded in the model, the pro-
cessing time required of a computer to generate
the image, the capabilities of the computer and
the hardware display, and the perceptual effects
of the image on the observer. This has led to
choices in how the artist and the computer
scientist model the world in a way that is
appropriately believable for a particular purpose.

Graphics software may differ from system to
system; there may be more options on some systems
than others and the graphics or animation lan-
guage may be different on each system. This
paper addresses the basic concepts in 3-D com-
puter graphics that are independent of a parti-
cular language or graphics device.

2. TIllusion of Depth

The basic problem addressed by visualization
techniques in 3-D computer graphics is depth
cuing[2]. Artists have used various techniques
to create an illusion of 3-D space on a 2-D sur-
face using an intuitive knowledge of space and
the human visual system.

Largeness of scale can be interpreted as
nearness, and conversely, smaller scale is inter-
preted as spatial distance. The position of a
form near the lower edge 1s perceived as near
spatially and anything above the horizon line
or the center is interpreted as farther away.

Linear perspective is a geometric system
which uses the spatial indication of size, posi-
tion and converging parallels and converts size
and distance into a unified spatial order as
seen from one viewpoint. This visual logic of
linear perspective can be programmed into the
computer.

Overlapping planes or volumes are a powerful
indication of space and take precedence over
other depth cues. An object covering the visible
surface of another object is assumed to be nearer.
Overlapping, one of the strongest depth cues, is
handled by what is called a hidden-line or
hidden-surface algorithm. This eliminates

surfaces or parts of surfaces that are not seen
from the designated view. Transparencies can
also be synthesized by the computer but are ex-—
pensive computationally. Light is a significant
indicator of volume of an object in space. Light
reveals the form and surface qualitites through
a gradation from light to dark. Other surface
qualities such as color, texture, degree of
reflection are the result of the play of light on
the surface. Shadows indicate both the form of
solid obgects as well as position of the light
source, 6]

The qualities of light can be modeled in
the computer in various ways. Diffuse shading
can be easily simulated in the computer. Some
effects create more realism, such as cast shad-
ows, transparencies, and reflections, but are
computationally very expensive. The construc—
tion of the human visual system doesn't allow the
eye to see near and distant objects at the same
time with equal clarity. Distant objects lose
their sharp edges, have less detail, and colors
tend to be lighter and less brilliant. Artists
call this phenomenon aerial or atmospheric per-
spective [3,6].The depth cue of atmospheric
effects might be programmed with a haze factor
and adjustment of colors in the distance. The
techniques necessary to incorporate most of these
depth cues into computer graphics algorithms are
worked out [5§, but when programing depth cues
the scientist has to take into consideration the
amount of computation time for an effect.

3. The Cartesian Coordinate System

The world is modeled in a digital computer
mathematically in a form understandable to the
computer. Each 3-D model must have a complete
3-D definition in space. The frame of reference
for this space is the cartesian coordinate system,
which gives us a standard mathematical reference
for specifying 3-D space. There are various con-

ventions used in reference to this system. The
center of the system is called the origin. The

X axis runs horizontally with positive X (X) to
the right and negative X (-X) to the left of

the origin. Y is the vertical axis with Y going
up and -Y going down from the origin. The Z

axis is the depth axis, with positive Z forward

in space and the -Z going back in space. This
gives us a ripght-handed system, which is important
to know when it comes to rotating an object in

space. I will go into this in more detail later.
4. Data

Each coordinate point in this space can now
be defined as an (X, Y, Z) triple. Connecting
these points or vertices with lines creates a
wireframe view of an object. If this object is to
be shaded, the surface not just the edges needs
to be .defined. One way of approximating this
surface, is by defining a planar polygon or
face. To define the face the coordinate of each
vertex is listed. 1In a consistent order around
the periphery of the polygon. For example, a
triangle would be made up of three vertices and
a square would be made up of four vertices.

69

A face has two sides that need to be distinguished
from each other. A consistent order in describ-
ing the vertices that make up the polygon is impor-
tant to determine if the polygon is facing towards
or away from the viewer. A clockwise order as
seen from the observer position or the outside is
used to define the fromt of the face. The reverse
order as seen from the eyepoint would indicate
that the polygon is facing away or backfacing.
These backfacing polygons are identified and not
displayed. [2] 14] [5

This ordered list provides a description of
the face normal. The face normal is a vector
perpendicular to the plane of the face directed
outward from a front-facing polygon. This face
normal is used to determine hidden-surfaces and
used for shading [5]. This system speeds up the
hidden~surface calculation. An object is a col-
lection of adjoining polygons. Since neighboring
polygons share vertices along common edges,
objects can be easily and compactly defined by
listing each vertex once and polygons are defined
as a list of pointers to the vertices they use,
Another way to speed up calculations is to be sure
that all polygons are convex. This means that a
point is not closer to the center of the polygon
than either of its neighbors. [2] [4] [Sf

The model is a simplification. The closer
the approximation of computer data to reality,
the more complex. Realistic objects may become
very complex, which tends to increase the com-
putation time needed for display. Sometimes hav-
ing the same object with different levels of detail
can be helpful. An object displayed in the dis-
tance does not need to be as complex, and thus
take as much time to display, as an object close
up. There are several things to consider when
planning and creating a piece of data. One thing
to keep in mind, is that a polygon has to be a
plane. A triangle by definition is a plane, and
if there is any doubt about a surface then it
should be broken down into triangular polygonms.
Backfaces can be a problem in debugging a piece
of data, as well as a design consideration.
Backfacing polygons can leave holes in an object.
If the eyepoint is placed inside a box, the box
would not be visible because all the polygons
would be backfacing. To eliminate this problem
all the polygons can be defined twice, once
clockwise and once counter-clockwise. Another
method is to turn off the culling of backfacing
polygons for the boject. Purposely designing in
backfaces allows one to play with space and the
object. Another thing to keep in mind when
designing data is the fact that it can be viewed
from any point in space. As in sculpture, the
data may need to be interesting from multiple
viewpoints.

There are various methods for planning an
object and picking the coordinates of the vertices.
One method that is very useful is orthographic
projection. This involves plotting 3-D points
on a piece of 2-D graph paper using the cartesian
coordinate system. The front or plan view of the
object is projected onto the XY plane. A side
view is projected onto the YZ plane. A top or
bottom view is projected onto the XZ plane. These
plans are similar to an architect's blueprints.

Folding these plamns into a box with the side and
top folded back provides us a model of this ob-
ject in 3-D space. These plans assist in finding
the coordinate of a point in each axis, X, Y, Z
by marking the origin and counting spaces on the
graph paper. One consideration is the location
of the origin in relation to the object. Most
the time the origin is in the center of the ob-
ject. Then it is simply a matter of connecting
points in a clockwise order to define the
polygons.

Many systems have a library of pre-defined
geometric models or primitives (cube, cone,
sphere, pyramid, and cylinder, etc.). These
primitives can be scaled, rotated, and placed in
space to build new objects. This 1s the building
block or combinatory approach to data generation.
Since a sphere can become an ovoid, a cylinder
can change from a long thin rod to a flat coin.
Many possible forms may be created using this
method. Another thing that can be done with
primitives is warping. Some of the points making
up a sphere can have the value of their coordin-
ates changed. In effect, we can "push' and 'pull'
points to create a new shape. Projection is a
fairly simple way to create data. It is somewhat
like a cookie cutter approach. The points for
a shape are plotted in the XY plane and then
repeated with a changed Z value in each vertex.
Solids 6f revolution are very useful in plotting
the points for a symmetrically curved surface,
such as a vase, The data is created for a
'plece of the pie' or the profile and then ro-
tated an appropriate number of times at the
correct intervals to form the entire object.
Lofting is very much like defining the contours
for a topographic map, where a series of cross-
section of an object are defined. This method
can be very simple or become very exacting. It
is similar to creating a sculpture by cutting it
into many thin slices and serially plotting the
points. The slices are then connected and defined
as polygon surfaces. [4]

Many of these methods, as well as others,
have been implemented into data generation pro-
grams that are interactive, in such cases the
artist is usually able to input points with a
'drawing' or digitizing tablet. Polygonal data
is a linear approximation of a curved surface.
Other software may have methods of creating data
that can more closely represent curved surfaces.
An example of these higher-ordered approximations
are B-sline and Bezier patches [5].[4].

5. Object Transformations

Once various objects are defined in the com-
puter there are several things one can do with
each object to create a scene. They can be made
larger or smaller or scale it. They can be moved
around in space or translate it. They can be
turned in space or rotate it. The manipulation of
an object is performed on a copy or instance of
the original. In this way one can have several
instances of the same original object and mani-
pulate each individually. Generally the copy can
be given a name so that it is easier to keep
track of the many objects in a scene. These

70

manipulations of the object we call transforma-
tion. These transformations can be expressed
mathematically in matrix algebra by a single
entity called the transformation matrix. Complex
or several transformations of an object can com-—
bined or concatenated into one matrix [2].
Matrices are usually invisible to the user.
important to only understand what they do.

It is

5.1. Scaliig

_ When scaling each coordinate is multiplied
by a scale factor [2]. One is free to scale in-
dependently in each axis to change the shape or
proportions of an object. Objects can also be
scaled equally in each axis and maintain a larger
or smaller version of the same object. In this
way it 1s very easy to turn a cube into a board
by scaling it up in X by 4 and scaling it down in

Y by .50. For example here are the coordinate
points for a cube:
X Y Z
1. 1 1 1
2. -1 1 1
3. -1 -1 1
4, 1 -1 1
5. 1 1 -1
6. -1 1 -1
7. -1 -1 -1
8. 1 -1 -1

Each point in the X column would be multiplied by
4 (4x1 =24 and -4 x1=-4), Each point in the
Y column would be multiplied by .5 (1 x .5 = .5
and -1 x .5 = -.5). The Z coordinates would
remain the same. Thus we have changed an object
with the outer limits or bounding box of -1 to 1
in X, 1 to 1 in Y, and -1 to 1 in Z to -4 to 4
inX, -.5to .54n Y and -1 to 1 in Z.

Another thing to keep in mind in designing
data is the location of the origin of the object.
If an object is designed with coordinate points
with a zero value in any axis then any multipli-
cation of zero 1s still zero. This can be used
creatively if controlled, but can be difficult to
control because it may not only scale an object
it can also move it. The scaling can be used
very effectively for instance in animation to
incrementally scale an object down to the point
where it disappears or up to the point where it
takes over the screen. In fact scaling an object
by a negative number can turn it inside out and
reverse the order of the polygon description.

If an object is designed for this it can actually
become another object on the inside.

5.2. Translation

In transiation a factor is either added or
subtracted from each coordinate to move it around
in space [2] [5]. As with scaling this can be
done independently along each axis or in more
than one to place it where desired in space. 1In
the example of data for the cube listed before,
the object has its origin at 0 X 0Y 0 Z (0,0,0).
If this object is placed at 0,0,0 it will not
have moved. 1If it is placed at -2, 1, -3 values

will have been added or subtracted respectively
from each coordinate of the object. This cube
will have just moved to the left in X up in Y and
back in Z. A shorthand method for thinking

about this that the origin 0,0,0 of object is
actually placed at -2, 1, -3. Using this method
it is fairly easy to figure out where the object
is placed.

Translations are very useful in organizing
and placing things in space. Incrementally
placing the same object at various intervals can
be used to build more complex images, such as a
steps or bars on a crib. In animation this can
be used to simulate motion. If one displays a
box, takes a picture of it with a movie camera
(stop motion), then moves the box a little more
and takes another picture of this frame, we have
animation. Translation is very important in ani-
mation. By varying the distance between moves
one can either speed up or slow down the motion.
5.3. Rotation
Rotations are mathematically more complex.
They are done through matrix multiplication using
sines and cosines [2] [5]. Artists need to only
understand how to control rotations. In trans-
lation a positive number in X moves the object
to the right and a negative number moves it to
the left. In scale large numbers expand the
object and small numbers contract it. In rota-
tion one has to think of the direction of the
rotation. As stated previously, these examples
will use, a right-handed space. With the right
hand one grasps the axis with the thumb pointing
towards the positive end of the axis, your fingers
will curl in the direction of a positive rota-
tion. When looking down an axis from the posi-
tive end towards the origin a positive rotation
will be counter-clockwise [2]. Rotations are
usually specified by the axis of rotation and
degrees of rotation either positive or negative
for the direction.

A simple rotation is a rotation around a
single axis in the coordinate system [2]. This
is a rotation on the origin of the object in a
specific axis. The order of rotation is impor-
tant. This concept is not immediately obvious
but must be understood. The reader can demon-
strate this principle by holding an object and
performing these operations. Rotate an object
on its X axis, then on its Y axis. Then repeat
the same operation in reverse order. You should
see that the resulting orientations in space are
different due to the order of rotations.

A concatenated rotation is a rotation about
more than one axis at a time [2]. If an object
is rotated in X and then in Y, a concatenated
rotation would be rotating it in X and Y at the
same time. The order of the rotations are still
important even when rotations are concatenated.
Keeping track of rotations can become very com-
plex and requires skill and a good sense of
spacial orientation.

Rotations off the origin of the object are
different from on-origin rotations. This can
be thought of in terms of the solar system. An
on-origin rotation is like the earth rotating

71

on its own axis, and an off-origin rotation cor-
responds to the earth orbiting around the sun. It
is important to realize that several rotations on-
origin and off-origin can be going on at once
increasing the complexity. A common error is to
rotate an object so that it moves completely off
the display screen. The beginner is often unable
to understand why the object can't be seen.

Rotations, like scaling and translating, can
be used effectively in animation. By incremental-
ly rotating an object it can appear to spin, tumble
or roll. The speed of this motion depends on the
size of the increments. For example, if it only
rotates by .5 degrees per frame it will appear to
rotate very slowly.

6. View Transformation

Once all the objects are arranged as desired
in the scene, an eyepoint to view the scene must
be selected. The eyepoint is placed by locating
it in the coordinate system through an X, Y, Z)
triple. The point in space at which one is look-
ing must also be specified. This point is the
center of interest and is placed by defining its
X, Y, Z position. These two points in space
create a line of sight. The viewing angle,
which is the angle on either side of this line
makes up the viewing pyramid. The eyepoint is at
the apex of the pyramid. Anything outside this
view pyramid is clipped and not displayed. A
view angle of 90 degrees indicates a 45 degree
view on either side of the line of sight. Depend-
ing on the system, this angle is either fixed or
can be changed, but it is important to know.
Setting the viewing angle is similar to chaning
the focal length of a camera lens, in that the
size of the angle of view controls how much of a
scene will be seen in the display. Similarly,

a long focal length telephoto lens gives a narrow
field of view, while a short focal length wide-
angle lens, of course, gives a very wide field

of view.

Once this view pyramid is defined, all the
coordinates of the objects in the scene are trans-
formed to eye coordinates. The view that appears
on the display device seems to be centered along
the specified line of sight. These new X Y Z
coordinates of each of the objects in the scene
are projected onto a 2-D picture plane by one of
several known mathematical techniques for gener-
ating perspective, orthographic, or other kinds
of projections. The perspective projection is
the one we are most familiar with, because it
remarkably is similar to the photographic image.
In any case, the 3 X Y Z coordinates of the ob=
jects have been transformed into eye space, and
then into the two dimensional X and Y coordinates
of the objects have been transformed into eye
space, and then into the two dimensional X and Y
coordinates of the display screen. Thus the 3-D
eye space is transformed to a 2-D screen space and
completed the view transformation [2] [4] [5].

The eyepoint and center of interest can be
used in animation to simulate filming conventions
or techniques, such as cuts, pans, dolly, truck-
ing and crane shots. By changing the view angle,

a wide angle or telephoto lens can be simulated.
One unique property of computer graphics is the
ability to arbitrarily move your 'camera' or use
views impossible in other medium.

7. Color, Light and Shading

The color raster display device has indi-
vidual video input of red, green, and blue (R G
B). The three guns excite the phosphor dots
which make up each picture element or pixel.

Each gun is individually controlled for inten-
sity. The eye blends these dots of R G B into
the visible colors of the spectrum [4]. This
color phenomenon was used by the Pointillist
painters. The light reflection model that des-
cribes both the color and distribution of reflec-
ted light in computer graphics is similar to the
way some artists approach a painting. The illu-
mination and the color of an object are painted
separately. The entire painting is done achro-
matically in white, greys and black creating the
shading gradients, then local color is applied
with glazes [1].

Now that we have calculated the visible sur-
faces of our image, we need to compute the cor-
rect intensity value for each pixel in the shaded
image. A light reflection model that describes
both the color and the distribution of reflected
light. This intensity value is determined by the
position of the light source, the polygon orient-
ation and the surface properties of the object.
The shading gradient is determined by the angle of
incidence of the light source to the normal-
vector, which is perpendicular to the plane of
each polygon [4]. The closer this angle is to
zero the brighter the face, and conversely the
greater the angle the closer to black the face
will be., These value gradients are usually
stored in a color look-up table. If these
tables can be accessed the artist can play with
reversing light and dark, 'bumping' the dark
values, and change the hue of highlights and
shadows, etc.

Now that each polygon has a value, the
image can be displayed. Each polygon would be
seen as faceted, or one value for each polygon.
Gouraud and Phong shading models create more
realistic images of curved surfaces of smooth
‘shading, even if the data is polygonal [4] [5].
Gouraud shading is a fast approximation of smooth
shading. The normal is calculated for each ver-
tices and the intensity is then linearly inter-
polated across the surface of the polygon.

Phong shading is a closer approximation to real-
ity. This algorithm computes a normal at each
pixel to obtain the intensity, but is computa-
tionally more expensive. Ray tracing is the
most exact model, it takes into consideration
highlights, shading, cast shadows, and reflec-
tions, of course it takes a very long time to com-
pute an image [4]. These shading algorithms are
invisible to the user. The artist must only
understand the principles so that he may achieve
the desired effect by placing the light source
and coloring their objects. The point light
source is placed at an X Y Z coordinate in space
in relation to the position of the other objects

72

in the scene. Depending on the system, the artist
may have access to more than one light source. He
may even be able to scale and color the light
source. The point light source is usually thought
of as a sphere of light with the scale factor a
radius. Thelight model for directed light as
modelled after stage lighting could be very
exciting, but is not yet used.

Color in computer graphics is made up strictly
of the three primary colors red, greem and blue
(R G B), due to the limitations of the raster
display. This system is modeled after the light
primaries and is an additive color system. Colors
are specified numerically with a discrete inten-
sity value for each component. Colors can be
specified in two ways. In the HL S (hue, light-
ness, and saturation) model, hue is specified as
a given angle of a circle, lightness is from
black to white, and saturation is used to specify
the degree the color differs from grey..

The R G B system is modeled after a color
cube with black at 0,0,0, and white at 1,1,1.
White is made up of full intensity of each pri-
mary and black is the absence of any color.
This color can be more readily visualized by
creating a color wheel with red, green and blue
as primaries and yellow, cyan, and magenta as
intermediary colors.

R G B
red 1 0 0
yellow 1 1 0
green 0 1 0
cyan 0 1 1
blue 0 0 1
magenta 1 0 0
white 1 1 1
black 0 0 0

The higher the number the brighter the color.
A bright blue would have the value of 1,0,0 and
a darker blue would have a value of .2,0,0.
The artist has several adjustments to make in
using color on a computer. Colors are specified
with numbers, and additive color systems is dif-
ferent from substractive color system which the
artist is used to. A colored light can drasti-
cally change the hue of a scene. The artist has
to practice using a particular system and a par-
ticular display device to be able to anticipate
hue and saturation of a color mixture.

The possibilities for artists in computer
graphics are endless. Presently the design of
hardware and software is geared to science and
technology. The artist needs to become more
familiar with computer graphics and form a part-
nership with computer scientists. Through col-
laboration of these two fields, computer graphics
can become a more natural, dynamic and artistic
medium,

References

1. Arnheine, R., Art and Visual Perception,
University of California Press (1974).

2. Crow, F.C., Three-Dimensional Computer

Graphics, Part I, Byte, Vol. 6, (3), p. 54
March, 1981.

Knobler, N., The Visual Dialogue, Holt,
Rinehart, and Winston,Inc. (1966).

Greenberg, D.P., An Overview uf Computer
Graphics, Addison- Wesley (1982).

Newman, W. and Sproull, R., Principles of
Interactive Computer Graphics, 2nd Edition,
McGraw-Hill, New York, (1979).

Ocvirk, 0., Bone, R., Stinson, R., and Wigg,
P., Art Fundamentals Theory and Practice,
Wm. C. Brown Co. Publishers (1975).

73

A PROFESSIONAL QUALITY DIGITAL AUDIO PERIPHERAL FOR SMALL COMPUTERS

by Hal Chamberlin

Micro Technology Unlimited
2806 Hillsborough St., Raleigh, North Carolina

ABSTRACT

During the past couple of years the development of
low-cost digital audio systems has proceeded at an
astonishing pace. Already announced, and in many cases
available to consumers, are encoders/decoders which turn a
video cassette recorder into a digital audio recorder, and
"compact disk" digital audio playback systems. The ability
to offer such devices at reasonable cost (under $2000) is
due primarily to advances in semiconductor processing {for
the 16 bit DACs and ADCs involved) and willingness of large,
established audio equipment suppliers to invest in LS|
controller ICs to handle the difficult synchronization and
error control logic involved. While these developments are
a boon for the critical audiophile, they have not so far
been exploited in the design of a professional quality
digital audio computer peripheral suitable for use in small
systems. This paper describes the design features of such a
device which is flexible, is easily interfaced to any small
computer, and is much lower in cost than previous units
intended for use with minicomputers or mainframes.

Introduction

Digital recording and playback of audio signals is
currently the hottest topic in audio, both in the
professional recording industry and in high-end consumer
products. It is difficult now to find an audio journal or
magazine without at least one article or product review on
digital audio equipment. The advantages of using digital
techniques in what has been the weakest link in the audio
chain are indisputable (although a handful of ill-informed
critics nevertheless try to dispute them). This fact,
coupled with recent advances in IC and laser disk
technology, has encouraged established audio equipment
manu facturers to make the investment necessary to
manufacture digital audio equipment at low cost and in large
volumes.

While these developments promise to revolutionize the
quality of recorded and reproduced sound, they so far have
not been applied to any great extent in synthesis and
processing of sound material with small computers. When one
realizes that sound in digital form is completely accessable
to manipulation by computer (just as tape recording made
sound accessable to manipulation by hand 35 years ago), one
also realizes that a whole new world of creative
possibilities has been opened up. With today's powerful
personal computers, inexpensive mass—storage peripherals,
and a suitable digital encoding/decoding peripheral, even
small institutions and individuals with limited expertise

CH1930-7/83/0000/0074$01.00 © 1983 I1EEE

74

can now explore this world which heretofore has been limited
to large organizations.

To date, computer processing of digita audio has been
performed on three fairly distinct "planes®™ of
sophistication. On the highest plane are the professional
recording studio equipment suppliers who design,
manu facture, and program the entire system including a
special purpose computer and cost-is—no-object A~to-D and
D-to-A converters. The cost of such systems is accordingly
high while their flexibility is usually limited to the job
at hand such as equalization (tone control) and multi-track
emulation.

Next down are large research organizations such as music
departments at major universities. They typically use a
campus mainframe or large departmental mini-computer and
either buy the A-to-D and D-to-A conversion equipment
off-the-shelf (if something suitable an be found), or more
frequently design and build one unit in—house. While cost
is usually an important factor (relative to the commercial
plane), these computer music installations nevertheless
represent several tens of thousands of dollars worth of
equipment.

On the lowest plane are small organizations and
individuals using personal computers and relatively crude
commercial or home-made conversion equipment. Much has been
accomplished on this plane in the short history of personal
computers (1, 3, 4) but the lack of reasonably priced, high
quality conversion equipment has restricted serious artistic
application of the results. While the participants on this
plane may be fully capable of designing and implementing
audio signal analysis, processing, and synthesis software;
the expertise needed to integrate an IC data converter into
a high quality conversion peripheral is lacking. It is this
need that the device to be described is designed to
fullfill.

Desirable Characteristics

Since this project was untertaken as a product design to
be manufactured by a small company, there was the initial
task of determining what features were desired by potential
customers. Of course there is always the issue of cost
since a unit that incorporates every desired feature at the
highest possible accuracy level would clearly be too
expensive for the intended market. Nevertheless the final
design is remarkably free of compromises.

The first issue that seems to come to any prospective
user's mind is sampling rate. While data throughput
considerations in the host computer often limit the
attainable system sample rate (2), nearly everyone felt
that the conversion peripheral should have as high a sample

rate capability as possible, at least up to 45-50KHz in
order to cover the accepted 20Hz-20KHz audio range.
Frequently noted were requests to provide the "commercial
standard" sampling rate of 44.056KHz and the "professional
standard" of 48.000KHz with zero error. Besides these, a
continuously programmable rate was also desired with
particular emphasis on 1/2 the commercial rate (22.028KHz),
1/2 the professional rate (24.000KHz), and typical "speech
rates" of 8 and 10KHz.

Equally as important as sampling rate was the issue of
wordlength or the number of bits in the converter. Again,
almost reflexively, 16 bits was desired. The desire
persisted even after extended discussions of what was likely
to be audible when an analog recording device was in the
chain (as it would likely be to hold the initial input or
receive the final output) and the impact on cost,
particularly of A-to-D conversion. In many cases, the
ability to operate with shorter words, such as 12 bits or
even 8 bits, when acceptable was desired to minimize data
storage requirements.

Closely associated with the sampling frequency is the
issue of anti-alias filters. Since low noise, sharp cutoff
filters are difficult to design and build and are expensive
to buy off-the-shelf, most respondants preferred that they
be supplied along with the converter. An additiona problem
with filters is that high quality with selectable or
programmable cutoff frequency entails a very high cost.
Conversely, it was undesirable to closely integrate the
filter with the converter and thus force selection of a
fixed sample rate when the unit is builte The use of
fixed—frequency plug-in filter boards was found to be an
acceptable compromise in most cases.

Both analog-to-digital operation (recording) and
digital-to-analog operation (playback) were desired. When
the considerable cost increment to provide 16 bit A-to-D
conversion was discussed, its acceptance as an extra—cost
optional feature greatly increased. Sometimes simultaneous
A-to-D and D-to-A operation was also desired for
applications such as real-time digital signal processing.
However, after discussing the difficulties and expense
involved, most indicated that the use of two lower cost
units, one A-to-D only and one D-to-A only, would be
acceptable, Most everyone preferred at least the option of
stereo. Those most interested in analysis were the Jeast
likely to require stereo while those primarily interested in
synthesis universally wanted stereo. Occasionally, even
more than two channels was desired for non-audio data
acquisition applications.

The question of interface technique to the host computer
proved to be especially stickys The first experimental
conversion peripheral constructed in 1979 was a stand-alone
device interfaced via a parallel /O port to the host.
There were several design problems related to the lack of
synchronization between host-converter data transfers and
the sample rate but that method did have the advantage of
being non computer specific. The second experimental
converter (2) was implemented as a plug-in bus peripheral
for the MTU-130 computer which solved those problems but
added some others such as digital noise pickup from adjacent
boards. With the current proliferation of powerful 16 bit
systems it was clear that a successful unit must again be
non-computer specific. Additionally, 16 bit operation
essentially mandates packaging in a separate, shielded box
(the experimental units were 12 bits). Also, it was deemed
desriable in some cases to provide for DMA transfer of data

75

"about $25.

through a DMA port as well as programmed transfer through a
parallel 1/O port.

The last issue was buffer size. Potential users weren't
overly concerned with the buffer as long a it was possible
to perform continuous digital recording and playback to or
from disk. Since sample rates, particularly with 16 bit
samples, have to be rock steady, at least one buffer
register is always required. The earlier prototypes
extended this minimum to a more generous 256 and 1024
samples respectively which simplified record/playback
programming by allowing up to several milliseconds of host

-inattention before data loss (recording) or sound gaps

(playback) is experienced. However, when disks are used for
digital data storage, considerably more buffering is
required (2). This is.usually provided by the host
computer's main memory and a fairly sophisticated buffer
management program. With today's low cost memory ICs, it
should be feasible to provide this very large buffer right
in the converter and thus simplify programming even further.

Given these market inputs then, the design task is how
to best satisfy them at a reasonable cost. Additionally, to
be a feasible product for a small manufacturer, the design
should only use standard components. The following sections
briefly describe the reasoning behind design decisions in
each of these areas and more fully describe the final unit.

Converter Selection

Great strides in low-cost monolithic and hybrid A-to-D
and D-to-A converters have been made in the past 2-3 years.
In particular, units designed for audio have appeared to
meet the projected need in consumer digital audio devices.
This is significant because in audio applications absolute
accuracy (percent of full scale) is not very important while
relative accuracy (linearity) is quite important. While
both are difficult to achieve at the 16 bit level, removing
concern over absolute accuracy has a very favorable effect
on cost.

When selecting the D-to—A converter, it turned out that
quite a variety were available. This is probably due to the
expected sizable market for "compact disk"™ playback
equipment. Major contenders in the US merchant market
include the Hybrid Systems HS3160, Intersil ICL7134, Analog
Devices AD7546 and DAC9331, Harris HI-DAC16, Analogic
MP1926, and Burr-Brown PCM51. There are undoubtedly others
available in Japan or under license in large quantities.

The HS3160 is a CMOS device which uses a segmented
technique with 16 segments of 4096 steps each. Although
rated for 1.5uS current output settling time, the large
output capacitance characteristic of CMOS converters makes
the practical value several times longer. Cost is about
$50. The DAC9331 is also a CMOS device but uses an R-2R
fadder for identical differential and integral linearity.
Its cost is about $80. The AD7546 too is CMOS and uses
segmentation to attain 16 bit monotonicity. In practice it
needs 3 external op-amps and the total settling time is
about twice the amplifier settling time or typically 10uS.
One unique feature is a built-in deglitching switch. It
costs about $45. The ICL7134 is unique in that an on—chip
PROM is programmed after manufacture to correct for
nonlinearities. The PCM51 is a bipolar R-2R unit with a
settling time of just 350NS current output. It costs only
The MP1926 is probably the best unit available
specwise (it uses sign-magnitude architecture) but its cost

of nearly $200
equipment.

limits use to the very best professional

In a stereo system there is the decision between using
two DACs, one for each channel, and using a single DAC which
flip-flops between channels. The former places the least
demand on converter (and other circuits) speed while the
latter should be lower in cost. Another consideration is
that the flip—flop arrangement introduces a slight
differential delay between the left and right channels, At
50KHz this would amount to 10uS which is about 1/8 inch in
air and so was dismissed as being insignificant.

Given these considerations, the Burr—Brown PCMS51-V was
chosen as the best all-around value. This unit has an
on—-chip reference and an on-chip amplifier to provide a +-5
or +-10 volt output voltage with a 5uS settling time. Spec
sheets just received from Burr-Brown indicate that a new
model, the PCM-53, is now available at a slightly lower cost
and with slightly better low-level distortion specs (i.e.,
better zero-crossing linearity). This was achieved by
switching from the brute-force R-2R ladder used in the
PCM50/51 to a segmented architecture. Since it is
essentially plug-compatible with the older unit, it will
probably be used when production starts.

The range of possibilities for 16 bit A-to-D converters
was much more restricted. Since the potential market for
consumer digital audio recorders is much smaller than
compact disk players, there is less incentive to develop
very low-cost A-to~D converters. Most units evaluated were
relatively stow at 30uS (30KHz maximum sample rate, single
channel) or very expensive large potted modules; all
intended for data acquisition use. One designed—for-audio
standout was the Burr-Brown PCM75 which has a 17u$
conversion time (8uS with reduced specs), small 1"x2" size
and acceptable cost of $250. Another possibility was
constructing an ADC from one of the Burr-Brown DACs, a
successive approximation register, and a high speed
comparator. Although likely to be much lower in cost, the
thought of shielding a comparator with 150uV sensitivity and
100NS speed made the integrated unit seem much more
attractive.

Note that at 17uS -the PCM75 is not fast enough to
perform 50KHz stereo digitizing at full 16 bit linearity
with just one unit. According to the spec sheet however,
one looses just about one bit of linearity when sped up to
10uS. By using a separate sample-and-hold for each channel,
10uS is fast enough for stereo at 50KHz and the slight loss
in linearity was judged to be an acceptable tradeoff for the
substantial reduction in cost from two units.

Sample-and-Hold and Deglitcher

One of the secrets of successful audio D-to—A conversion
is the sample~and-hold circuit used for deglitching.
Monolithic SAH circuits are woefully inadequate (2) while
hybrid modules are expensive and usually undergo distortion
inducing slewing when switching from hold to sample modes.
Analogic does make a device designed specifically for audio
reconstruction but again its cost is beyond acceptable
limitse The only alternative seems to be constructing the
deglitcher from descrete components.

In the past the author would have used Signetics SD211
DMOS transistors -or an SD5001 DMOS transistor array for the
analog switches due to their extremely high speed (10NS) and
very low gate-to—drain capacitance (0.2pF). Unfortunately

76

these devices have been discontinued. Harris however makes
a nice, fast (30NS) CMOS integrated quad switch-driver array
known as the HI201HS. For stereo deglitching, four switches
are assembled into a non-slewing sample-and-hold arrangement
illustrated in figure 1.

The sample-and-hold circuit used ahead of the A-to-D
converter has a different set of requirements. Slewing when
going from hold to sample modes is not harmful but a fast,
uniform transition from sample to hold is important since
the input signal is changing. The same HI201HS switches
proved adequate in that application as well. The stereo
sample-and-hold arrangement illustrated in figure 2 is not
very sophisticated from a data acquisition point of view
(the droop rate is fairly poor, there is a noticable
hold-step, and no attempt is made to cancel amplifier
offsets) but it does hold the signal long enough to be
digitized and introduces very little excess distortion over
that of the ADC itself.

Sample Rate Clock

Normally, the sample rate clock would be a simple,
straightforward crystal osciflator and programmable divider.
However, the desire to provide both the commercial standard
(44.056KHz) and professional standard (48.000KHz) sample
rates without error proved to be somewhat troublesome.

First it was necessary to determine how the 44.056KHz
number was arrived at. This was initially done empirically
and later confirmed by consulting audio industry trade
journals. It seems that 44.056KHz is equal to 4/325 of the
NTSC color subcarrier frequency of 3,579,545Hz. How's that
for an arbitrary choice, at least from an audio point of
viewl To actually generate this frequency, one would divide
the output of a 14.31818MHz crysta oscillator by 325.

Next, some common factor analysis was performed to find
a crystal frequency that when divided by integer values
could generate a whole host of "round" sampling frequencies
without error. In particular, accurate rates of 8, 10, 12,
12.5, 15, 20, 24, 25, 30, 40, 48, and 50KHz were desired.
The lowest reasonable frequency that satisfied all of these
was determined to be 14.4MHz

Since the least common multiple of 14.31818MHz and
144AMHz is somewhere up in the light frequency range, the
final sample rate clock uses two crystal oscillators to
generate two basis frequencies. When selecting a sample
rate, the desired basis frequency must also be selected.
With a 12 bit programmable divider, the lowest sample rate
that may be selected is about 3.5KHz. For additional

flexibility, an external sample rate clock can also be
selected.
Sample Buffer
As mentioned earlier, having a very large

first-in-first-out buffer can vastly simplify programming of
the host system for continuous transfer of data between
disks (both floppy and rigid) and the conversion peripheral.
With a large enough buffer it should even be possible to do
this on a system that uses a programmed I1/O disk controller
(as opposed to a DMA disk controller).

Since currently available FIFO buffer chips are far t}so
small to consider (at most 128 locations by 8 bits), the
buffer had to be implemented as a dual-port random-access

memory with two address pointers (counters), one to steer
data going into the memory and one to select data coming
out. There were essentially three choices for the actual
RAM chips themselves: 16K static (2Kx8 6116 type}, 16K
dynamic (16Kx1 4116 type), and 64K dynamic (64Kx! 4164
type). Since a truly large buffer was desired and the cost
of 64K dynamic RAMs is down around $5, they were chosen.
Using 16 of them would have created a 64Kx16 sample buffer,
enough for a second or more of sound at all but the highest
rates. This was scaled back to 64Kx8 in the final unit and
Mpage mode" cycles used to access the high and low byte of
each sample in quick succession.

When actually programming data flow to or from a device
through a FIFO buffer, one needs to know when the buffer is
empty and when it is full. To avoid having to check its
status after every sample is read or written, you would also
like to know just how full or empty it is at the moment.
With such a "fullness register", buffer status need be
checked only every block of perhaps 1024 samples. One could
also determine whether the buffer status is such that a
retry could be attempted in the event of a disk error.

During the circuit design, however, it turned out that
detecting the exactly full and exactly empty conditions was
very costly in terms of real-estate on the board. Thus
while status register bit positions and connector pins have
been reserved for these functions, the final buffer design
has a "fullness resolution of only 1/8 of its capacity.
What this means is that at the very end of a record or
playback session, the last 0-4095 samples may be lost.
Since this may represent as little as 50 milliseconds of
sound and it is normal to pad the end of segments with
silence, this is not seen as a major drawback.

Computer Interface

Of all of the subsystems, implementation of the computer
interface had the widest variety of choice within the
constraint that it be reasonably easy to interface to most
computers. It is pretty clear that the interface should be
parallel although somebody could probably make a case for 1M
baud serial instead. Given that it is indeed parallel, it
is also clear that it should be 8 bits wide for use with 8
bit systems even though data transfer efficiency is
sacrificed when used with a true 16 bit host.

Some standard parallel interface structures were then
examined to see if any were suitable for this rather unusual
application. Centronics parallel was rejected because it is
unidirectional (output only). An IEEE-488 interface would
have worked, but for most computers an IEEE adapter board is
quite expensive. Also many adapters are too slow to be used
at the higher sample rates (up to 200K bytes per second
needed) even though the IEEE-488 bus is rated for operation
at up to 1M byte per second. The SCS! interface often used
for remote rigid disk controllers was also a possibility but
it seemed needlessly complex for the task at hand.

The approach finally taken was to imagine the entire
conversion peripheral as an LS| integrated circuit chip and
equip it with the sort of interface signals and philosophy
that a chip designer might use. In many ways the interface
resembles that presented by the NEC uPD765 floppy disk
controller chip used in several computers including the
MTU-130/140 and the IBM PC. These interface signals are
summarized below (a leading — denotes inversion):

77

1. 8 data lines, bidirectional, positive true.

2. 1 address line,
register and 1

input, 0 selects the control/status
selects the data register.

3. —-READ/WRITE, input, selects whether the strobe will read
from the selected register or write into the selected
register.
4. -STROBE, input, enables read data from the selected
register onto the data lines or strobes write data into
the selected register on its trailing edge.

5. —RESET, input, instantly stops operation, clears the
buffer, and initializes the unit to an idle state.

6. -NEAR FULL, output, asserted when the buffer becomes 3/4
or more full.

7. -NEAR EMPTY, output, asserted when the buffer becomes

less than 1/4 full.

8. -DATA REGISTER READY, output, negated following a strobe
directed to the Data Register for the time required to
dispose of written data or retrieve the next byte of read
data. The not ready time averages approximately 1 uS.
9. -DEVICE SELECT, input, all inputs are ignored and the
data lines float when negated.

A jumper is provided to force read data onto the data
lines whenever —READ/WRITE selects read regardless of the
state of ~-STROBE. The strobe is still necessary however to
"tell" the device that data has been read. For simplified
interfacing to some systems, jumpers are also provided to
redefine ~-READ/WRITE and ~-STROBE as foltows:

3. ~-READ ENABLE, enables read data from the selected
register onto the data lines.

4. —-WRITE ENABLE, strobes write data into the selected

register on its trailing edge.

This interface can be easily driven by a dual 8 bit
parallel port such as that provided by a 6820 PIA or 6522
VIA or 8255 PPl parallel interface chip. One of the 8 bit
ports is connected to the data lines and must be easily
switchable between output and input functions. The other
port connects to the 8 control and status lines and should
be capable of mixed (although constant) directionality with
5 outputs and 3 inputs. By suitable program manipulation of
these two ports, all device functions an be controlled. It
is also possible to utilize the various strobe outputs and
edge sense inputs of these chips for some of the interface
functions to simplify programming. Note that the data
transfer rate through such a hookup may be limited by host
CPU speed to a value less than the 200K bytes per second
necessary to run stereo at a 50KHz sample rate.

Since the interface is "chip-like", it can in most cases
also be connected to the host as a direct bus addressed
peripheral. All that is needed for such a connection is an
8 bit transceiver (such as a 74L5245) between the host data
bus and the converter data lines, a buffer between the
host's least significant address line and the converter's
address line, additional buffers for the —READ/WRITE and
-STROBE signals (or -READ ENABLE and -WRITE ENABLE) and
-RESET, and an address decoder. The remaining signals can
be ignored. The interface can also be connected to a DMA

port for fast, automatic data transfer. The -NEAR EMPTY,
-NEAR FULL, and -DATA REGISTER READY signals would be used
to "throttle" the DMA rate and thus prevent overruns or
underruns from occurring.

Programming

Operation of the converter is through a number of 8 bit
registers. Each register is selected by a unique
combination of the -READ/WRITE interface signal, the
interface address line, and bits 0 and 1 of the control
register. Note that some registers are either read-only or
write-only.

The converter is placed into various operating modes by
writing different bit patterns into the Control Register.
The Control Register is a write-only register and is
selected when the interface address line is low and a write
operation of performed. Reset forces the Control Register
to all zeroes. The bit assignments of the control register
are shown below:

CONTROL REGISTER

Bit 7 0 = Pause, stop data flow between the converter and
the buffer but retain buffer contents. 1 = Run,

start data flow between the buffer and the converter.

Bit 6 0 = clear the buffer to empty status and zero the
DAC outputs. 1=permit normal buffer and ADC/DAC
operation.

Bit 5 0 = monophonic mode (channd A), 1 = stereo mode
(channels A and B alternate with channel A first).

Bit 4 0 = DAC mode, samples are withdrawn from the buffer
and converted to audio output. 1 = ADC mode,

the audio input is digitized and the samples are
written into the buffer.
Bits 3,2 00 = Reset the format converter.
01 = Select 8 bit companded format.
10 = Select 12 bit companded format.
11 = Select 16 bit linear format.
Bits 1,0 00 = The Data Register is connected to the buffer.
01 = The Data Register is connected to the Scale

Factor Register.
10 = The Data Register is connected to Sample Rate
Register 1.
The Data Register is connected to Sample Rate
Register 2.

n =

The Status Register indicates the status of the buffer
and the two external user digital inputs. The Status
Register is read-only and is selected when the interface
address line is low and a read operation is performed. The
Status Register may be read at any time with no effect on
operation. Bit assignments of the Status Register are shown
below:

STATUS REGISTER

Bit 7 Not used, always zero. Reserved to indicate that a

buffer overrun or underrun error has occurred.
Bit 6 Not used, always zero. Reserved to indicate that the
buffer is exactly empty.

78

Bit 5 Reflects the state of external user digital input B.
Bit 4 Reflects the state of external user digital input A.

Bits 0-3 Indicate the degree of buffer fullness as follows:

0000 = less than 1/16 full
0001 = less than 1/8 full but at least 1 sample
0010 = less than 3/16 full but at least 1/16 full

1110 = less than 15/16 full but at least 13/16 full
1111 = at least 7/8 full

Note that although the resolution of the buffer fullness
measure is 1/16, there is an added uncertainty of 1/16 which
gives a useful resolution of 1/8. Addition of the exactly
empty and exactly full detection logic would also eliminate
this uncertainty. Depending on the interface method and
programming preferences, either that Status Register or the
1/4 and 3/4 interface signals may be used to monitor the
buffer status.

According to bits 0 and 1 of the Control Register, the
Data Register may actually be connected to one of four
internal registers: the FIFO buffer, the Scale Factor
Register, and one of two Sample Rate Registers.

Data in the buffer always consists of 16 bit
twos—complement values. Data is exchanged between the
buffer and the Data Register through a format translator.
Depending on the data format selected, 1, 1.5, or 2 bytes
may be required to represent a sample. The format
translator is "incremented" after each read or write to the
buffer through the Data Register. The format translator may
be reset to its initial state at any time to insure
synchronization with the byte oriented data stream to or
from the host. It must be reset first when changing to a
different format. The buffer is read—only when in ADC mode
and is write-only when in DAC mode.

The Scale Factor Register is used with the companded
data formats to scale the reduced resolution sample values
to take advantage of the 16 bit dynamic range of the A-to-D
and D-to-A converters. During output to the D-to-A
converter the lower 4 bits of this register determine the
number of sign-extended right shifts that samples from the
host should undergo when transferred into the buffer.
During input from the A-to-D converter, they determine the
number of left shifts that samples from the buffer should
undergo when transferred to the host. In stereo mode the
same scale factor applies to both channels. The high 4 bits
are used to control 4 externally available user digital
outputs.

Two registers are used to specify the sampling
frequency. Sample Rate Register 1 holds the lower 8 bits of
a 12 bit divisor while Register 2 holds the upper 4 divisor
bits in its lower half. The actual divisor used is the
twos complement of the value written into these 12 bits.
The remaining 4 bits of Sample Rate Register 2 are as
follows:

Bit 7 Not used.

Bit 6 ADC speed control, 0 = 17uS (full specs), 1 = 10uS
(reduced specs)
Bit 5 Sample clock source, 0 = internal clock, 1 = external

clock.

Bit 4 Basis frequency for internal clock, 0 =
= 14.31818MHz

14.400MHz, 1

The host is responsible for setting the ADC speed to a
value compatible with the sample rate and mono/stereo
selection. These are write-only registers.

Programming Examples

Programming details are highly dependent on the host
computer, actual interface technique, and the type of mass
storage device used. Figures 3 and 4 however show general
flowcharts for récording and playback respectively. The
blocks with dotted outlines in figure 4 are needed only if
the 8 or 12 bit mode is used and the sound file format
supports the block gain control feature for increased
dynamic range.

It should go without saying that these core data
transfer routines must be written in the assembly language
of the chosen host. However it is entirely possible that
these would be the only assembly language routines in an
overall synthesis or analysis software system.

Filter Modules

Description of the filter modules has been deferred
because they are independent of the main unit and in many
cases may need to be optimized for the specific application.
Each plug-in module consists of a front panel which measures
1" by 3" and a printed circuit board that measures 2" by 3",
Connection to the user's audio equipment is made through a
jack mounted to the module's panel. The modules are easily
changed although power must be turned off first.

The standard A-to-D filter is a 7th order elliptical
design that uses active negative impedance converters to
replace inductors (5, 6). The general circuit topology for
this type of filter is shown in figure 5. For the component
values shown, the cutoff frequency is 9.76KHz, the pass—-band
ripple is .28dB, and the minimum stop-band attenuation is
79.7dB. The attenuation reaches maximum at 1.556 times the
cutoff frequency. For A-to-D use in analysis, this point
should be put at 1/2 the sample rate, therefore the cutoff
frequency should be 32% of the sample rate. For A-to-D use
in record-playback applications, the Nyquist frequency can
be put midway in the transition band instead thus the cutoff
can be raised to 39% of the sample rate.

The standard D-to-A filter is also a 7th order
elliptical design with the same characteristics as the
D-to-A filter. However, since the very high frequency
content of synthesized material can be controlled and it
does not even exist when playing back material recorded
through the A-to-D filter, the cutoff frequency can be set
at 39% of the sample rate. To be assured of less than -80dB
alias distortion with this setting, there should be no
attempt to synthesize a frequency higher than this. The
D-to-A filter also has an additional 2-pole Chebyshev
section to correct for the normal SinX/X rolloff of the
deglitching sample-and-hold circuit.

Both filters, are built using type TLO72 dual low noise,
low distortion, FET op-amps. Precision (1%) capacitors and
resistors are used to avoid the need for tuning. Using
negative impedance converters in the design allows all of
the capacitors in the filter to be the same value although

79

the resistor values then become all scrambled up. This is
preferable however since 1% resistors are much easier to
purchase that 1% capacitors are. Modifying the filter
design for a different cutoff frequency then is a simple
matter of changing all of the cpacitors by the ratio of the
old frequency to the new frequency.

Conclusion

While the A-to-D and D-to-A peripheral is really a minor
part of a computer music system when software is considered,
it is the part that causes the most trouble for a small
organization or individual programmer/artist. It is
believed that the conversion peripheral design outlined here
will prove to have sufficient capability to satisfy
virtually any digital audio conversion task at a cost that,
while not trivial, is a significant improvement over earlier
minicomputer oriented designs or in-house engineering.

References

H. Chamberlin, "A Sampling of Techniques for Computer
Performance of Music", BYTE, Sept. 1977.

2. H. Chamberlin, "Delayed Playback Music Synthesis Using
Small Computers", p. 27 Proceedings of the IEEE Symposium
on Small Computers in the Arts, Nov. 20-22, 1981.

3. F. H. Covitz and A. C. Ashcraft, "Analysis and Generation
of Complex Sounds Using Small Computers", p. 33,
Proceedings of the IEEE Symposium on Small Computers in
the Arts, Nov. 20-22, 1981.

A. C. Ashcraft et. al.,, "Noise in Real Time Digital Sound
Generation" p. 5, Proceedings 2nd Symposium on Small
Computers in the Arts, Oct. 15-17, 1981.

A. D. Delagrange, "Design Active Elliptic Filters with a
4-function Calculator", p. 135, EDN, March 3, 1982.

Anatol |. Zverev, Handbook of Filter Synthesis, p. 284,
John Wiley and Sons, New York, 1967.

ovT
VOLTAGE
QUTPUT
PAC
GAND

o

% *
A AM SeoPF
3K 3K

% HARRIS HI201iHS
A B
DEGLITCH CoNTROL

Figure 1. Stereo Deglitcher

=,

PORCE RESET LOW THEN HIGH

TLO71 P

ADC

= "
5000PF POUI

WRITE 00X00010 TO CONTROL mxan
AVDIO o 6D

(X=MONO/STEREQ)

WRITE LOW 8 BITS OF SAMPLE RATE
TO DATA REGISTER

l WRITE 00X00011 TO CONTROL REGISTER

WRITE HIGH B BITS OF SAMPLE RATE
TO DATA REGISTER
A B

SAMPLE -AND-HOLD WRITE 01X0YYOO TO CONTROL mxmn]
CONTROL (YY=DATA PORMAT)

com 5000PF POLYST|
* Ay g

TR STORMOE DRVICE | | | Lo et ol o
! WRITE SCALE FACTOR |
! ASOCIATED WITH BLOCK |

|_ TO DATA REGISTER !

Figure 2. Stereo Sample-and-Hold

| WRITE SCALE FACTOR |
L ASSOCIATED WITH BLOCK

FORCE RESET LOW THEN HIGH (NRITE 01101700 EDI@'L@E@Q

SET COUNTER FOR STORAGE BLOCK SIZE

WRITE 00X10010 TO CONTROL REGISTER
(X=MONO/STEREQ)

MOVE A BYTE FROM MEMORY BUFFER
TO DATA REGISTER

WRITE LOW 8 BITS OF SAMPLE RATE
TO DATA REGISTER

YES
WRITE 0OXOYYOO TO CONTROL REGISTER

WRITE 00X10011 TO CONTROL REGISTER

'DECREMENT

WRITE HIGH B BITS OF SAMPLE RATE #0 COUNTER
TO DATA REGISTER

=0

WRITE 00X10001 TO CONTROL REGISTER

WRITE SCALE FACTOR TO DATA REGISTER
(NOT NECESSARY FOR 16 BIT FORMAT
| Figure 4. Playback Program Flowchart

WRITE 01X1YYOO TO CONTROL REGISTER
(YY=DATA FORMAT)

OUTPUT
" IVPUT 2200 10598 15047 14181 2395
YES * “ A M AW LT X
WRITE 11X1YY00 TO CONTROL REGISTER I-’,,”MK 3557 2666 > 1268 750K]. HIGH 2
;om;cz 200 2“200 3 zﬂzw LoAD
OURCE | 2200
WRITE 01X1YY0OO TO CONTROL REGISTER 2VRMS MAX I T 1 +
9348 8159 Bl

" AW

2200 2’?00 2ﬂ7.00
SET COUNTER FOR STORAGE BLOCK SIZE T—— = 1T

T | Sas i

5000 5000 5000

A AN AMA

0
i £ 5000 £ 5000 £ 5000
Ak 3 a5
0 = +
ALL RESISTORS IN OHMS 1%
ALL CAPACITORS IN PF 1%
ALL OP-AMPS TYPE TL@72
Figure 3. Record Program Flowchart Figure 5. Anti-alias Low-pass Filter

80

A Computer Controlled Installation in a Gallery Space

George K. Shortess

Department of Psychology CU #17
Lehigh University
Bethlehem, Pa. 18015

Abstract the computer program and the hardware con-
figuration). In many ways the art piece
This paper describes a recent in- is Tike a human nervous system, changing
stallation using a microcomputer as an over time, but constrained by both its
interactive device for changing sound environment and its internal structure.
and video images as a function of the
viewer's position in the gallery space. In this paper I will describe a

recent installation in which the art
pieces responded to the positions of

Introduction viewers in a gallery space by changing
the sounds they emitted as well as the
My involvement with microcomputers graphics displayed on video monitors.
as an artistic medium has developed I will discuss the ways in which the
along with my attempts to express scien- microcomputer was used as part of the
tific ideas about the functioning, work, as well as some general ideas about
nervous system, in artistic form. aesthetics and contemporary cognitive
By using microcomputers, I have been psychology.
able to create works which change inter-
actively with the viewer, whose parti- The Installation
cipation can contribute to the work of
art at any moment in time. The state Figure 1 shows a floor plan of the
of the art piece is a function of the installation at the Kemerer Museum,
interaction between the environment Bethlehem, Pa. The larger squares and
(including the viewers) and the internal rectangles (labelled SC, M and B) were
structure of the piece itself (including cloth covered wooden bases. On the
—_— e
M2
—SP P5 SP
SP
SC FC
P4
P3
L P1
M1)SP
P2
B

———————— 4 FEET

Figure 1. Floor plan of the gallery space

81
CH1930-7/83/0000/0081$01.00 © 1983 IEEE

MICROCOMPUTER

SOFTWARE SCHEMATIC

WITH INTERFACES

I/0 DEVICES

Resting Audio Amplifiers
Loop DI09 and Speakers
Apple DAL
I1 PlusH Photocells P3-P4-P5
Video -
P3-P5 Graphics | Monitors 1 and 2 AJ
Active Sub-‘ Game
Loops routines 1/0 |———Photocells P1-P2 |
Disc
Drive
Figure 2. Schematic of software and hardware

M bases were video monitors (one each).
On the SC bases was a sculptural piece
made from aluminum tubing and containing
four audio speakers. The M and SC bases
were connected, by way of 1-1/2" square
aluminum tubing (represented by double
lines in Figure 1) to an Apple II Plus*
microcomputer which was located out
of sight of tﬂe gallery. MWithin the
bases were five photocells (indicated by
P1-5 on Figure 1) and four speakers
(indicated by SP),in addition to the
four speakers on the sculptural piece.
A11 speakers and photocells in the bases
were under the cloth covering and thus
not visible. The four speakers in the
sculpture were enclosed in small aluminum
boxes with cloth covers. A1l of these
were attached to the microcomputer by
wires running through the tubing and
within the boxes, out of sight of the
viewers.

Each of the photocells was illumin-
ated by a gallery spotlight which reduced
its resistances to a low value. When a
shadow was cast by a viewer, the resist-
ance increased and was read by the com-
puter as either a switch opening, or as
the actual resistance value, depending on
the input interfacing (see Figure 2).
Photocells P3, P4 and P5 served as
switches and controlled sound patterns
generated for the speakers of the sculp-
tures and the bases. The 1/0 card used
for the 8 speakers and photocells P3-5,
was a DIO9 by Interactive Structures,
Pl and P2 were attached to the game 1/0
connector on the microcomputer. The re-
sistances were converted to numbers be-
tween 0 and 255 and were used by the pro-
gram as the x-y coordinate points for the
changing video that was displayed on the
two monitors.

*Trademark of Apple Computer, Inc.

Inc.

82

The output to the speakers consisted
of brief clicks which simulate one kind of
electrical activity of the human nervous
system, Low level activity was char-
acterized by an overall low frequency of
click occurrences. Higher levels of
activity corresponded to a high overall
frequency of click occurrences. In both
cases the frequencies were not regular,
but varied over a considerable range, with
bursts and beat patterns being generated.

The video output was one of six
digitized images taken from the Kemerer
Museum. They were made from slide photo-
graphs by projecting them on a rear pro-
jection screen which was scanned by a
video camera connected through an appro-
priate digitizing card (Digisector by
The Micro Works) to the microcomputer.
They were stored on disc and edited using
a graphics tablet. These versions were
then available on the main program disc
and could be called up by a viewer by
pressing a switch on the monitor base
Overlaying this digitized "realistic"
image of the Museum was a moving network
of black l1ines whose coordinates were
determined by the resistances in photo-
cells Pl and P2 (Figures 3 and 4).

M1.

The program was done in Basic with
several machine language subroutines for
the graphics (Figure 2). There was a
resting Toop through which the system
continually passed as long as there were
no disturbances in the photocell resist-
ances. It performed three functions:

1) evaluated the five photocells;

2) plotted line patterns on the monitors,
clearing the monitors when they became too
cluttered; and 3) generated a low level of
sound in the speakers.

As soon as a change in a photocell
was detected the program switched out of
this Toop. MWhen one of the photocells P3,
P4 or P5 was activated, the program
switched to one of three loops which gen-
erated new higher levels of sound in the
speakers closest to the particular photo-
cell activated. When Pl or P2 changed, it
switched to a subroutine which changed
the 1ine pattern on the video display,
using the new coordinates determined by
the resistances of these photocells. This
subroutine also generated a brief sound

burst in the speakers in the monitor bases.

As Tong as there was activity at one of
the photocells P3, P4 or P5, the program
stayed in that respective loop. 1If other
photocells were activated, it would then
switch back and forth between the loops
involved. When Pl or P2 was activated,
it would redraw the lines and then switch
back to the loop from which it came.

Two different pictures were stored
in the computer at one time, one at
addresses $2000-$3999 and the other at
$6000-$7999 ("Page 3"). High resolution
Page 2 was always in view and loaded from
Page 1 or "Page 3" with a machine language
subroutine whenever it became cluttered
with black lines. The image also changed
when the resistance of Pl got large
enough, so that rapid alternation
between two views of the Kemerer could be
achieved by appropriate movements of the
viewer, :

In addition to the computer driven
displays just described, there was a
separate unit called Bullrushes (labelled
B in Figure 1). This unit consisted of a
cloth covered base unit with 3 finished
pieces of aluminum tubing extending per-
pendicularly from the base (total height
about 6 feet). In the base was a small
hard-wired unit that emitted deep clicking
sounds when a photocell switch was activ-
ated. To the imaginative viewer the sounds
could be from bullfrogs and the aluminum
tubing could be the rushes.

To complete the exhibition 20 water-
colors of lTandscape scenes and 3 silk-
sreen prints of the digitized Kemerer

Museum, were arranged on the gallery walls.

Evaluation

The overall attempt was to create an
interesting space which had a kind of
quiet humor. When a viewer entered the
gallery, Bullrushes served to set the ex-
pectation that something different from a
standard pictures-on-the-wall show was in
place. Further movement into the gallery
space past P4 or P3 further reinforced
these ideas. In addition, the digitized
images were designed to suggest adifferent

83

way of looking at the Museum itself, which
is a Victorian mansion filled with the
decorative art collection of Anne Kemerer.
The Victorian images seemed just right to
present in digitized form.

The reaction to the show was mixed.
Some did not know what to dos others be-
came more active. One problem arose when
three or four people tried to interact
with the computerized work at the same
time. The feedback, either in sound or
video,was noticeably slow and the viewers
were no longer sure that they were con-
trolling anything. But then, if one of us
tries to interact meaningfully with four
people at once, we become a little con-
fused too. This problem could, ofcourse,
be corrected with several computers or
more reliance on machine language pro-
gramming.

Some Relationships to Cognitive Psychology

While this work has been based on
ideas about neural function at the level
of nerve cells and nerve nets, there is
implicit in it, certain models of cog-
nitive functioning that are behaviorally
based. Cognitive psychologists, such as
NeisserZ2 or Wickelgren3 for example,
have developed models of the way percep-
tual and cognitive processes may take
place. Without going into the specific
details, it can be recognized that these
models are essentially networks with
activities or functions taking place at
various nodes, with the transmission of
information between nodes. In this way
the formal features of these cognitive
models are also reflected in my network
art forms. In addition, all major con-
temporary theories of perception and
cognition recognize and emphasize the
active, interactive nature of perception.
It is not a process of passive reception,
but involves active seeking and inter-
action. I also emphasize this character-
istic in my work. Taken together then,
my work can be interpreted as an artistic
statement about cognitive function as well
as neural function. And at-some level,
the cognitive-perceptive and the neural
functions may be the same.

References

1. Shortess, G. K. An Application of a
Microcomputer as an Interactive Art
Medium. Proc. Symposium on Small Com-
puters in the Arts. Phila., Pa.

Oct. 15-17, 1982. pp 75-77.

2. Neisser, U. Cognition and Reality.
San Francisco: W. H. Freeman, 1976.

3. Wickelgren, W.A. Cognitive Psychology.
Englewood Cl1iffs, NJ: Prentice-Hall,
Inc. 1979.

Figure 3 - Video images of the Kemerer Museum

Figure 4 - Video images with and without grid lines

85

COMPUTERS, MUSIC, AND THE ARTS:

a liberal arts college course

William Matthews

Music Department, Bates College
Lewiston, Maine 04240

ABSTRACT

For the past two years, a small computer
system for music and graphics synthesis has been
in use at Bates College, a private liberal arts
campus in Lewiston, Maine. A course for stu-
dents with no previous computer experience is
offered; it has been extremely popular. The
course introduces students to principles of
computing, introduces several programs for
music synthesis and graphics, introduces the
PASCAL programming lanpguage, and allows students
to create works of music and art, all in a single
l4-week semester. The paper describes the
pedagogy employed, discusses some of the artis-
tic issues involved, and ends with examples of
some of the student projects.

INTRODUCTION

It has been nearly twenty years since
Susan Sontag identified an emergent response
to what had been called the crisis of the "two
cultures", the gulf separating humanists and
scientists. ~‘In Against Interpretation (1966)
Sontag described a new breed of artists whose
work often employs advanced technologies in
untraditional and sometimes esoteric aesthetic
contexts. Central to her formulation was the
idea that these artists are stimulated rather
than intimidated by the complexity of contempo-
rary society and science, and that their work
was rapidly making irrelevant previous distinc-
tions between the "high" culture of unique
masterpiece artifacts and the "low" culture of
popular mass-productions.

Sontag referred to such artists as pioneers
of a "one culture" that might bridge any separa-
tion between humanists and scientists. In the
two intervening decades, this culture has been
represented not by any aesthetic or stylistic
uniformity, but rather an artistic Brownian
motion, in whic¢h a multitude of individual
artists vibrate within small spheres of in-
fluence. This situation is enjoyably demo-
cratic, but has made critical or theoretical
overview of the art itself difficult.

CH1930-7/83/0000/0086$01.00 © 1983 IEEE

86

It is not difficult at all, however, to
point to a single new technological tool which
has emerged since 1966, more powerful and in-
fluential than any other and rapidly becoming
more common than any other. In the context of
this paper, meither apology nor explication need
proceed a discussion of the role of microcomputers
in the arts. With devices and programs for graph-
ics, sound synthesis, and text processing now
available in every community of a size in the
country, one accepts their instrumental role at
the foundation of a burgeoning "one culture".

Art using microcomputers demonstrates sever-—
al attributes: it is often participatory in some
way; it is often ephemeral, leaving ne artifacts;
it usually involves small audiences, often single
viewers or listeners. The machines themselves are
flexible tools, but make stringent demands on
users who would employ them flexibly. Users must
"think like computers", unlike the thinking tra-
ditionally done by artists, and the art most
"organic" to the new technology extends sensation
in abstract and often dynamic ways unlike previ-

. ous art. These attributes require new education-

al strategies to introduce the techniques of
computer—assisted art to potential members of a
“one culture".

THE COURSE

At Bates College in Maine, a course has been
instituted to help students explore some possible
artistic applications of microcomputers. Offered
under the aegis of the Music Department, and
taught by a composer with previous computer music
experience, Computer, Music, and the Arts allows
students to work with various operating systems,
programs, programming languages, and hardware
devices to generate sounds, images, and tests.
The equipment for the course consists of a Z-80
based general purpose microcomputer with two
double-side, double-density floppy disk drives,

a Micro-Angele refreshed raster scan graphics sys-
tem, and a Casheab 32-voice digital sound synthe-
sizer. The system is called the Bates MusicBox.

The course begins with a general overview and
history of computers and their artistic uses, with
audio and visual illustrations. Following this
introduction students begin immediately with per-
sonal experience of computer art at the local video
game parlor. Besides being fun, experience with
commercial games is pedagogically useful. ' Obser—
vations can be made about the dazzling images and
sounds now possible, the meaning of "user friend-
liness", how users can interact with programs and
vice~versa, how information is transmitted from
users to programs and vice-versa, the meaning of
real-time, how randomness can be useful, how
animation is achieved, the usefulness and draw-
backs of "blatk boxes", and how programs maintain
or lose their interest for the user. In additionm,
social, psychological, and aesthetic issues are
revealed, setting discussion firmly with a human-
istic as well as technical contest. In fact, a
structure for the rest of the course evolves
naturally from the discussion which follows
esperience with games.

Because no previous computing (or for that
matter, artistic) experience is prerequisite for
the course, care is taken to introduce concepts
and procedures gradually, The system is treated
as a series of black boxes each of which is open-
ed only when necessary to permit the user addi-
tional flexibility and control. Assigned tasks
initially produce immediate gratification, and
only gradually require deferral of gratification.
Following bouts with video games, students are
next asked to play a single pre-programmed piece
of music on the College's system; this assign-
ment requires turning on the computer, leading
CP/M from a disk, calling up David Rayna's
Casheab softwear package, and specifying a single
instruction and file name. These five discrete
tasks take less than a minute. The next assign-
ment requires use of a different operating sys-
tem (the UCSD PASCAL p-system) and a few more
tasks, including some data entry; it results in
a snappy graphic image that takes two or three
minutes to generate, but which can be changed if
new data is entered on restarting the program.
Such a simple sequence of assignments is used to
demonstrate levels of user-friendliness, increas-
ing flexibility of possible outputs, and the ad-
vantages of deferred gratification. It also
allows the introduction of relevant concepts such
as operating systems, programs, data, devices,
input, output, and so on; word by word, the vast
vocabulary that sprouts up around computers can
thus be introduced.

In the second week, students are asked to
become proficient as users of an interactive pro-
gram for turtle graphics, modeled after that de-
scribed by Seymour Papert in his book Mindstorms:
Children, Computers, and Powerful Ideas (1980).
The Bates version of this program was written in
FORTH by Andrew Wilcox, and is based on a kernel
of instructions such as FORWARD, BACK, LEFT and
RIGHT that, when combined with constants or user-
defined variables for angles and distances, cause
a little stylized turtle to move about the video
screen, leaving graphic traces in its wake. Al-
though based on a small handful of instructions,

87

the program is powerful in that users can define
their own new procedures using any sequences of
already-defined instructions. Before they know
it, students are thus programming, grappling with
quantification, hierarchical procedures and --
importantly -~ the use of algerithms.

A Turtle Graphic Image

‘Because turtle graphics are completely inter-
active in real-time (FORTH is an interpretive
language), no compilation, editing, or file trans-
actions are necessary. The latter two are next
introduced as students return to the Rayna soft-
ware for music synthesis. One component of this
software allows users to address the digital
oscillators directly, and requires one to specify
frequencies, amplitudes, and waveforms; the
temporal domain must also now be controlled. At
first, the output from the synthesizer is heard
through loudspeakers and seen on an oscilloscope;
when students become more adept, lissajous figures
are produced by phase-shifting the monophonic syn-
thesizer output to provide different x and y axis
inputs for the oscilloscope. Anuone with experi-
ence of lissajous figures knows how dynamic and
unstable they can be, and what complex and beauti-
ful images can be made rather easily.

The second half of the semester-long course
takes students into the less user-friendly domain
of general purpose programming languages; PASCAL
is chosen for its highly-structured character and
its resulting educational usefulness. Although
the frustrations of learning and using a compli-
cated operating system, a full-feature editor, a
compiler and a language with fairly complex syntax
are many, students understand by this point why
the resulting power and flexibility are worth the
effort. Programming thus comes to seem a natural
extension of the artist's work towards gaining
more control over a new tool already experienced
as useful, enjoyable, and potentially powerful.
From PASCAL, external machine-language procedures
can be called, allowing students to control the
graphics and synthesizer as they work out indi-
vidual projects in the time remaining for the
course. The final black box of machine architec-
ture remains closed, but a surprising number of
others have been opened, proving to initiates

that the seemingly arcane world of computing is
not so esoteric after all.

The final class projects have included musi-
cal compositions, random poetry, the game of hang-
man, a spelling game that shows a picture of an
object when correctly spelled by the user, an ex-
tended piece for sounds producing lissajous figures,
a program-to produce images like Kandinsky drawings,
a program to produce designs for Easter eggs, and
a piece for sounds, lissajous figures and narra-
tive text presented on the video screen as cap-
tions for the other events. This final piece is
called, affectionately, the Bug Opera. Several
students continued work after the course ended, in
formal and informal independent studies including
the production of speech-like sounds with the
synthesizer, musical compositions, and an elabo-
rate work involving the construction of a device
for visual display of computer-generated audio
using reflective vibrating membranes and focused
light sources.

CONCLUSION

Computers, Music, and the Arts attracted
three times as many students as could be accommo-
dated the first time it was offered. The stu-
dents who did complete the course were sur-
prised and pleased at how much they learned about
computing in general as well as about specific
artistic applications; they were also quite
proud of their artistic products. Because con-
cepts and techniques are explained in as general-
ized a way as possible, participants are prepared,
after only a few weeks of work, to continue
making art with microcomputers in other settings
and with other devices, Having explored the
mysteries one by one, future contributers to a
"one culture" are well-equipped to start working.

88

FAII €861 © 00°10$6800/0000/€8/L-0€E6LHD

68

33

)
Sl

T

TER -PUSHIN “PADYIA PRESENTS |
ORI SHINSHREKE

THE

SIELILING

OF A

Duane M. Palyka

Computer Graphics Laboratory
New York Institute of Technology

May 1983

" -

o

:@wﬁ%ﬁg’ ;

e e
A (U G 1 LS TR
b SR A

R

et
AL

Excuase me, sir, put I couldn't help but notice
that you 1look like a person who likes to compose
two-dimensional images of your very own creation
in FULL-COLOR!

+++» Wwho perhaps has a longing need to display 256
distinct colors AT THE SAME TIME in a 512 x 512
raster configuration! How's THAT for resolution?t
Could I perhaps interest you in a new electronic
paint system?

Go away, boy, you bother me. Can't you see I'm
busy looking for the seamy side of life to render
in beautiful spontaneous line and fantastic color
in all its wretched glory? You just don't look
seamy enoughl

N/ WL
VNS,

b
& AGRT ® e CLLY,

S

16

But you don't understand, sir! There's a dynamic
tablet interface and a dedicated processor that
allows the cursor to respond to the natural move-
ment of your hand.

++« and the COLORS -~ beautiful radiant colors
that emerge from the tube into the room with ef-
fects that Rembrandt attempted but never achievedl
And the colors are NEVER muddy!

Hummm! I do the same thing. I squeeze the tube
and the colors emerge -- beautiful and radiant
sometimes -~ but you're RIGHT! When mixed this
way they DO become muddyl

76

No, no, sirl You see the tube is a high quality
CRT. All the paint is mixed electronically by
numbers INSTANTEOUSLY. You can forget about all
the clumsy medium concerns with mixing paint --
which color goes on top of which, color permanence
and transparency, and all that crud. You can
create paintings faster and easier than you' ve
EVER done in your ENTIRE LIFEl You will NEVER
have to get your fingers messy againl

s
L35 Z 1

What are you talking about -- ELECTRONIC! This is
the 19th century, boyl! I haven't even heard of
CRT's yet! And I LIKE the smell of turpentine and
the feel of the canvas! You have to understand
that the act of making art, like the art of making
love, 1is not necessarily something to get over
with as soon as possible. Each physical brush
stroke contributes to a textured surface that one
can touch and feel, in contrast to the surface of
your “CRT". How do you display these things? As
photographs? 1I'm not creating in the photographic
medium-- I'm creating in the painting mediuml

+++. and besides, I'm too short to reach the ta-
blet and telephone books haven't been invented yet
for me to sit on.

£6

But, but, sirl There are brushes and techniques
available with this medium that you haven't even
dreamed of yetl!

++. air brush, filter paint, smear paint, z
paint, slide paintl You can mirror images, re-
flect images, tint paint, cycle paint ... EVEN
NORMAL PAINTII1I

++. and we'll even invent the telephone so you
can have as many telephone books as you want to
sit onl

PALYRA

all the women

directory would

where

Manhattan

@
£
e
=
—

o
o}
-

o

c
-t
£
o

©
ot
£

t

o
E3

o
&
-

That's

the
how do

bars and brothels?

. perhaps
But

you know.

helpl!
are,

2003 eyl ae poob ,1y¥D, InoA sI - AemAue 2w HBuy
_Adoo sAemie 8,34 -paisalisluTl aq IybIW eH *saay
umiqed puatay Aw o3 Yie3 nok 3, ,uop Aym *** yen

95

96

%"

.ah
)

; L. '
.ééixt'}&r

YN 2 i AR

You betl A painting on this system can be stopped
at any stage of development, a copy made, and the
work, now divided in two can be developed in two
ENTIRELY DIFFERENT DIRECTIONS.

You can even scan in his paintings and duplicate
his work in ways that he couldn't even_ imaginel

L6

G PR TS e s i A B LR,
He e

.;E'ﬁl‘ﬁ,‘ ‘N u‘z‘:*f AN
iy S

OK! I know all about your new electronic thing.
I saw one demonstrated by some slocko commercial
artist on TV at the bull fights! Having investi-
gated this matter further, I figure that whenever
someone puts a program oh a computer they estab-
lish an ATTITUDE towards making artl and it's
THEIR attitude, not minel I'm PABLUM! I don't do
things 1like everyone else does itl I PUSH the
medium to its limits) If I'm really gonna do
something creative with this medium, I'm gonna
have to learn programming! And to make program-
ming as comfortable to use as a pencil or a paint
brushl

+++ this may take MANY YEARS. I really don't
have the time nowl! I'm just finishing my pink
period and am about to invent CUBISMI That's
about planes in space and all that sort of thingl
Nah, show me a 3D system and I'd be interestedl

86

Planes in spacel But we don't do Defense Depart-
ment stuffl But, but really, Pablum, sirl Very
few people are making full-color computer art
right nowl Making ANYTHING with your name on it
with this system can make you FAMOUS! Even your
signature alonel And you can rack out 4 TIMES the
number of paintings that you normally dol

Welll NOW you're talking! wWhy didn’t you tell me
it could fit in so well with my Bohemian 1life-

style? You Betl 1'll take 6! One for each stu-
diot

Hmmmi Maybe I could even write programs with
Pablum's own esthetic incorporated in them, and
pass them out to my admirers! That way I could
have THEM make paintings like mine -- just think,
an art factory just like Rubens! Hmmmml

Microcomputer Typography

Michael Keith

D46 Abbington Drive

Hightstown, NJ

This paper will describe and
illustrate a program called EROFF
(Enhanced Run-OFF), a typesetting
program for the Apple Il computer. This
progrem, when used with an inexpensive
printer such as the Epson MX-80 and a
commercially-available word-processing
program, can format and print very high
quality text and graphics. Features of
EROFF include the ability to use
different fonts of arbitrary sizes,
proportional and fixed spacing, text
justification, table construction and
simple line drawing, algorithmically
generated italics and boldface, and
mixing of graphics with text. As an
Hiustration of its use, this entire
paper (including figures) was printed
using EROFF.

Overview

One of the basic features of EROFF
is its /idependence . That is, all iis
features are isolated from the editor,
word processor, and printer hardware
that may be used with it. To use a
different printer, for example, only a
relatively simple driver program needs
to be written. All other aspects of
program use remain the same. 1| am
currently using an Epson MX-80 printer
and the Screenwriter II word processor.

The way this Iindependence Is
achieved is depicted in Figure 1, which
shows a simple hardware/software block
diagram of the operation of EROFF. The
two key characteristics of EROFF which
allow this flexibility are:

CH1930~-7/83/0000/0099$01.00 © 1983 IEEE

08520

1. EROFF works with standard
Apple text files for - input.
This text file may either be one
created with an editor or one
which has been run throush a
text-formatting program to be
justified, formatted, etc. ARIl
EROFF commands are sequences of
one or more control characters
embedded in the text file.
These characters are ignored by
the formatting program and
passed through to EROFF.

2. The interface to the
printer, as shown in the figure.
is simply a screen dump of Apple
hi-res pages 1. 2, and 3.,
concatenated horizontally. AIll
printing is done to the ARpple
screen., then the screen images
are dumped to the printer. This
has the additional advantage of
mak ing many of the features of
EROFF easier to implement (it is
easier to plot to the Apple
screen than directly to a
printer).

The control character commands are
assigned in a simple mpemonic way. For
example, “P turns proportional spacing
on or off, *l does italics, “E does
emboldening, “F does font changes, etc.
Not all of the 26 letters are assigned
to commands, leaving room for future
expansion.

The screen-dump interface for the Epson
(which produced this paper) uses the
highest resolution dot-graphics mode of
the printer for an effective resolution
of about 100 dots per inch.

I will now briefly describe some of the
features of EROFF in more detail.

Text_Editor
ol

Original
Text File

hi-res P |
Z 13
Z

Printer Qutput

EROFF
Word or
Processor

Formatted
Text File

Figure 1: [A’ETF aperat ion

Features

One of the major features of any
typesetting program is the ability to
use different typefaces (or fomts). A
unique feature of EROFF is the fact that
fonts can be completely arbitrary in
size. Many font packages for the Apple
are restricted to 7 x 8 fonts (the
standard Apple size font) or multiples
thereof such as 14 x 16. in EROFF
special character-plotting routines are
used which circumvent these restrictions
by, for example, allowing a character to
be drawn at the extreme right edge of
hires page 1 which Is automatically
split correctly between pages 1 and 2
(see figure 2).

Here are some sample EROFF fonts of
various sizes:

(Th English Hont 28x32
Narrow Paat (13132)

SUEREY FERY 20X2%T

Yery small font (7x12), which will be
even smaller after this paper is
reduced!

Another feature of EROFF is ability
to embolden and/or italicize any
available font. This is done by
slightly offset overstriking (for boid)
or changing the character slope (for
italics). This is much more efficient
than storing separate fonts for italics
and bold, and also allows interesting
effects such as italicized OIld English
print! For example, here are the four
fonts obtained by combinations of
emboldening and italics applied to a
sans-serif font:

Here is the standard font.
Here is the bold version of the font.
Here s the rtalics version.

And here is bold AMD italics.

Another desirable feature of any
typesetting system Is the ability to do
proportional spacing; that is, to allow
the spacing between letters to depend on
the width of the letters themselves.

For example, here is a sample sentence
printed in both fixed and proportional
spacing.

F ixed:

Lillian locates lilacs on Illampu.
Proporticnal:

Lillian locates lilacs on Illampu.

This paper w
illustrate a progre
{Enhanced Run-OFF
program for the .
program, when us«
printer such as ti
commercially -availat
program, can form

Figure 2

describe and
wm called EROFF
), a typesetting

=d with an Inexpensive
e Epson MX-B80 and a
)le word-processing

at and print

Snapshot of the images in
hi-res pages 1 & 2 during
run-of f of this paper,
showing how letters actually
can span page boundaies.
This allows easy use of
arbitrary character sizes.

i computer. This

Because it is handled by EROFF,
proportional spacing Is available
regardless of whether the printer being
used supports this feature.

Of course, there is no reason that

a font has to contain the familiar ASCI
character set. A font can contain up to
96 text or graphic symbols of any sort.
For example, Figure 3 uses a chess font
to lllustrate a chess position. There
are 24 primary characters in this font
geach of the 6 different chess pieces x

colors x 2 colors of background) pius
some other miscellaneous characters
(such as blank squares). These graphic
fonts can be combined with regular fonts
to allow some simple mixing of text and
graphics.

Another feature of EROFF is its
line-drawing capability. At present,
only horizontal and vertical
line-drawing is available, but this is
quite sufficient for drawing boxes
around text, making tables, etc. This
works as follows: the three control
characters “V (Vertical), "L (horizontal
Line), and ~“B (Box) are used to mark
endpoints of lines. For example, the
following input

“B “B
Words in a box
“B “B

will produce the output

[Words in a box J

A more complicated example (a
muiti-column table) is shown In Figure

EROFF also has a "preview mode"
which runs off the document to the
monitor screen rather than to the
printer. This allows checking for
formatting or other errors without
having to wait for an actual hardcopy
printout.

An interactive mode of EROFF is
aiso avaliable. In this mode, the wuser
types on the Apple keyboard and the text
appears on hi-res page 1. Most of the
features of EROFF are available In this
mode such as different fonts, italics,
emboldening, and even proportional
spacing, providing the unique experience
of a proportional spacing typewriter!

In conjunction with a graphics editor or
paint program, this mode can be used to
produce |abelled drawings or figures.
Figures 1 and 2 in this paper were
produced in this way.

w0 W

X W ;;//,,,af%

éﬁ” b u,
// » /,//

P o o
Chess Problem #1:

Hhite to move:

1. What was Black's last move?
Prove it.

2. White to mate on 2he move.

Figure 3.

Il1lustration of the use of a
graphic font. Each square of the
chessboard is one character in a
spec ial chess font.

Group Ib Elements
Symbol | Name | No.| Height
Cu Copper| 29 63.54
Ag Silver! 47 107 .87
Au Gold 7?9 196 .97

Sampie table created

101

Limitations

The major limitation of EROFF at
this time is speed. This is not due to
slow execution speed of the program but
rather to siow printing speed of the
Epson MX-80 printer. A faster printer
would significantly reduce the time it
takes to run off a document. Even. so,
it is not wunacceptably siow; presumably,
it you want high-quality print you will
be willing to wait longer for it to be
produced. The advantages of owning a
personal computer (e.g., the abllity to
print out a final draft while you're
eating dinner or doing some other
activity during which the computer Is
usually idle) help make this delay
tolerable.

Vital Statistics

The EROFF program is quite small,
being composed of about 6K of Applesoft
BASIC and about 2K of machine code. It
has to be small since 24K is required
for the three hi-res pages and a 5K area
is reserved for font storage. It ruans
on an Apple It with no additional
hardware or software (other than the
printer), and has proven to be a useful
addition to available Apple software
tools.

102

KEYFRAME ANIMATION FOR THE MICROCOMPUTER

by William J. Kolomyjec, Ph.D., M.F.A.

Department of Engineering Graphics
The Ohio State University, Columbus, Ohio

Abstract

Keyframe animation is the process where one
given figure or scene is changed into another.
Important aspects of keyframe animation are:
translation, iteration interval and transforma-
tion. A microcomputer can be used to generate
transitional or in-between frames. An animated
story can be produced with a series of keyframe
sequences. This paper will present a cursory dis-
cussion of important aspects of keyframe anima-
tion. Programs will be given for the Apple (TM)
microcomputer that will perform image transforma-
tion and animation. Image transformation will be
accomplished by two kinds of interpolation, linear
and quadratic. These algorithms will be given in
programs that will allow prospective animation
sequences to be previewed. Animation programs
utilizing graphics page flipping will also be
given which will provide a means of displaying
image transformation for either observation or
single frame recording.

Introduction

To begin, this article will present a cursory

discussion of several aspects of keyframe animation.

Next, two demonstrations of image transformation
using linear and quadratic interpolation will be
given. Linear interpolation requires two digitized
images and the transformation between figures

takes place along a straight 1ine. Quadratic
interpolation involves three digitized images and
the transformation takes place along a curve of the
second order through all three images. These two
demonstrations not only illustrate interpolation
transformations but they also provide a method of
previewing potential animation sequences.

The remainder of this article will present
application software that animates both types of
interpolation transformations utilizing the page
flipping capabilities of the Apple (TM) microcom-
puter. This technique enables complete frames to
appear on the screen at once. Thus, the viewer
does not have to watch each frame as it is being
generated. Moreover, this technique should pro-
vide a decrease in overall animation time since,
while an image is being recorded on film, the next
frame is being processed.

CH1930-7/83/0000/0103$01.00 © 1983 IEEE

103

Aspects of Keyframe Animation

Keyframe animation is an animation procedure
where a number of critical or key frames in a
sequence are designed. The concept is analogous
to drawing the frames of a comic strip-or story-
board. A computer with graphics capabilities
is then used to generate a specified number of
in-between or transitional frames. Keyframe
imagery can be whole frames or parts of frames.
In other words, complete scenes may be transformed,
or parts of a scene may be allowed to change while
the remainder of the scene remains unchanged.

Important aspects to be considered in key-
frame animation are: 1) image location, 2) itera-
tion interval, and 3) transformation. Control
over these aspects will be of primary concern in
the software to follow.

Translation involves moving images to de-
sired screen locations in preparation for an ani-
mation sequence. Translation is also used in
sizing a subject image. Translation is actually
a three step process: 1) Initial translation.
To center the image on its coordinate system
origin. 2) Scale. To multiply the centered
image coordinates by a scale factor to enlarge or
reduce the figure. And, 3) Counter translation.
To move the image to the desired screen location
and adding in X and Y offset, known as the counter
translation coordinates.

Iteration interval is the distance any one
transitional image moves between frames. Interval
size determines image speed in the animation.

When planning for an animated film the film speed
conventions for projection equipment must be con-
sidered. For 8 and 16 mm these are 18 frames per
second for a silent film, and 24 frames per

second for a film with a sound track. At constant
film speed uniform intervals between images will
produce uniform movement. Varying interval size
will cause nonuniform movement. Clearly, at a
constant film speed, image acceleration or decel-
eration cannot be achieved by employing uniform
interval. However, there is one trick worth men-
tioning: One way of producing nonuniform movement
with uniform intervals is to record more than one
frame of an iterative image.

Image transformation is a very dynamic visual
event. Transformation usually involves one figure
changing completely into another, i.e.,

metamorphosis. Figures may have the same or dif-
ferent counter translation coordinates. Movement
alone may be created by changing an image into a
copy of itself somewhere else on the screen. The
illusion of depth may be created by changing an
image into a scaled version of itself at the same
or different screen location. Movement between
images can also be in a linear or nonlinear fashion
which is determined by the type of transformation
algorithm and the number of digitized images em-
ployed.

There are several techniques available for
metamorphosizing imagery but this discussion will
focus on two variations of interpolation. The
first type is linear interpolation. Linear inter-
polation allows the coordinate pairs of two digi-
tized images having the same number of points to
map into each other in a linear fashion. Figure
1 graphically illustrates the concept. If the
Tine segments joining coordinate pairs of two
figures are bisected and joined in order then an
intermediate or interpolated figure is formed.
Since the lines were bisected (divided into two
equal parts) the interpolation fraction (later
to be associated with a variable named PCT) is
said to be 0.5. Further bisection of line seg-
ments between the interpolated figure and the
figures to its left and right will yield inter-
polated figures corresponding to the interpola-
tion fractions 0.25 and 0.75 respectively.

A4 Al

Figure 1. Graphiéal Interpolation
of Two Figures

With the interpolation algorithm image trans-
formation will not appear if both figures are
specified to be the same, i.e., one figure is
either an exact or scaled copy of the first. This
may seem dubious, however, it is efficient from a
programming point of view. It is important to
realize that in the programs that follow, the user
has the power to change subject images by substi-
tuting array names in the assignment statements
where the manipulation arrays are defined. These

locations will be clearly indicated in the code
in the MANIPULATED DATA subroutine (starting at
line 6000 in all programs to follow).

A second type of interpolation transfor-
mation technique is quadratic interpolation.
Quadratic interpolation involves three figures
each with the same number of coordinate pairs.
Imagine a corresponding point of each figure to
be somewhere on the screen. Next, imagine a
second order curve, for example a parabola, pass-
ing through these three corresponding points in
consecutive order, i.e., starting with the point
from figure one, passing gracefully through the
point from figure two and terminating at the
point from figure three. This will be accom-
plished by way of a special subroutine.

Geometric Figure Database

....... ain : uén
7
8741
/T S
<] D
/. N\ - alh
= LA TN
Fawe &7 /7 SN\
-~ oo 4 ; 7
O 56 00 456 7.8 DA
\ FERNTS e R
: / \.../ Y
N LN
: ~O\
ERE X ; (I
/ oL
L NS LA
T e ! Dt
Figure 2. Geometric Figures

Four geometric designs, Figure 2, have been
constructed and digitized. Each figure consists
of sixteen line segments and they have been digi-
tized in the same general direction, i.e., counter
clockwise, from a similar starting point on a
horizontal line to the right of the figure's cen-
ter. This is a good rule of thumb to follow when
digitizing imagery for interpolation. If direc-
tion and starting location criteria are not con-
sistent, imagery will cross over itself (forming
a knotted blob) during the transformation. In
this event, transformation sequences will be of
poor visual quality.

In the illustration, Figure 2, as well as in
the program code of the subroutine, the figures
are labeled A, B, C, and D corresponding to the

two dimension arrays that will hold their respec-
tive data. It will be the purpose of a separate
subroutine entitled FOUR GEOMETRIC FIGURE DATA SUB-
ROUTINE (starting at 1ine 5000) to read in these
data into their respective arrays. This subrou-
tine will be a necessary part of each of the pro-
grams that follow.

Program Linear Interpolation

Program linear interpolation, Listing 1, will
allow variable placement of two geometric figures
anywhere within the screen boundaries. The scale
of each figure is variable and the number of frames
is arbitrary. In the example output from this pro-
gram, Figure 3, figure "B" has been located in the
upper left of the screen and figure "D" in the
lTower right. Each figure has been scaled with a
different scale factor. Figure "B" has been
scaled by a factor of three, figure "D" has been
scaled by a factor of four. The transformation
has been specified to take place in twelve itera-
tions by assigning the value 12 to the variable
NFRAMES (Tline 220). NFRAMES will control the
total number of images (original images plus
transitional images) in all programs given in this
article. Moreover, temporal duration of a trans-
formation in any animation sequence is controlled
by the value of NFRAMES.

Linear Interpolation,
Uniform Intervals

Figure 3.

Notice two things in Figure 3: One, the com-
pleted drawing provides a preview of the anjmation
sequence. This program can be used to create and
develop prospective animation segments. Two, a
border has been included for camera positioning.
The border effectively outlines the workable screen
area. A brief discussion of this program follows.

The main program (lines 100 - 999 in Listing
1) controls the operation of several subroutines
as do most good graphics programs. First, the
figure data are input into a series of four two
dimensional arrays by a call to the GEOMETRIC
FIGURE DATA SUBROUTINE. Note that in Applesoft
(TM) arrays begin with a zero element. Thus, array

105

declaration may seem to be "off by one." Next,
manipulation arrays are dimensioned, and the data
manipulation subroutine is called. Manipulation
arrays are a convenient way to provide versatility
to a program. In the MANIPULATE DATA subroutine,
array assignment can be quickly changed. Notice
that this subroutine takes care of translation,
scaling and counter translation, achieving the
first aspect of keyframe animation. The initial
and terminal images (original figures) can be
adjusted in terms of location and size within
this routine,

The remainder of the main program does the
interpolation and drawing. Once the desired num-
ber of transitional images are specified, the
graphics mode is entered and the border routine
is called. A loop is opened to generate the
individual images. A one line sizing algorithm
is used to calculate the interpolation fraction
(PCT) based on the loop index (K) and the total
number of desired iterations (NFRAMES). When K
equals 1 then PET equals 0, when K equals NFRAMES,
then PCT equals 1. Thus, the interpolation frac-
tion (given as a percentage) ranges between 0 and
1. The interpolation fraction provides for the
second aspect of keyframe animation, i.e., itera-
tion interval. It is used by the interpolation
equations to generate the transitional image.

The X and Y coordinate components of each corres-
ponding image are calculated using this fraction.

These data, along with the appropriate
"beam" control, are sent to a plotting subroutine
(PLOTSUBB starting at Tine 1000). A point is
either moved-to or drawn-to under the direction of
this routine. The plotting subroutine also adjusts
the screen origin to the lower left corner (as it
should be) and corrects the aspect ratio. This
technique increases the effective drawing area to
279 x 217 pixels.

When the transformation sequence is complete
the last aspect of keyframe animation is achieved.
The image is held on the screen by a dummy input
statement. The user may go back and redefine
variables and work a scene until it meets his/her
creative requirements. A whole story can be put
together with keyframe animation sequences. The
procedure is to simply have the last frame of one
sequence correspond to the first frame of the next
sequence.

Linear Interpolation with
Nonuniform Intervals

By adding one line of code and changing
another, the iteration interval between transi-
tional imagery can be altered. After making two
changes to Listing 1, Figure 4 was produced.
These changes are as follows:

ADD:
225 HALFPI = 3.14159/2

CHANGE :
280 IPCT = (K-1)/(NFRAMES-1):
PCT = SIN (IPCT % HALFPI)

Figure 4. Linear Interpolation,
Sinusoidal Intervals

This Tittle algorithm uniformly samples the inter-
val between 0 and PI/2 radians and takes the sine
of that value. Since the sine function ranges
between 0 and 1 in this interval, the value of
PCT lies in the correct range, however, the inter-
val spacing is now sinusoidal rather than uniform.

Program Quadratic Interpolation

The main differences between quadratic
interpolation and linear interpolation are the
number of figures involved and the path of the
interpolation. Program Quadratic Interpolation
is presented as Listing 2. Careful comparison
will reveal similarities and differences. First
of all, the plotting subroutine and the geometric
data input subroutine contain no changes. The
MANIPULATE DATA subroutine has been modified to
translate, scale and counter translate three geo-
metric figures and store the results in one three
dimensional manipulation array, called M. M is
dimensioned in the main program prior to calling
to the subroutine. A three dimensional array best
facilitates the programming of multiple figures.

In light of these similarities and relatively
minor differences, both programs operate in iden-
tical fashion prior to the interpolating and draw-
ing Toop. The first major difference comes with
the calculation of PCT. Since three figures are
involved PCT must be defined to be in the range
-1 to +1. The second major difference explains
why. Notice the addition of a subroutine called
FUNCTION QNTRP (starting at line 3000). Note that
this subroutine is really a function subprogram.
The function requires four parameters: an inter-
polation fraction and three corresponding coor-
dinate elements. It returns the quadratic inter-
polation guantity relative to these values. FUNC-
TION QNTRP must be called for both the X and Y
coordinate component. The curious may examine the
code to gain an understanding of the mathematics
involved in the algorithm.

The interpolation and drawing loop contains
both major changes. When PCT equals -1 then the
first figure is drawn. When PCT equals 0 then the

second figure is drawn. And when PCT equals +1
then the third figure is drawn. Examination of
Figure 5 reveals the path of the transformation
is indeed nonlinear.

Figure 5. Quadratic Interpolation,
Uniform Intervals

Animating Linear and Quadratic
Interpolation

It is unfortunate that this software will
only work on an Apple (TM). However, before a
discussion of the specific program is given, the
logic in general will be outlined. Perhaps read-
ers with other computational equipment can adapt
this concept to their particular systems.

Assuming that there are two graphics pages
available and it is possible to display them on
command, the following sequence will produce a
slow but smooth animation.

Step 1: CLEAR graphics PAGE 1 and PAGE 2

Step 2: DISPLAY PAGE 1 (blank)

Step 3: START LOOP

Step 4: IF first time here THEN skip to
next step ELSE, UNDRAW PAGE 2

Step 5: DRAW aﬁd SAVE PAGE 2

Step 6: DISPLAY PAGE 2

Step 7: IF first time here THEN skip to
next step ELSE, UNDRAW PAGE 1

Step 8: DRAW and SAVE PAGE 1
Step 9: DISPLAY PAGE 1

Step 10: END LOOP

Both versions of Program Keyframe Animation (List-

ings 3 and 4) use the animation algorithm out-
lined above. Both listings are liberally

commented and the narrative that follows will ad-
dress only the programming specifically related to
the operation of the animation algorithm. Inter-
polation procedures are identical to those used in
the previous programs.

First, two critical addresses must be identi-
fied to the program. SWITCH (decimal 230) controls
the graphics page indexing value. The subscripted
two value array PAGE(0) = 32 and PAGE(1) = 64 con-
tains the required index values. If drawing is to
take place on graphics page 1 then POKE. SWITCH,
PAGE(0) is necessary. If drawing is to take place
on graphics page 2 then POKE SWITCH, PAGE(1) is
necessary. The variable DISPLAY (decimal 49236)
contains the address of an Apple (TM) "soft switch.'
POKEing DISPLAY with 0 displays graphics page 1.
POKEing DISPLAY + 1 (another soft switch address)
with 0 displays graphics page 2. Thus, the graph-
ics pages can be drawn on and displayed with POKEs
to SWITCH and DISPLAY.

The trick, as it were, is to keep track of
what to do when. For this purpose a Boolean
(logical) variable called FLIP is used. Boolean
variables are seldom used as such in BASIC, how-
ever, the mechanism for their use is inherent to
the language. For example, FLIP = NOT FLIP will
change FLIP to a 1 if it is a 0, and to a 0 if it
is a 1. FLIP serves a number of purposes: It
allows toggling between the graphics pages. It
represents the graphics page index when used as a
subscript in the manner: POKE SWITCH, PAGE(FLIP).
And it is used as a subscript to keep track of the
page index in the drawn image storage array (i.e.,
T(coordinate, number, FLIP)) to undraw the appro-
priate image on the appropriate page at the
appropriate time.

After the critical addresses and variables
are defined and initialized the data is read in
and manipulated. (Again, these subroutines, start-
ing at lines 5000 and 6000 respectively, are iden-
tical to those used in Listings 1 and 2.) Next
NFRAMES 1is defined. Remember every multiple of
twenty-four frames represents one second of anima-
tion. Then, the animation algorithm begins as
outlined above.

The graphics pages are cleared by executing
HGR2 and HGR in this order. By executing HGR
second, the graphics page indeX is set to page 1.
Displaying Page 1 after it is cleared results in a
blank screen. Before the interpolation and draw-
ing loop begins, the graphics page index is set to
page 2. Notice the loop index ranges from 1 to
NFRAMES in steps or increments of two. This is
because one pass through the loop draws and dis-
plays two frames.

The first thing that is done inside the loop
js to POKE two more graphics soft switches which
close the text window at the bottom of graphics
page 1. If this is not done then page 1 will not
be full page graphics. Apparently each time page
1 is displayed, it opens this text window, there-
fore, it must be continuously re-closed. A first-
time-through-the-loop test is performed. Since it

107

is true, no undrawing needs to be done. Control
is transferred to the calculation of the inter-
polation fraction, PCT is defined based on the
type of interpolation being used. If program
keyframe animation is doing linear interpolation,
then PCT will be defined in the range 0 to 1. If
the program is doing quadratic interpolation, then
PCT is defined in the range -1 to +1. In either
case the DRAW/SAVE subroutine is called.

The DRAW/SAVE subroutine takes the value of
the interpolation fraction and draws the appro-
priate transitional image on the graphics page
currently in. background, designated by the graph-
jcs page index. While this image is being gener-
ated, its coordinates are being saved in a tem-
porary storage array called T. T is a three di-
mensional array which holds the X, Y and P values
(first subscript) for each coordinate group
(second subscript) of the figure, as well as the
page it is drawn upon (third subscript). This
last parameter is the current value of FLIP.
Return then transfers control back to the main
program.

Back in the main program the completed image
(on page 2) is displayed. Note that this is
accomplished with a POKE to the appropriate ad-
dress: DISPLAY + 1. FLIP is toggled from 1 to O
and the graphics page index is changed to page 1.
Again, since this is still the first time through
the interpolation and drawing Toop, there is
nothing to undraw on page 1. PCT is calculated
for the second frame: note the slight variation
in the algorithm. The DRAW/SAVE subroutine is
called for a second time but this time FLIP has
changed. The DRAW/SAVE subroutine now draws the
next (in this case, second) transitional image in
background simultaneously storing these coor-
dinates in the array T. Remember the third sub-
script is determined by the value of FLIP. Con-
trol is then returned to the main program.

Back in the main program the completed image
(on page 1) is displayed. Note: this is accom-
plished with a POKE to the appropriate address:
DISPLAY. However, the bottom of the loop has been
reached and control is transferred to the top of
the loop. The text window at the bottom of page
one is re-closed, This time the first-time-
through-the-loop test is false and the instruc-
tions that were passed over before are executed.
These instructions are: FLIP is changed back to
1, and the graphics page index is reset to page
2. HCOLOR is set to 4 or black. Thus, undrawing
is accomplished by drawing over the previous
image using the values stored in the array T with
a black line, effectively erasing the image. Once
undrawn, a new interpolation fraction is calculated
and the next transitional image is generated on
the just cleared page 2 by calling the DRAW/SAVE
subroutine. Notice that HCOLOR is set back to 3,
or white, early on in this routine.

Needless to say, this process continues un- -
til the interpolation sequence is complete. The
end of the sequence is signalled by a beep. The
last image is held on the screen until the return
key is depressed.

Conclusion

A1l aspects of keyframe animation have been
included in the animation software presented
above. This software will perform animation if
the data is correctly formulated. It is up to
the animator to establish the subject of the ani-
mation and design the imagery. It is strongly
suggested that any sequence be previewed using
one of the first two programs prior to filming.
Ideally, the animation program(s) should have a
built in mechanism to trigger the animation
camera. A subroutine that uses the annunciator
outputs, which themselves are controlled by soft
switches, is the clue. (See the Apple II Refer-
ence Manual, Apple Product No. A2LO001A, p. 23.)

Keyframe animation is a simple way to begin
using the power of the microcomputer to generate
animated films. Animation provides a working know-
Tedge of the time dimension. This software is not
intended to generate real-time moving imagery. It
may take hours of filming to produce seconds or
minutes of fiim. However, the effort is its own
reward when the imagery comes to life on the sil-
ver screen.

Listings
Listing 1
168 REM (<< LINEAR INTERPOLATION 22>32>
118 REM <{<{{ TRANSLATE AND TRANSFORM BETWE
EN THWO FIGURES >>>
128 REM
136 REM COPYRIGHT 1983 W.J.KOLOMYJEC
146 REM
156 REM GET GEOMETRIC FIGURES DATA
148 GOSUB S000
178 REM DEFINE MANIPULATION ARRAYS
186 DIM QC1,N),Z(1,N)
198 REM ASSIGN DATA TO MANIPULATION ARRAY
S
288 REM TRANSLATE, SCALE & COUNTER TRANSL
ATE IN SUBROUTINE
216 GOSUB 464a
228 NFRAMES = 12
238 HGRZ : HCOLOR= 3: REM INITIALIZE GRAF
HICS
2486 GOSUB 1256: REM OQUTLINE SCREEN
2358 FOR K = 1 TO NFRAMES
2680 REM UNIFORM INTERVALS
270 REM PCT RANGE: 8 TO
286 PCT = (K - 1) / (NFRAMES ~ 1)
298 FOR J =08 TO N
3866 REM INTERPOLATION EQUATIONS
310 X = (2(8,J) - QG<8,J)) ¥ PCT + &(8,h
320 ¥ = (241,01 - QC({,H) ¥ PCT + Q(1,H
330 IF J = 08 THEN 350
340 P = 1: GOTQ 348
356 P =2
368 GOSUB 16986
378 NEXT J
386 NEXT K
39¢ INPUT A$: TEXT : REM TERMINATE
END

9?99

1688

REM <{<L{ PLOTSUBB >>>>>

1816 REM PARAMETERS: X,Y AND P

1628 REM P VALUE 1S BEAM CONTROL: 1=DRAM,
2=MOVE

1836 REM FLIP Y COORD. AND CORRECT ASPECT
RATIO (0.881)

1848 REM PLOT AREA: 8<(=X(=279,8(=Y{=217
1858 Y9 = 192 - (Y % 8.881 + 0.5

1668 IF P = 1| THEN GOTO 11@e

1876 IF P ¢ > 2 THEN PRINT "PEN ERROR":
sTOP

18686 HPLOT X,Y9

1896 RETURN

1168 HPLOT TO X,Y9

1116 RETURN

1256 REM <<<<< OUTLINE SCREEN >>3>>

1246 HPLOT 8,8 TO 279,8 TO 279,191 TO 8,19
1 TO 8,6

12768 RETURN

5688 REM <<<<< FOUR GEOMETRIC FIGURE DATA

SUBROUTINE >332>

5618 HOME : UTAB 18: PRINT "FILLING DATA A
RRAYS..."

5026 REM

5638 NUM = {7

5648 N = NUM - 1

5658 DIM AC1,N) ,BC1,N) ,CC1,N) ,DC1,N)

5848 REM READ DATA INTO ARRAYS

56786 FOR J = @ TO N

5688 READ AR, ,ACL,D) ,B<8,D ,BC1,D ,C8,

J,CC1,0,D(8,0 ,0C1,d

58698 NEXT J
5188 REM GEOMETRIC FIGURE DATABASE

5116 DpATA 7,5,7,5,10,5,9,5

5128 DATA 18,9,6,8,8,6,7,10

5138 DATA 6,6,10,18,16,18,5,5

51486 DATA 9,18,8,4,6,8,10,7

5158 DATA 5,7,5,7,5,18,5,9

5148 DATA 1,10,2,4,4,8,8,7

5178 DATA 4,6,0,10,0,108,5,5

5188 DATA ©,9,4,8,2,6,3,16

5196 DATA 3,5,3,5,0,5,1,5

5268 DATA ©,1,4,2,2,4,3,8

5210 DATA 4,4,08,0,0,0,5,5

5228 DATA 1,8,2,4,4,2,8,3

5238 DATA 5,3,5,3,5,0,5,1

5248 DATA 9,8,8,4,6,2,10,3

5256 DATA 6,4,19,8,10,0,5,5

5248 DATA 16,1,6,2,8,4,7,0

5278 DATA 7,5,7,5,10,5,9,5

5288 RETURN

6888 REM <<<<< MANIPULATE DATA >3

6818 HOME : UTAB 16: PRINT "MANIPULATING D
ATA..."

4628 REM FIGURES TO BE TRANSLATED ABOUT O

RIGIN AND SCALED

4836

REM THEN COUNTER TRANSLATED TO SCREE

N LOCATIONS

48406 REM OFFSETS TO CENTER IMAGES

6858 XOFF = - S:YOFF = - 5

6868 REM DEFINE IMAGE SCALE FACTORS (VARI
ABLED

6676 S1 = 3:82 = 4

4888 REM DEFINE COUNTER TRANSLATION COORD
INATES

4898 X1 = 151Yf = 200

6188 X2 = 254:¥2 = 25

46118 REM FIGURE ASSIGNMENTS CAN BE ALTERE
D HERE

108

6128
6136
6148
6156
6140
6178
&18a

te0
3>
tia
EN T
126
136
146
156
140
170
186
190
280
S
21e
ATE
228
236
MUST
246
25e
HICS
288
2790
286
298
308
310
328
J)
336
348
D
3568
360
378
380
378
480
416
428
299
jeee
1619
1626
1830
1110
1259
1248
1 TO
1270

8 TO N
(B(B,J
(BC1,0)
<D(B,d)
(DC1,d

FOR J
ace,
ac1,d
2¢8,D
21,0
NEXT J
RETURN

XOFF)
YOFF)
XOFF)
YOFF)

¥ 81
¥ S1
¥ S§2
¥ 82

L]
LR s
-+

Listing 2

REM <<<<<{ QUADRATIC INTERPOLATION >33
REM
HREE
REM
REM
REM
REM GET GEOMETRIC FIGURES DATA

GOSUB 5680

REM DEFINE MANIPULATION ARRAYS

REM M(FIGURE ,COORD,NUMPTS)

DIM M(2,1,N)

REM ASSIGN DATA TO MANIPULATION ARRAY

<{{ TRANSLATE AND TRANSFORM BETWE
FIGURES 23>

COPYRIGHT 1983 W.J.KOLOMYJEC

REM TRANSLATE, SCALE & COUNTER TRANSL
IN SUBROUTINE

GOsSuUB see6

REM TO GET ALL THREE FIGURES NFRAMES

BE 0ODD
NFRAMES = 15
HGR2 : HCOLOR= 3: REM INITIALIZE GRAP

GOSUB 1256: REM OUTLINE SCREEN
FOR K = 1 TO NFRAMES
REM UNIFORM INTERVALS
REM PCT RANGE: -1 TO +1
PCT = (K - 1> ¥ 2 / (NFRAMES - 1)
FOR J =8 TO N
Fi = M(8,8,J]>:F2 = M(1,68,J):F3 = M(2,8,

-1

GOSUB 3686:X = GNTRP
Fi = M(B,1,0):F2 = MC1,1,0) :F3 = M(2,1,

GOSUB 3866:Y = GNTRP
IF J = 8 THEN 38e
P = 1: GOTO 3%@
P 2

GOosue 1oee

NEXT J

NEXT K

INPUT Aa®: TEXT @
END

REM TERMINATE
€<{<< PLOTSUBB >353>
¥XX%X SAME AS LISTING 1 XX%XxX

RETURN

REM <<<<< OUTLINE SCREEN >>2>>>

HPLOT 6,8 TO 279,08 TO 279,191 TO 8,19
e,8

RETURN

3880 REM <<<<< FUNCTION GNTRP 333>

3618 REM SIMULATES FUNCTION GNTRP (PCT,F1
F2,F3)

3628 REM GUADRATIC INTERPOLATION

3838 REM GNTRP IS A FUNCTION WHICH DETERM
INES THE PLOT COORDINATE

3846 REM FOR ANY PCT VALUE (-1 TO +1) FOR
A QUADRATIC FUNCTION, THUS

3058 REM GNTRP(-1)=FIGURE 1, GNTRP(@)=FIG
URE 2, ONTRP(+1)=FIGURE 3

3640 A = (F1 + F3 -~ 2 ¥ F2) / 2

38076 B = (F3 ~ F1y / 2

3888 C = F2

3696 GNTRP = & X PCT X PCT + B X PCT + C
31686 RETURN

5608 REM <{<{<{< FOUR GEOMETRIC FIGURE DATA
SUBROUTINE >3>352>

5616 REM

5126 REM XXXXX SAME AS LISTING 1 XXXXX

5138 REM

5286 RETURN

6088 REM <{<C<{{ MANIPULATE DATA 25333

46186 HOME : UTAB 16: PRINT "MANIPULATING D

ATA.. "

6626 REM FIGURES TO BE TRANSLATED ABOUT ©

RIGIN AND SCALED

6838 REM OFFSETS TO CENTER IMAGES
4848 XOFF = - S:YOFF = -~ 5§
4658 REM IMAGE SCALE FACTORS
4840 SFTR = 3
64678 REM DEFINE IMAGE TRANSLATION COORDIN
ATES (SCREEN LOCATIONS)
4088 X1 = 28:Y1 = 20
4098 X2 = 148:Y2 = 20880
4188 X3 = 259:Y3 = 26
4118 REM FIGURE ASSIGNMENTS CAN BE ALTERE
D HERE
46126 FOR J = 98 TO N
6136 M(8,8,J) = (A(B,J) + XOFF) X SFTR + X1
61468 M(8,1,4) = (A(I{J) + YOFF) %¥ SFTR + Y1
&158 M(1,68,J) = (B(@,J) + XOFF) X SFTR + X2
6148 M(1,1,J) = (B(1,J) + YOFF) ¥ SFTR + Y2
6176 M(2,08,J) = (C(@,J> + XOFF) ¥ SFTR + X3
6188 M{(2,1,00) = (C(1,0) + YOFF) ¥ SFTR + Y3
6198 NEXT J
6268 RETURN

Listing 3
160 REM <{{{C{ KEY FRAME ANIMATION >>>3>
118 REM <{<{{ BASED ON PAGE FLIPPING >2>>
115 REM
128 REM <{<{<{ LINEAR INTERPOLATION SEQUENCE
>33
125 REM
138 REM COPYRIGHT 1983 W. J. KOLOMYJEC
140 REM
156 REM DEFINE CRITICAL ADDRESSES AND VAL
UES
168 SWITCH = 236:DISPLAY = 49236
1760 PAGE(B8) = 32:PAGE(1) = &4

188 REM INITIALIZE BOOLEAN VARIABLE FLIP
198 FLIP = 1

268 REM GET GEOMETRIC FIGURES DATA

218 GOSUB 5000 :

226 REM DEFINE MANIPULATION ARRAYS

238 DIM GC1,N) ,2¢1,N) ,TC(2,N, 1)

248 REM ASSIGN DATA TO MANIPULATION ARRAY

8

258 GOSUB 4660

268 REM DEFINE DURATION OF IMAGE TRANSFOR

MATION

276 REM 24 FRAMES EQUALS 1 SECOND OF ANIM

ATION

280 NFRAMES = 24

298 REM XXX%¥ BEGIN ANIMATION CODE X¥XX¥%

386 REM CLEAR BOTH GRAPHICS PAGES

318 HGR2 : HGR

328 REM DISPLAY PAGE 1

338 POKE DISPLAY,®

348 REM SWITCH PAGE INDEX TO PAGE 1

350 POKE SWITCH,PAGE(FLIP)

368 FOR K = 1 TO NFRAMES STEP 2

378 REM CLOSE TEXT WINDOW FOR FULL SCREEN
GRAPHICS _

388 POKE 49232,8: POKE 49234,0@

398 REM UNDRAW (SKIP FIRST TIME)

488 IF K = 1 THEN 510

418 FLIP = NOT FLIP: REM 8 —--> 1

420 REM SWITCH PAGE INDEX TO PAGE 2

430 POKE SWITCH,PABGE(FLIP)

448 HCOLOR= 4

450 REM UNDRAW PAGE 2

460 FOR L = 8 TON

478 X = T(8,L,FLIP) ;Y = T(1,L,FLIP):P = T(2
,L,FLIP

486 GOSUB 1086

498 NEXT L

586 REM PCT IS THE INTERPOLATION FRACTION

516 PCT = (K ~ 1> / (NFRAMES - 1)

520 GOSUB 2088: REM DRAW/SAVE

538 REM DISPLAY PAGE 2

548 POKE DISPLAY + FLIP,®

S5¢ FLIP = NOT FLIP: REM | --> @

568 REM SWITCH PAGE INDEX TO PAGE 1
576 POKE SWITCH,PAGE(FLIP)

586 REM UNDRAW (SKIP FIRST TIME)

598 IF K = 1 THEN 648

608 HCOLOR= 4

6186 REM UNDRAW PAGE 1

628 FOR L =8 TON

638 X = T(8,L,FLIP):Y = TC(1,L,FLIPY:P = T(2
,L,FLIP)

448 GOSUB 1000

658 NEXT L

668 PCT = K / (NFRAMES - 1)

678 GOSUB 2088: REM DRAW/SAVE

680 REM DISPLAY PAGE 1

498 POKE DISPLAY,®

768 NEXT K

718 REM X%X%%% END ANIMATION CODE XXXXX
720 REM BEEP WHEN DONE

738 PRINT CHR$ (?)

748 REM HOLD IMAGE ON SCREEN UNTIL RETURN

1S PRESSED
7508 INPUT A$: TEXT : REM TERMINATE GRAPHI
Cs

999 END

1868 REM <<<<< PLOTSUBB >>>>>
1618 REM
1828 REM
1838 REM
1118 RETURN

2688 REM <C<{<C DRAW/SAVE ONE IMAGE >>>>>
2018 HCOLOR= 3

20286 FOR J = 6 TON

2030 REM INTERPOLATION EQUATIONS

2048 X = (2(8,0) - Q(B,1) ¥ PCT + @(8,DN

¥XXX%X SAME AS LISTING 1 XXXXX

2050 Y = (241, - Q1,0 ¥ PCT + Q1,H
204686 IF J = @ THEN 2686

2078 P = 1: GOTO 208980

2088 P = 2

2890 GOSUB t@ee

2108 REM STORE IMAGE COORDINATES FOR UNDR
AMING LATER

2116 REM USE FLIP TO KEEP TRACK

2120 T(9,J,FLIP) = X:T(1,J,FLIP = Y:T(2,J,
FLIP) = P

2138 NEXT J

2140 RETURN

%088 REM <{<((<{<{ FOUR GEOMETRIC FIGURE DATA
SUBROUTINE >>53>

56186 REM
%120 REM XXX¥%X¥ SAME AS LISTING 1 XXXXX
5136 REM
5288 RETURN
4808 REM <<<<< MANIPULATE DATA 33322
4018 REM
46620 REM ¥XX%¥ SAME AS LISTING 1 XXXXX
4038 REM
6188 RETURN

Listing 4
188 REM <{{<<{< KEY FRAME ANIMATION 32222
118 REM <{<{{ BASED ON PAGE FLIPPING >>>
115 REM
1286 REM <<<{ QUADRATIC INTERPOLATION SEQUE
NCE >>>
125 REM
138 REM COPYRIGHT 1983 W. J. KOLOMYJEC
148 REM
158 REM DEFINE CRITICAL ADDRESSES AND VAl
UES

168 SWITCH = 230:DISPLAY = 49234

178 PAGE(®) = 32:PAGE(1) = 44

180 REM INITIALIZE BOOLEAN VARIABLE FLIP
198 FLIP = 1

200 REM GET GEOMETRIC FIGURES DATA

218 GOSUB 5000

226 REM DEFINE MANIPULATION ARRAYS

225 REM NOTE: M{FIGURE,COORD,NUM), T(COOR
D ,NUM, PAGE)

238 DIM M(2,1,N) ,T(2,N, 1

248 REM ASSIGN DATA TO MANIPULATION ARRAY
s

256 GOSUB 4808

248 REM DEFINE DURATION OF IMAGE TRANSFOR
MATION

270 REM 24 FRAMES EGUALS 1 SECOND OF ANIM
ATION

288 NFRAMES = 24

298 REM Xx%XX BEGIN ANIMATION CODE XXXX%x%
368 REM CLEAR BOTH GRAPHICS PAGES

316 HGR2 : HGR

328 REM DISPLAY PAGE |

33¢ POKE DISPLAY,8

346 REM SWITCH PAGE INDEX TO PAGE 1§

358 POKE SWITCH,PAGECFLIP)

368 FOR K = 1 TO NFRAMES STEP 2

376 REM CLOSE TEXT WINDOW FOR FULL SCREEN

GRAPHICS
386 POKE 49232,0: POKE 49234,6

398 REM UNDRAW (SKIP FIRST TIME)
488 IF K= | THEN 516
4186 FLIP = NOT FLIP: REM 8 --2> 1

428 REM SWITCH PAGE INDEX TO PAGE 2

438 POKE SWITCH,PAGE(FLIP)
448 HCOLOR= 4

4358 REM UNDRAIW PAGE 2
488 FOR L = @ TO N

4780 X = T(8,L,FLIP):Y = T(1,L,FLIP):P = T(2
,L,FLIP)

480 GOSUB 1860

496 NEXT L

586 REM PCT 1S THE INTERPOLATION FRACTION

518 PCT = (K - 1) ¥ 2 / (NFRAMES - 1) - 1
520 GOSUB 2800: REM DRAW/SAVE

538 REM DISPLAY PAGE 2
548 POKE DISPLAY + FLIP,8
558 FLIP = NOT FLIP: REM e

5460 REM SWITCH PAGE INDEX TO PAGE 1

578 POKE SWITCH,PAGE(FLIP)

%886 REM UNDRAIW (SKIP FIRST TIME)

598 IF K = 1 THEN 648

406 HCOLOR= 4

418 REM UNDRAW PAGE 1

626 FOR L = 8 TON

638 X = T(@,L,FLIP):Y = T(1,L,FLIP):P = T(2
sL,FLIP)

448 GOSUB tesa

658 NEXT L

668 PCT = K ¥ 2 / (NFRAMES - 1> ~ 1

470 GOSUB 2800: REM DRAW/SAVE

488 REM DISPLAY PAGE 1

498 POKE DISPLAY,8

786 NEXT K

718 REM X%X%XXX END ANIMATION CODE XXXXX
726 REM BEEP WHEN DONE

738 PRINT CHR$ (?7)

740 REM HOLD IMAGE ON SCREEN UNTIL RETURN

1S PRESSED
7356 INPUT A$: TEXT :
cs
999 END

REM TERMINATE GRAPHI

1868 REM <<<<< PLOTSUBB >>>>>

1818 REM

1028 REM XXXXX SAME AS LISTING 1 XXXX%
1830 REM

1118 RETURN

2888 REM <<<<C DRAW/SAVE ONE IMAGE >>>>>
2016 HCOLOR= 3

28286 FOR J = 8 TO N

2039 REM USE GNTRP FUNCTION

2635 F1 = M(8,8,J) tF2 = M(1,@,J):F3 = M(2,8
)

2646 GOSUB 3808:X = GNTRP .

2045 F1 = M(8,1,J) 1F2 = M(1,1,0) :F3 = M(2,1
X5

2658 GOSUB 3888:Y = GNTRP

20468 IF J = @ THEN 2088

2676 P = {: GOTO 2898

2888 P = 2

2896 GOSUB 1606

2188 REM STORE IMAGE COORDINATES FOR UNDR

AWING LATER

2118 REM USE FLIP TO KEEP TRACK

2128 T<@,J,FLIP) = X:T(1,J,FLIP) = Y:T(2,J,

FLIP) = P :

2130
2146
3600

3818

3820

3638
3188 RETURN

5688 REM <<<<<{ FOUR GEOMETRIC FIGURE DATA
SUBROUTINE >>>3>>

REM

REM XXXXX SAME AS LISTING 1 XXXXX

REM

RETURN

REM <<<<< MANIPULATE DATA. >>>>>

REM

REM XXXXX SAME AS LISTING 2 XXXXX

REM

RETURN

NEXT J

RETURN

REM <<<<C FUNCTION GNTRP 23235
REM

REM XXX¥X SAME AS LISTING 2 XXXX%X
REM

PIPEDREAIIS,

Frank M.

Art Department,

ABSTRACT

The rapidly inereasing power of microcomputers has
made it possible for artists working with small budgets,
outside of high tech installations to have the benefit of
computer-aided design and manufacturing technology.
This paper presents the application of CAD CAM solid
modeling to sculpture made of cylinders. The database
and the computer-aided operations are based on a
simple vector model of cylinders. The methodology is
sufficiently general to suggest many other applications.

>

For the past eight years I have been developing a
computer-aided design and fabrication system for
sculptures made of mitered cylinders. I call this
echnique Analytic Constructivism. Its latest
mainfestation,named PIPEDREAIIS, is run on a
Tektronix. 4052 desktop computer (16 bit, 64K). The
evolution of my techniques parallels the ongoing
revolution in microelectronies and the resulting
accesibility of computers.

Sculptors working with modular materials have
been constrained in their plastic manipulations by the
difficulties of accomodating one elemment to another.
Joining them is difficult and modifying the structure,
once made, is harder. Ideas once materialized are hard
to change., My particular experience in this area is
creating structures with cylinders, all of the same
diameter, mitered into complex intersections. The
problems are similar for prismatie, planar or polyhedral
modules; they are all hard to prepare for joining by
purely visual inspection and manual practice, However,
the uniformity of shape in the chosen element makes it
possible to devise general, precise and quantitative
means for manipulating, cutting, and joining the 3-d
arrangements, using mathematical functions to determine
or alter the arrangements. Many of the functions that
one would use are independent of the particular form
and have more to do with the nature of 3-d space
itself. While the functions are relatively few, the
sequence in which they are applied can become quite
complex. Prior to the advent of electronic computing,
the tedious computational chore ruled out a
computational approach to complex designs, making
many conceptual projects physically impossible. Other
sculptors who are making new things possible include
Ruth Leavitt3, Robert Mallory and Ron Resch2,9:6,

It was in order to construct DAEDALUS (fig. 1),
a commissioned 27 foot high sculpture, in 1974, that I
worked out and demonstrated the feasibility of a

CH1930-7/83/0000/0112301.00 © 1983 IEEE

Duke University,

112

A COWPLETE CAD CAM SYSTEM FOR TUBULAR SCULPTURES

Smullin

Durham, H. C.

fig. 1: DAEDALUS, 1974, iron pipe, 27' high.

quantitative approach to analyzing and constructing
tubular structures., The calculations for that first
sculpture, done with a slide rule, a trig table and
-occassionaly- a desktop calculator took 300 hours.
Despite this discouraging chore, the success of the
sculpture was sufficient to impell me to find a better
way to do the quantitative analysis that had made it
possible., Working with a student programmer, I
discovered that the methods I had developed to
organize reams of computations constituted &t least
half of the task of writing a computer program, When
encoded as a BASIC program running on a PDP-11, the
same analysis instead of taking 300 hours (with many
errors!) was accomplished and printed in a neat format

ol

R g

in about 3 minutes. Such computational wonders are

now entirely commonplace and the sculptures that I am

now making are only one of a multitude of things that
were quite impossible a few years ago.

From that first program, CONPIPES, my method
has evolved as I began to use it, becoming more
familiar with this quantitative approach to design and
as I came to articulate more precisely the kind of
information and the kinds of forms I wanted. Especially
since beginning to write my own programs, in 1978, the
complexity of my system and of the resulting plastic
freedom in the design of sculptures has continued to
grow,

Underlying Analytiec Constructivism is the
conceptual model of the component ecylider. This
geometric form is abstracted as what I call a fat
vector, an axial vector with a perpendicular radius
locating its surface. A network of cylinders, then can
be described by listing the end-points or intersection
points of the cylinders, and listing the interconnections
among these points, Thus, the structure of cylinders is
just a "wire-frame" model made with fat wires. Thus,
the description does not explicitly involve any surface
or edge informations. Rather, by using a solid
modeling approach, these features are calculated as
implications of the relationships of the solid component
eylinders and, in the case of perspective drawing, as
the relative implication of the viewpoint, This method
with its efficient database lets the designer work with
very complex structures on a small computer, .

This abstraction came about quite naturally from
my desire to enlarge the small welding rod model of
DAEDALUS. The form of these space-frames was,
itself, nearly a vector object, the diameter of the rods
being so small as to be visually, and practically,
inconsequential. The transparency of the object also
facilitated the projection of the points onto graph
paper in a manual digitizing technique that sculptors
know as "pointing" or "plumbing."

v ARy

TN

A T S '
fig. 2: Mustration of plumb-line pointing technique for
digitizing a wire model.

»

length
z
\ZZ@ y
|ABI = (ABy*+ABy?+AB,* /2 eq 1)
Y
planar angle
% .
B C
z
/ B - CB X
cos(ABC) = “———— eq.(2)
|1ABI*ICBI
Y

rotational angle

/

cos(R) =

X
cos(CBD) - cos(ABC) * cos(ABD)

(3
sin(ABC) * sin(ABD) °q(3)

Fig. 3: The geometric relationships between
connected coniponents of a tubular network.

113

While a list of coordinates, connections and radius
uniquely defines the object, it is not sufficient
information from which to build the structure when
enlarged to any significant diameter (greater than 1/4
inch). However, using analytic geometry and vector
algebra, it is possible to obtain, from this simple
description, all the information necessary to build the
structure at any scale, Actually, the first sculpture
for whieh I used any digitizing analysis was ONE
FORM, 1968, To build that 15 ft. high pipe
sculpture,from the wire model, I realized that I could
"point" the intersections and use these coordinates to
calculate the lengths using the Pythagorian Theorem,fig.
3, eq. (1), However, in the course of building this
piece, 1 discovered that it was necessary to know more
information about the geometry of the intersections to
properly shape the pipes for their complex meetings., It
was only when I returned to this problem in 1974 that
1 worked out the other two fundamental relationships as
functions of the point coordinates. These are: the
angle between a pair of pipes, eq. (2); and the
rotational angle around one pipe between two others
joined to it, eq. (3). These geometric relationship and
equations are shown in fig, 3.

The spatial relations described by these functions
manifest themselves in the elegant, complex traceries
of the mitered intersections of pipes. The translation
from abstract numbers to this concrete form is made
possible by an efficient reiterative, recursive algorithm
using the above functions to generate parameters for
each pipe and by the use of this data in plotting
procedures that create templates for cutting the pipes.

My early work, 1974-1978, utilized only this
limited anelysis, simply translating a digitized model
into a tubular rendering. However,, since 1979, I have
made more extensive use of analytic geometry to devise
ways of precisely modifying and rendering views of the
model.

Following is an outline of the design and
fabrication process followed in making an Analytic
Constructivist sculpture using PIPEDREAMS. In its
current form it is written in TEKTRONIX 4050 BASIC.
Much of it was previously written in PL/I and in
BASIC+ for other installations. I am in the process of
rewriting it in PASCAL/Z to run on the Vector 4 using
raster grephics.

The sculpture can start as a wire-frame or
toothpick model, a drawing, or a set of coordinates
derived , for instance, from topological considerations,
or rudimentary drawings. Recently, my models have
been of the digital type as a result the improved
interactive modes that I have developed for inputting
and modifying the coordinate descriptions and as I have
become more comfortable thinking my way,
quantitatively, around 3-d space and because of the
relative difficulty of actually building and digitizing a
preliminary physical model of my designs.

SIRUCTURE

The model is translated into the
coordinate-connection-radius description. PIPEDREAMS
lets the sculptor enter the coordinates in a flexible
manner, They can be specified numerically as cartesian
coordinates, either absolute, or relative to some other

114

specified points. They can also be input graphically
from a tablet or plotter, making it easy to digitize
direetly off a freehand drawing. In my currént
installation, the third dimension must be specified
numerically by the sculptor, Obviously, a 3-d digitizing
device could be incorporated as a useful peripheral,
The sculptor ean. intermix coordinate and connection
specifications according to a flexible format that can
be shaped with the user-defined function calls to
subroutines,

The arrays holding coordinate and connection data
are dynamically dimensioned, stretched or compressed
according to actual need to maximize memory needed
for large temporary arrays needed, particularly during
the drawing routine. With a chosen radius, the
description is complete, The data base used for all the
segments of PIPEDREAMS consiststs of:

1, title

. number of points

3. greatest number of connections at any point
4, coordinates of all intersection or terminal
points

5, connections between the points

6, coordinates of viewpoint, center of view and
vertical orientation last used

7. the radius of the cylinders.

This data is stored in a sequential file and can be read
or written from the program.

POINT COORBINATES CONNECTIONS

1 1.00 1.00 1.00 2 45

2 1.00 1.00 -1.00 t 3 495 679
3 1.00 -1.00 -1.00 2 47

4 1.00 -1.00 1.00 123 5789
3 -1.00 1.00 1.00 1 2 4 6 72 8 9
4 -1.00 1.00 -1.00 2 5 7

? =1.00 -1.00 -1.00 2 3 45 68 9
8 =1.00 -1.00 1.00 45 7

? 0.00 0.00 0.00 2 4 57

CENTER OF MASS 2 0 0 0

VPT: 0.4 1 -4

DOUNe 0.6 0 -4

Cov:000

RADIUS: 0.05

>

/

Fig. 4: Database description of and perspective
rendering of TETRACUBE,

o

YAXIS x1p

peresemnsernse TETRAGRANNY wmmiesmnnn desesesssesemmere TETRAGRANNY seseseseseresesess

fig. 5: The evolution of PIPEDREAM graphics: a) Jan. 1980, hand-plotted perspectives from numeric output, free-hand
ellipses at intersections; b) Sept. 1980, PLOT 10, Calcomp plot, ellipses calculated, each intersection plane drawn com-
plete; c) Oct. 1982, Tektronix PLOT 50 stereo plot (cross-eyed), only the front surfaces of composite remnant of
intersection ellipses drawn and edges are hidden where they enter the clusters.

115

wnie LABYRINTH OF DATALIST wuwnwewwnin #unnnnunte LABYRINTH OF DATALIST wnuniwwnn

THE CROSS-EYED ART LOVERS THE CROSS-EYED ART LOVERS
STEREO SCULPTURE GALLERY STEREO SCULPTURE GALLERY

116

Po 40300620 9090 00 24 TETRAGRANNY " esesesesesemimie

THE CROSS-EYED ART LOVERS THE CROSS-EYED ART LOVERS
STEREO SCULPTURE GALLERY STEREO SCULPTURE GALLERY

"7

At this stage, the physical model, if any, can
be put aside and all work done on the data model. If
the sculptor is satisfied with this initial desecription, he
skips to step V, ready to construct,.

The computer can be used to examine the data
model in a variety of ways. DMost obvious, it can
project drawings of the physical model displayed on the
graphic screen or plotter. By specifying a viewpoint
and a center of view, a perspective image or a series
of rotated views can be created, allowing the sculptor
to experience the work as it would actually appear.
These drawing routines are base on standard coordinate
transformation techniques,

Since the database description of the ecylinders
includes only the endpoint coordinates and the radius it
is a trivial problem to draw a backbone or axial
rendering of the design, but mueh more complex to
render the contours of the cylinders and their surface
intersections. The algorithm for drawing the
intersections is based on the fact that these junctions
are elliptical conic sections of the cylinders. The
minor axis is equal to the diameter and the major axis
is inversely proportional to the angle of intersection.
To draw the projection of one of these elliptical
intersections, 2-d coordinates are calculated for the
points on the perimeter and then these are projected
into the 3-d viewing coordinate system and then into
the 2-d screen coordinates, The point of tangency of
the straight edges of the cylinder with ellipse is
calculated as an angular function with respect to the
circuinference of the cylinder and the major axis of the
ellipse, In the case of an intersection of more than
two eylinders, the end of each cylinder is characterized
by a cutting pattern that is a composite of all the
elliptical patterns, typically of differing ececentricity
and rotational orientation with respect to the pipe axis.
The program, therefore, collects parameters for every
intersection at the point in question then calculates
and projeets only the relevant points along the
composite shape. This is discussed further in step V
where preparing the cutting templates deals with
essentially the same problem.

The current graphic program does not deal with
hidden line removal where one pipe crosses another;
this was judged to be too complex to include in the
32k or 64k memory and too slow for microcomputer
interactive CAD, liidden lines are removed within
each set of intersecting pipes. Excellent depth effects
can be obtained by plotting pairs of stereoscopic
images, a method that I have found to be a very
powerful design aid and which is illustrated for the
cross-eyed reader in figure 15,

Computer art is usually thought of in terms of
graphic art with the end product created directly on a
digital image maker of some type. However, until
1981, I worked without any graphie 1/O devices. For a
sculptor this is more reasonable than for a graphic
artist since the final art object is likely to be
physically made, some steps distant from the digital
operation. Having only a teletype terminal
communicating with a mainframe, I was forced to
develop more indirect ways of examining my data
model. Analogous to the techniques of
crystallographers and biochemists seeking the structure
of crystals and molecules, 1 developed analytic routines
that inspect the spatial relations between the parts of
a sculpture, using vector algebra to substitute for

visual examination,

ALLDIST, based on the algorith, NEAR, is a
routine that looks at the distance between each
cylinder and all others not connected to it and reports
any pair that is less than a specified minimum
separation. This way, the Sculptor can identify any
pairs that have been placed such that they would
collide (separation less than the diameter) and can take
action to relieve that interference, Other parameters
can also be checked, including the center of gravity,
the angles between joined or unjoined eylinders, and
the length of a cylinder.

THE INPUT POINTS

Ale 4 4.3 13.76 -22.36
A2 13 11,68 9.245 -17.415
’
Bi: 10 6.45 3.4 -13.76
B2: 11 10.32 12,9 -21.5
»
PROPOSED SEPARATION: 1.72
)) CLOSEST PAIR OF POINTS:
LINE-As 9.2286 10.7159 -19.026
TINE-Bs 9:2833 103658 -19.425%
D) THE DISTANCE DETUEEN THEN: 0.5348
4-13 IS TO CLOSE YO 10-11 BY 1,1852
)
)
THE INPUT POINTS ‘
Al & 0 1.72 -20.64
b An 7 11,18 10.32 -24.08
Bl: 8 12.47 6.08 -24.08
) B2 11 10.32 12,9 -21.5
PROPOSED SEPARATION: 1.72
)
CLOSEST PAIR OF POINTS:
LINE-A2 10,8587 10,0729 -23.9811
) LINE-By 11,4321 9.7862 -22.8343
THE DISTANCE BETUEEN THEN: 1.3137
-7 IS T0 CLOSE TO 8-11 BY 4063
)
)
THE INPUT POINTS
P Al 4 0 1.72 -20.44
A2t 13 .61 9.245 ~17.415
) Bl: 10 6.45 3.4 -13.7%
B2:s 1 10.32 12.9 -21.5
) PROPOSED SEPARATION: 1.72
CLOSEST PAIR OF PDINTS:
3 LINE-A3 8.9554 7.5244 -18.1524
LINE-B2 8.3804 8.1783 -17.6348
THE DISTANCE BETUEEN THEM: 1.0074
2 =13 1S TO CLOSE 70 10-11 BY 0.712¢

fig. 8: ALLDIST, a segment of the output analyzing
the distance between all pipes in a network. See

notes by Dave Tolle, Programmer, Appendix.

Even after developing the methods for visual
examination, I find that such quantitative analysis
provides important information about the configuration,
giving a clearer sense of the nature of the structure
and suggesting the most appropriate ways to modify it
to achieve the desired work of art.

Having inspected the model, the artist has a
choice of a variety of means and sequences of altering
it to achieve a more satisfactory configuration,
PIPEDREAMS includes a library of subroutines that give

fig. 9: LABYRINTH OF DATALIST, 1979,
corten, 10* h, The first sculpture designed
with Vector modification techniques.

a wide choice of ways to push things around in the
mathematical model, Much of my effort has been
directed toward achieving maximal density in my
sculptures by combining inspection and manipulation to
move cylinders together until they are separated by a
specified distance. The first sculpture done in this
manner was Labyrinth of Datalist. My primary concern
was to be able to shift pipes out of what I considered
impossible situations, i.e., where they were found to be
colliding ‘with each other, but to keep them touching,
The reiterative routine, BOUNCE, which bounces a
specified pipe back and forth between two others until
it is a specified distance from both was useful in
achieving the internal weaving that characterizes this
sculpture.

In reshaping this piece from its roughly defined
wire model, I came to realize the importance of
optimizing flexible control of a specified part of the
structure while holding everything else constant., Since
1979, I have continued to add to my library of
manipulative operations based on mathematical
formulations by Richard A. Scoville. One such routine,
TWIST, lets the sculptor move one pipe closer orfurther
from another by sliding its endpoints along the axes of
some other pipes to which it is joined. Another, SLIP,
brings- a pipe to a specified distance from another by
holding one end steady and moving the other toward
some designated point or along a designated vector,
Several of these operations a diagramed in fig, 10.

119

fr—_ |

SHIFT 2-5 along mutual perpedicular

OSE-BCLOBE

id

TWIST 2-5 along 2-4 & 5-7 toward 4-7

Rdad

SLIP 2-5 along 2-3 towdrd\4-7

2

fig 10, several vector manipulations,

By increasing this type of specificity, I have been able to
design and construct a series of sculptures in the form of
tight knots . Also helpful in this pursuit iSTRUNCATE, which
truncates an acute intersection of two pipe by adding a third
pipe in place of the intersection and "twisting" it up against
another (see fig, 11).

P -

", fully Savaned

7

[T

Lt CRIA

LRI A AR Y agemet 400

e L e]
b w2

fig. 11: UTICA OVERHAND, 1986, and illustration
of TRUNCATE to tighten the knot.

of use

After having spent much time developing means for
correcting impossible situations (where pipes would be
colliding), 1 came to realize that these situations were, in
fact, not impossible, just difficult, when I worked out a
method to make the necessary interpenetration patterns
descriptively. Richard A. Scoville then provided a function,
eq. (4), to describe the situation quantitatively and I wrote it
into a subroutine., This has allowed superdense structures
such as in the series, FIVE STOPS ON THE WAY TO A
BLACK HOLE,1983.

sin(@)*cos(X)¥sqr{1-(cos(B) -D)

=r ¥
y sin(X)

eq.(4)

. where
y = distance along the axis of pipe A from the point
closest to pipe B, projected onto the surface;
r = the radius;
© = rotation around the axis from AxB;
X = the angle between A and B;

D= distance between axes

radius

fig. 12: FIVE STOPS ON THE WAY TO A BLACK
HOLE, 1983. Superdense interpenetrating networks.

fig 13.'meunwrappmgofasechmotcyhmhrto

show the relationship between the elliptical cut plane
and the simusoidal template,

Relatively few parameters need to be calculated
to construct a tubular network. However, the number
of instances for which the calculations are done in a
complex structure are many and then that information
must be used with great precision.

The application of these funetions can be outlined
as follows:

At each point

calculate
1. its length
2, its angle of intersection with every
other pipe joining there
3. the rotational angle of that plane of
intersection with respect to some
reference plane at that point
4, the rotational angle of that reference
plane with respect to the reference plane
at the opposite end of the pipe.

This data is used to create the appropriate cuts in
the pipes to allow them to join as contiuous surfaces.
Actually, the angle and the rotational functions are
only intermediate parameters that are used to calculate
the sinusoidal function that describes the intersection
of any pair of intersecting pipes. In fig. (12) one sees
demonstration of the relationship between the
elliptically shaped planar section of the pipe and the
sinusoidal pattern that is wrapped around the pipe.
Trigonometry shows that the amplitude of this curve is
a function of the rajiius and the angle of intersection,
or

amp = R/tan(A/2).
eq. (5)

Then, the complete expression for each pipe joining in
a complex cluster of several pipes is:

= R / tan(A/2) * sin(x+xg +x1)
eq. (6)

where

121

r = radius;

A = angle of intersection;

x= distance {or rotation) along:
circumferential axis;

xg= rotation of the plane of intersection
from a reference pair at the same point;
x3= rotation of the plane of intersection
from a reference plane at the other end
of the pipe.

As in drawing the perspectives, in the case of an
intersection of more than two pipes,the pattern consists
of the minimum values of the superimposed sinusoids,
i.e. what is left of the pipe after all ecuts have been
made. One can see that x(must take into account the
rotational relationship with other pairs of pipes joining
at the same point as well as with the plane of some
pair at the opposite end of the pipe being prepared.

With this data, the component eylinders for any
structure can be prepared. Until this past year, the
data was used to manually or mechanically draft
templates and to cut the pipes into the proper lengths
and mitering shapes. As demonstrated by my sculpture
from 1974-1981, quite complex and large structures can
be made done in this manner. Most of my sculptures
from 1976 through 1981 were done with a mechanical
analog pattern maker (fig. 14) which draws the pattern
directly onto a pipe or onto a wrap-around template.
Patterns for large diameter pipes (over 3.5 in.
diameter) were prepared by variations on standard
pipefitting projection techniques. However, in the
current version of PIPEDREAMS, the construction data
program has been written to drive a Tektronix 4662
flatbed digital plotter to make a single, complete
pattern for each length of pipe. That pattern is made
in the following sequence:

1. All intersections at one end of the pipe are
calculated and the composite pattern plotted
along a vertical circumference. Numerical and
graphic alignment aids are plotted.

2. A global search is done for interference
between this pipe and any others not connected
to it, collecting parameters for all collisions
found.

3. An interpentetration pattern is plotted for
each collision at the proper distance and rotation
along the pipe.

4. Any collisions beyond the limit of the length
of the bed are saved for another plot for which
the user is asked to mount a new paper and the
plotting carries on.

5. If the total pattern length is greater than the
plotter bed, one has the option of making a
truncated pattern, or mounting a new paper to
complete the full length.

6. For the opposite end of the pipe, step one is
repeated, properly referenced to the first end in
terms of distance and rotation.

fig. 14a: Mechanical Pipe Mitering Device, 1976, draws patterns directly on pipe of diameter <4". Scotch
yoke cam adjusts for sine amplitude, rotor for dihedral rotation. fig. 14b: A section of 2"diameter pipe
being secribed .

fig. 14 e¢: Vertex-centered Cube, 1977, electrical metallic tubing
and compression couplers. An example of sculptures constructed
with the device. Fig.14b shows one of the center pieces.

122

St ey g s e
. 1 2
RADIUS=1 OTRUCTURE: LABVIDMTN OF DATALZST SATTENMS PO SIPES AY FUINTI
St g e b) Steel model of LABYRINTI{ with patterns wrapped

on tubes coming from point 1 (this model was actually
created with patterns made on the mechanieal analog
pipe miter, see fig. 14).

L
TOTAL L NS08 g o e
)
*

® & O 0 ¢ & 0 0 0 0 O 0 5 P O ST P S PO O 0O S S 9O OO S PSSO e e e e

L]

T BT mmem e

SEX Lo s e e

L]

. : e) Patterns for the full-scale Labyrinth, descriptively
N . made by hand with data from CONPIPES, are traced
: . onto corten plates, then band-sawed and rolled into
: A pre-mitered cylinders.

[] p 1 § P —

o/ o g i

. AmeT™. 19,798 G g

.

® e N sos &

* 1]

L A

*

L]

fig. 15: Pattern Making. a) Complete templates made
by PIPEDREAMS on the 4662 plotter for the 3 pipes
joining at point 1 of LABYRINTIH OF DATALIST. Para-
meters are printed and patterns labled, Note each
pattern end consists of two sine curves of different
amplitude properly rotated from each other. Also, the

two ends are rotated. d) The finished sculpture at Boston University.

123

V.

Execution of this and the previous step with
sufficient precision to make the quantitative analytic
process meaningful has been as challenging as the
programming and has resulted in as many innovative
method. The sculptor doing CAD~-CAM has major
problems not encountered by the graphic artist. CAM
strategies such as mine leave the artist with 2-d
computer generated items which must be turned into
3-d objects and arranged in 3-d space., The final
peripheral devices are manual, and the final object is
hand-made. During the past decade, I have
experimented with several different techniques for
fabricating my sculptures, The appropriate method is a
consideration of what devices and materials are
available. Note (fig. 15) that the eylinders for
LABYBRINTH OF DATALIST were made from plates that
were rolled into cylinders after the patterns were cut
on the ends, whereas TETRAGRANNY was made from
stock aluminum pipe (fig. 16).

Since completion of the current system which plots
the complete pattern, many of the previously
encountered problems have vanished as the integral
pattern manifests all the critical spatial relationships
when glued onto a pipe of the proper radius. It is
then possible to cut and glue the the segments together
in & linear or branching fashion with the certainty that

everything will project properly and that networks will:

return upon themselves,

. As one is limited by the dimensions of the
plotter, I am currently working on two approaches to
achieving comparable direct methods for large diameter
pipes. I am developing a microprocessor-controlled
scribe to draw directly on pipes of any dimension.
More likely to be in use before this article is published
is a 10:1 pantograph. These devices will make it

possible to work on a very large scale with the same
kind of certainty that now characterizes my work with
small cardboard tubes.

fig. 16as The pieces for TETRAGRANNY are
cut from 9" diam. aluminum tube with a Stihl
cut-off saw. The planar blade facilitates a
straight cut.

124

CONCLUSION

The current version of PIPEDREAMS is written to
run on the TEKTRONIX 4052, While it is possible to
operate within a 32K RAM, I have increased the
memory to 64K which allows handling of more complex
structures, and having more of the program options in
memory at one time. Memory allocation is the major
problem in such a micro workstation, PIPEDREAMS is
written in four major programs: GENERAL(14K), with
all the common subroutines; MAIN(12K), which handles
the inputting of descriptions, simple modifications and
tape 1/0; DRAW(24k), which does all the viewing
drawing; and MOD(23K), which does the complex vector
modifications. Sinece I can not have all these in
memory simultaneously, GENERAL allows me to have
any two plus GENERAL at once. Typically, this means
having DRAW available while doing the original input
or while doing MODifications, The vector drawing of
the Tektronix CRT display is a perfect match for the
conceptual model I have chosen to use., Also, its fine
resolution permits undistorted ellipse drawing. In the
near future I will write a version to run on a raster

display in order to utilize surface modeling and color.
In the course of the past nine years, this
technique has undergone much modification and
elaboration. As I have become more aware of what I
want to do with the system, I have been able to make
it perform more efficiently in those manners, Aside
from the considerable assistance I have received from
several people, this project has been mostly a one
person operation. 1 have been artist, programmer,
machine designer and fabricator, sequentially and
simultaneously. While this singlehandedness has often
been -a handicap, I have found that my intimate
knowledge of all phases of the process has been very
important in relating the problems and potentials of
each phase of the operation to the final goal of making
sculptures that otherwise would be impossible. I am

finding satisfaction in seeing my pipedreams become
reality,

fig. 16b: A detail of TETRAGRANNY showing
the accuracy of the mitering, allowing complete
on-site assembly in three hours using iron wire
to tie it together.

CKN

Throughout this extended endeavor 1 have had
the assistance of knowledgeable, creative and generous
people. From the outset, whenever my math has failed
me, I have been able to turn to Richard A, Scoville of
the Department of Mathematics, Duke University to
derive a function. Eric Bam, now with IBM, while an
undergraduate at Duke wrote the first programmed
version of my system. I learned to program by reading
his program and much of his style has remained in the
basic structure of PIPEDREAMS, Dave Tolle, while a
graduate student at University of North Carolina wrote
the first graphiec I/0 version of my system in 1976, He
also wrote the routine NEAR that is the heart of all
my quantitative inspection operations. Gary Grady and
Shiang Ti Tuan of the Duke university Computation
Center were very important in carrying me to more
complex levels of PL/I. Joseph Francis, a Duke
Undergraduate, working as my assistant, helped me
rewrite the system into BASIC and contributed many
useful modifications, making it more user—friendly.

Important financial support for this project has
come from Duke University, The Mary Duke Biddle
Foundation, The Alcoa Foundation and Boston
University.

Finally, 1 acknowledge the special support I have
received from my wife, Ruth Ann, and my children,
Sylvia and Rebecca, who have helped me keep some
human perspective as my work has got more amd more
tied to a machine that is most unforgiving.

BIBLIOGRAPHY
1. Chasen, Sylvan Geometric Principles and
: hi licati
Prentice-Hall, 1978,
Del Zoppo, Annette, vi
Ron D. Resch,Salt Lake City, 1976.
Leavitt, Ruth Hartman "Computer-aided
Sculpture,” Proceedings of NCGA'83,National
Computer Graphies Association, Chicago, 1983.
Hewman, W.M, and Sproull, R.F. Principles of
loteractive Comiputer Graphics. MeGraw-Hill Book
Co., N.Y., 1973.
Resch, Ron D, "The Topological Design of
Sculptural and Archltectural Systems,”
h i
Conference,1973, pp.643- 650.
—__ "Computer Works",_Proceedings of the
7th Interpational Sculpture Conference

1

2. pub.

3.

University of Kansas, 1972, pp. 121-129,

Smullin, Frank M. "Description of 3-D Structures
with Analytic Geometry," SCLPTR,Southern
Association of Sculptors, spring-summer
1977,pp.2~6.

e ."The Computer as a Sculptor's Tool,"
Sculptors Internatjonal, International Sculpture

Center, vol.l, no.3.

9.Thomas, George B., Jr. Calculys and Anpalytic
Geometry. Addison-Wesley, 1960.

8.

fig. 17: TE_TRAGRANNY, 1981, aluminum and iron wire, 140™ x 140" x 99",
Installation: Southeastern Center for Contemporary Art, January 1981,

125

91

fig. 18: PIPEDREAM GRAPHICS. Using PLOT 50 on the
Tektronix 4052 computer and 4662 plotter (upper left) a
perspective view of a developing design; optionally, points
are labled and intersections opaque; (lower left) complete
patterns for sculpture are plotted with intersection and
interpenetrating curves; (right) the finished sculpture,
FIGURE EIGHT FIGURE, 1983, cardboard tubes with
paper patterns, 14"x8"x28", note the free ends have been
cut to patterns making them horizontally planar.

fig. 19a: FIGURE EIGHT-1, 1983, cardboard tubes fig. 19b: FIGURE FIGHT-5, 1983, cardboard tubes
with computer plotted paper templates,15"x8"x20". with computer plotted paper templates, 5"x31/2"x9".

fig. 19c: UTICA OVERHAND, 1980, fig., 19d FIGURE EIGHT-3, 1983, cardboard tubes
steel, 142" h.. Fabricated by the artist (shown) at with computer plotted paper templates,61/2"x7"x19",
Sculpture Space, Utiea, NY.

127

USING AN ARTISTS' WORKSTATION

by Walter Wright

Digital lnage
Grand Rapids,

ABSTRACT
In this paper, I will discuss various applications
o? the ar igts workstation developed gy Digital
Image Corporation. Although designed for a

picro-computer this systes equals, if not betters,
more expensive main-frame systems,

INTRODUCTION

Digital Image Corporation makes computer generated
35am slides for audio visual & television producers
and graphic artists. We aspire to be better and
less expensive than the competition. Therefore we
use relatively inexpensive hardware and we write
our own software. [will list briefly the hardware
and then detail our graphics
software.

describe in nmore

Our hardware includes a Cromemco 12D microprocessor
with video terminal, dual § {/4" floﬁpy disks, 64K
bytes of random access lenor¥ the SDI graphics
controller, and two 48K inlge suffers or pages. As
inputs we use a Houston Instruments bitpad and a
Via Video digitizer. This latter device consists
of a b&w video camera and an interface to digitize
and store the camera image in either of the two
image buffers, As outputs we have an Aydin
Controle RGB monitor and a Matrin Instruments
camera system. The camera takes the separated red,
reen and blue video images from the coamputer,
isplays thes in turn on its own high resolution
bkw monitor and exposes weach {mage through the
ggprng:}ate color filter onto a single frame of
11} ..

Warth approximately $10,008 (not including the cost
of the matrix camera), this systen isn‘t for the
average hobbiest, but it s within the grasp of
enterprising individuals like ourselves,

Qur software is designed to make commercial slides.
This means word copy slides including:t slides for
sgeaker support, to augnent training manuals, title
slides, tablas of nusbers and so on. Also popular
are charts, graphs, and various special effects
slides, #ostorizatlon (di?itizing a video image
and adding color electronically) is a hot item.

Beginning at the beginning, our software includes
:nage naking programs such as FONT which produces
word copy or text in a wvarjety of tyrafuces or
fonts. More about designing fonts later. Our
software includes ipage nlnipulatxng or
paste’ programs such as MENU, Bitpad driven, this
is our most powerful program, the heart of the
systea, In this article 1 will describe MENU and
its applictions. In a related article David Cook,
MENU's dcs;?nnr, describes its operation. Finally,
SHOOT retrieves completed images and outputs thee
to the camera.

FONT - CREATINS A TYPEFACE
Ours is a sedium resolution systes,

raphics afcratcs in two modes: 378 «x
horizontal by

‘cut

Cronesco's 6DI
241 pixels
vertical) in 1é of a possible 4094

CH1930-7/83/0000/0128501.00 © 1983 IEEE

128

Corporation
Michigan

colors and 755 x 482 pixels in 2
Atteapting to render smooth curves at these
resolutions can produce "the jaggies". To avoid
this distracting “special effect” in designing a
typeface or font, we avoid curves. All our fonts
are designed with straight lines, Further, we use
only horizontal, vertical, 45 degree and, rarely,
22 1/2 degree lines., Our early fonts such as
Digital are” rather simple renditions of common
t;pefaco;. Then we discovered Machine, a typeface
which uses onlz horizontal, vertical and 4% degree
liggs.d er designs such as Teletype are more
refined.

colors only.

OQur la

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz
0123456789 Digital
ABCDEFGHIJKLMNOPORSTUVWXYZ
Imnopgrstuvwxyz

Machinge

abcdefghi

FIGURE 1 - FONTS

Fonts are designed on
letter occupies a 10
varies with the letter.
simple commands such asi

grlph paper. Norsally each
12 grid, however, the width
Fonts are coded using

M{ove), x
Liinel) x! ¥

Viector), x, v «sa {y %, ¥)
Blox), w,
X (end definition)
Where:r x = horizontal offset
y = vertical offset
W = width
h = height

The result is a table defining each letter in the
ont, A cosmand (X) to delimit each letter and to
link the data to the appropriate alphanumeric A-z,
is included in the data file, The
name is the font name for exanple,
TAL.FNT, MACHINE.FNT, TELETYPE.FNT and so on.
hava two tygls of fonts. First
single lines only such as Di itai
Siaple line fonts are suitahle

those that are
and. Machine.
or the main body of

word cogy slides. They are legible even in small
sizes. hey include both wupper and lower case.
Second, the outline fonts such as Teletype are
suitable for titles. Some of these fonts don't
have lower case letters. As titles they can be
outlines or they can be filled. At present we use
a separate FILL ﬁrogram- soon we will include a
fill command in the “font data file. We have
experimented with numerous +fill algorithms, a
subject for another future article.

FONT, the program, asks the user to select a font,
The wuser types in_ the font name using the video
terminal keyboard. The apgropriate data file is
loaded into memory. From here the user has various
options, FONT includes these commands:

Flont)
Elrase)

Select a new font

Clear the current page (page @)

Set default color map (white on blue)
Set horizontal scale to n

Set vertical scale ton

Set spacing between letters to n

Set spacing between lines to n

Set pen type and size)

Set pen color (@-blue, l-white)
Get and Y location from bitpad
Get X and Y from the keyboard
Enter single line mode

Redraw single line

Back up one line

Skip to next line

Display commands and their values
Get help

Enter/Exit multiple line mode

~ - Define a tab

@ - Go to a tab

v - Begin/end underline

/ - Enter commands

=
W
D

L N R T N TR N U O AN N TN TR I S R N A |

ZXIECH ROV <>

I'm not qoin? to explain the complete command
structure. Multiple line mode is extremely wuseful
for creating tables and charts. 1 am going teo
discuss a simple example.

Presume the user is creating & title slide, he/she

has loaded Teletype and is ready to enter the
title. Type-
EMXAD Y 40 B ' Shazam' (return)

FOMI erases the current page, wets the toreground
color white and the backaground blue and sets the
horizontal and vertical scales to 4 (48 / 1@). A
number of defaults are set, for example, the pen
defaults to draw lines one pixel wide. FONT waits
for the wuser to enter a starting point on the
bitpad, a cursor on the RBEB wmonitor screen
indicates the position of the bitpad stylus,
Eressinq down on the stylus enters its location.
ONT draws the line of text. We will return to

this slide later.

FIGURE 2 - Shazam!

129

MENU - ONE FROM COLUMN A, ONE FROM COLUMN B

At the creative center of our system is MENU, The
user communicates with MENU using the bitpad and,
accasslonallz the keyboard; MENU communicates with
the user on the video terminal screen.

FIGURE

3 ~ VIDED TERMINAL SCREEN

As the screen contains a wealth of
data. Miscellaneous control parameters such as
current file name, scanner settings, jump
increments and so forth apgear on the op three
lines, Below and moving left to right we find the
KEY PAD vector, & column of numbers @-15,FF, Next
are several columns of figures under the heading
PAGE @. The user can define as many as sixteen
boxes per page; under subheadings X LL Y and X UR Y
we find box coordinate information and under X x Y
the length and width for each user defined box.
Now the tricky part, To the immediate right of the
box cordinates are three columns of box control
informationy the box select vector {(a "<" indicates
a selected box), the force vector (a number
9-15,FF) and the alternate page vector (a ">"
points a box directly to the alternate page). Box
control is enormously powerful , a complete
description would bog us down for pages, so we'll
deal with these vectors later in some examples of
ractical and not so practical applications.
oving to center screen we find the heading COLOR
MAP and directly under it three subheadings: RR

66, and BB (red ?reen, and blue)., A maximum o

sixteen colors (8-15) are possible in low
resolution. These sixteen colors are chosen from a
palette. of 4096 colors formed by combining
differing intensities of red, reen, “and blue.
Each frinar color can vary in in ensx%y from black
(leve @) to full color (level 15) as indicated in
the color map table. Next. on the far right, we
find PAGE 1 box control and box coordinate
information, similar to PAGE 0.

you can see,

A final note concerning the screen{theadings appear

dim while filename, scanner settings and Jjump
increments a%pear bright. Numbers in the key pad
vector and RBB intengity levels in the colar nmap
are either dim (OFF) or bright (ON), The box

select indicators "<(*, force values and alternate
page indicators ">" are either not visible (OFF) or
visible (ON),

Now have
se who get

we an exhausting list of MENU commands.
Tho bored or confused easily can skip to
APPLICATIONS HENU commands appear as keys on the
bitpad. Th user enters commands by hitting the
agprnprxate key while the bitpad is IN POINT MODE.
The user enters coordinate information while the
bitpad is IN STREAM MODE, see [BOX BRABI.

FIGURE - # - THE BITPAD
BASIC PROGRAN COMMANDS

[CRT] Toggles the display on/off.

{IAP] Clears the current page and must be
confirmed by hitting twice.

[1AP ALTI Clears the alternate page as above,

[HI RES] Sets high resolution: 7355 x 482 in 2
colors.

{LG KES) GSets low resolutions 378 «x 24 in lé
colors.

[SAVE] The user enters a filename on the
keyboard; MENU compresses and saves the
current paae on disk. The file apgears
in the disk directory as filename.PIX.

[LOAD] Loads to the current gage from disk as
above. A disk load can be made in one of
six modes - add, subtract, and, or, xor,
replace. More later,

[INC] Increments the last character of the

current filename @-9, A-21, 1f the
current -filename is "T@", hitting [INC]
will change the filename to "Ti",

{DEC) Decrements the last character of the

current filename as above.
[LAST SAVE]

Saves the image frome the current page to
disk using the last filename entere on
the keyboard, or the last filename as
modified by the [INC] {DEC] commands.

[LAST LOAD]

Loads an image from disk to the current
page using the last filename as above.

snall square image from the biw
video camera. The image can have as many
as 14 levels of grey. It is loaded in
low resolution “directly to the current

page.

Brab full frame at hal$é the normal low
r;:otu:ion and loads it to the current
page.)

Grabs a small image vertically and a full
f;:me horizontal?y, as if the full frame
image were tilted back 45 degrees. It is
loaaod to the current page.

Exits MENU
monitor,

[EM] Grabs a

[L6]

[TILT]

{EXIT] and returns to the systea

KEY PAD AND VECTOR CONTROL COMMANDS

The key pad includes color vector, box select
vector and alternate page vector keys, as well as
several fregquently wused control keys such as the
page key.
{83 - 153
Are used with related keys to set box
numbers, color codes, colors, jump, 3D
and loop parameters,
f1-151 Automatically sets number 1 through 15 in
the keypad vector.
[EVEN] Sets all the even numbers in the keypad
vector.
[ooD1 Sets all the odd numbers in the keypad
vector.
[FF1 Sets "full frame” in the keypad vector.
{CE] Clears the keypad vector.
[-1 Is the “through” key, for example,
[-1 {@] (7]
will set numbers 1,2,3,4,5,6,7.
(€1 (81 (A2
These keys transfer the contents of
keygad vector (the leftmost column of
numbers on the video screen) to the color

vertor, box select vector and alternate
page vector respectively.

{<-C] ({-81 [<-RA]

These keys reverse the function of the
above keys transferring the contents of
the color vector, box sefect vector and
thet alternate page vector to the keypad
vector.

[(~C~>1 [<{-8->]1 [{-A->]

These keys swap the contents at the
kerpad vectar and the color vector, box
select vector and alternate page vector
respectively.

{e Cl Sets only coler @ in the color vector.
{1-15 C]1 Sets only color @ through 15 in the color
vector.
[F1 Allows the wuser to point a selected box
i to another box on the same page, for
example,
(CE] (@81 [S81 [F1 (1]
will point a box @ to box 1.
[ALL F1I Points all -'selected boxes to a single
designated box.
" L1AP F1 Cancels all force values on the current
page.
{P] Toggles between page zero and page one.
[PSA] Toggles to the alternate page taking
along the select box and alternate pigc
vectors. That is, the contents of the
select box and alternate page vectors of
the old page are transfered to the select
box and alternate page vectors of the new
page,
[COPY §->D1
Copies the image from the current page
(8) to the alternate page (D). This is s
high speed copy which ignores color

130

vector and function mode settings.

[COPY D->83

[8<>D1
[8§¢-D]

[p<-81

[+C1 [+5]

[BOX GRABI

Reverses the function of above key and

ca?ies the image from the alternate page
to the current page (S),

Swaps the images on pages zero and one.

Transfers the coordinate inforaation from

a destination box to a source box, for

example,

LCE) [@1 [8) [FY [FF1 CS<-D]

sets hox @ to full frane,

Reverses the function of the above key,
for example,

[CE) £8]1 [S] [A]

[BOX GRAB1 (bitpad coords) [D<-81

sets box O on the alternate page equal to
box @ on the current page.

[+AY [+F) (-C3 [-8] [-A] [-F1

Allow the wuser to move enabled colors,
selected boxes alternate Ea pointers
and +torce values up own {(-) the

control vectors, for exanple,

(CE) [@) (81 [CE) [EVEN] (L)
[+51 [+C) |

enables rolors
[+3] selects box !
colors 3:5.749,

hnx [} and
?.10.12.14.

enables
BOX COMMANDS

MENU takes
sets their
corners to

selected boxes, in turn, and
lower left & upper rxg
coordinates entered

user from the bitpad. MENU cnlcu ates
the length & height of the box and
updates the coprdinate information on the
video terminal, In order to enter
coordinates, the user switches the bltg
from point to stream mode.

display screen a cursor aegoars. Thxs
cursor moves with stylus.
Coordinates are entered by ressing the
stylus on the bitpad. Remember to return

[AUTO GRABI

[FIND]

to point mode after all selected boxes
are set,

fAs above, MENU automaticall selects
boxes @ through 15, {SKIP) skips the
next box and [QUIT) aborts the whole
operation,

MENU looks inside the boxf(es) selected

and reduces the box(es) to fit its{(their)
contents, Used to isolate latters, lines
or blocks of text for shifting, aligning,
copying, etc.

[AUTO FIND)

[ZAP BOX1

[CINV BOX)

Automatically finds the contents of a box

when it’s grabbed. That is, it's the
same as,

[BOX GRAB) (bitpad coords) [FIND]

and when used with ([AUTO GRABJ saves
keystrokes,

Selected boxes are cleared to color code

are invertsd, XORed with
Thie makes a negative of

Selected boxes
color code 15
an original box.

131

[¢-=/UP/DOKN/-=>1

Centers selected box(es) and must be
confirmed by hitting twice.

{UP/DOWN] Vertically centers as above.

{<{--/-->1 Horizontally centers as above.

(UP] CDOWN] (<--3 [-->]

[UP/==>) [<{~~/UP] [DOWN/-->] [<--/DOWN]
Direction indicators used in shifting,
moving, aligning and adjusting boxes.

[XJUMP] Sets the horizontal increaent (number of
pixels) wused by the shift and move
commands.

[YJUMP] Sets the vertical increment as above.

[XYJUMP] Sets the horizontal and vertical
increments together.

{1 JUMP] (5 JUMPI [10 JUMP] 5@ JUMP]
Preset jump factors used reqularly to

move text around the screen,

[SCAN 81 [SCAN DI

[SHIFT]

[JusT]

[MOVE]

[ADJ]

o —

Allow the user to set scanners for source
and destination boxes. Scanners are
dirertional, thev determine the aorder in
which the contents ot the box are read
from and written to the display page.

B-RLY [TB-LR] [BT-RL]
L~TB) (LR-TBI [RL-BT]

These keys set
directions. The

eight possible scanner

first four work coluan
by column startan at one side of the box
and workxng towards the opposite side.
the second four work row by row starting
at the top or bottom of the box and
working towards the opposite side.
Source and destination scanners default
to (LR-TBI. For an example of scanners
at their best see MIRROR below.

Shifts a box (or boxes) AND ITS (THEIR)

CONTENTS wup down, left and/aor right by
the number ot pixels set with the jump
keys (x and yjump default to 1), for
example,

{CE] (@]

{10 JUNP] [SHIFTJ 2 x [UP/->]

will shift box @ with its contents up 20
pixels and right 20 pixels,

Justifies one or more boxes as

selected,for example,

[CE] (@) [S) LF1 [FF]
[JUSTY (<-/UP}

will shift box @ with its contents to the
upper lett corner of the screen.

Moves a box f{(or boxes) WITHOUT TAKINGE ITS
(THEIR) CONTENTS, for example.

[CE) [B) [S]

[BOX GRABl (bitpad coords) [FIND]

[5 JUMP] [MOVE) [<{-/DOWN]

will find box @ contaxnlnq say, a title
and then move the box left 5 pixels and
down Exxels without novan t e title.
See STREAKING below.

Adjusts the size or position of a box
definition WITHOUT AFFECTING ITS
CONTENTS, for exampla,

LCE) [0] (5]

[BOX GRAB] (bltgad coord) [FINDI

[ADJI [EXPAND] x [EXPAND]

will find box @ and expand it 5§ pixels a
side. Individual sides can be expanded
or shrunk using the direction indicators.

The next group- of keys wmanipulate
duplicating, combining and
contents o a box or boxes. These operations
include fade, _average, copy, key, fuzz and color
equal color, Each of these operations can be
carried out in one of six modes -~ add, subtract,
and, or, xor, replace. These modes apply to the
color codes contained by the box or boxes operated
on. Box @ can be copied over box | in replace mode
and the contents (color codes) of box @ will
replace those of box 1. However, box @ can be
copied over box | in_ or mode and the contents
(color codes) of box @ will overlay those of box {.
The contents of box | remain and aren’t obliterated
as in a replace copy., Similarly the xor mode can
invert the copy, add mode sums the color codes in
boxes @ and 1, and so on.

[ADD]I [SUBJ [AND] [OR] [XOR) LREP)

Are function modes wused in disk loads,
and fading, averaging, copying, keving,
€uzz:n3 and color = color., Only one is
enabled at a time (default is replace).

images by
transforming the

fAVEY "Averaqer" is a means of combininag images.
Foi corresponding locations in the source
and destination boxes the color codes are
averaged and the result affects the
destination box. The six function modes
create various transformations, Boxes
can be averaged within a page or from
page to page.
[FADE] "Fade" is a slow
corresponding pixels in the source and
destination color codes are compared. [f
source is greater than destination then
the destination color code is incremented
by 1. 1f they're equal the destination
color code escapes unscathed, f
destination is greater than spource then
the destination color code is decremented
by {. The logic above applies in REP
mode; as for other modes, you're on your
own,
[COPY1 Copies one or more boxes over 3
corresponding box or qroup of boxes,
Copying uses the color control vector and
the paqe vectors. Boxes can be copied
within a single age or from page to
page. Therefore these control vectors
nust be set BEFORE the copy key is hit,
Select box @ and force it to point to box
1 on the same page. Only the colors
gelected by the color control vector will
be «copied from the source boxtes). For
example,

[CE) [@) (8]
{1-15 €1 [REP

copies box @ colors 1-15 over box |
re?lacxng its contents. But color @ will
NO be copied therefore those areas of
box | corresponding to the background of
box 8 remain untouched. And

{CE) [-7 [@] [7) [B]1 (A]
[1-15 C1 [REP] [COPY)

copies boxes @-7 +from page to page.
Again boxes @-7 on the first page are
considered source boxes and because the
box control vector points to the
alternate page the corresponding boxes on
the second page become the destination
boxes. In coprxng source and destination
boxes are usually the same size. Boxes
of wunequal size will "smear" the image.
Cogl can be wused in a macro to wmake
nultiple copies, More about this under
STEP REPEAT.

[F1 (11
1 (CorPY]

average. For

132

[KEY] Kevs one or more boxes over a
corresponding box or gqgroup of boxes.
Keying uses all the control vectors, As
in copy, boxes can be keyed within a
single page or from gage to page. And
as in copy, control vectors must be set
BEFORE key is hit. Keying can be thought
of as the reverse of copying. Only the
colors selected by the color control
vector will be keyed on. In keving the
color vector controls destination boxes
not spurce boxes as in copying. For
example,

[CE] [@3 [S) [F) [FF] (D C) [REPJ [KEY]

will key box @ into the background (color
9) of zhe full frame. ONLY color @ will
be replaced and colers 1-15% will
unaffected. And

(CE] [@1 (81 [A] [@ C] [REP] [KEY]

Keys box @ from page to page as in copy.
1 the destination box is “smaller than
the source only the area defined by the
destination box will be affected bu if
the destination box 1is larger than the
source box will be repeated wuntil it
fills the entire destination box, This
is very handy for creating background
patterns.

remain

[FUl1} "Fuzz" is H powerful means of
transforming an image. A more complete
description a%pearqd in an article by
David Cook in Creative Computing, January
1983, The page control vectors &eteralne
spurce and desipation boxes as in copy.
Fuzz averages each source box color code
with its immediate neighbours and uses
the result in ransforming the
destination box, In replace mode fuzz
smooths the image. t can_ generate
atterns and surface texture. Boxes can
e fuzzed with themselves (a3 single box
is both source and destination), or from
page to page. Same pa%e as opposed to
page to page fuzzing produces different
results,

[CEQC) "Color equals color" is copy with
additional color wmodification. For
pixels in the source box enabled by the
color vector, corresponding pixels in the
destination box are set equal to the pen
color, Color equal color is verz useful,
here's an example which converts a high
resolution image to low resolution-

[LO RES]
[1-15 €3 [PEN CJ {15) [CEQC]

As in fade, the logic applies in REP
nodgi other function modes produce rather
exciting results,

[3D) [3D X3 [3D Y]

“Translation by intensity" describes this
peculiar transformation, The ixels
within a selected box (or boxeas are
translated or shifted horizontally and

vertically using this formula- number o
ivels shifted = color code ¥ (3D XorYl,
f the X & Y multiplication factors are

set to i, the brightest areas of the

image will be shifted 15 pixels
horizontally and vertically, the

background will not nmove. Thig creates
the ~ illusion of a three dimensional
surface, hence the name 3D. This
transformation redrawe only thos e pixels
enabled b the color vector and works

best if color @ is NOT enabled., Scanners
and function modes can be invoked to
wonderful effects.

grodgce wierd & u

ett:n? the X & Y multiplication factors
to arge values produces instant
abstractions.

The observant reader will note that (FADE] [AVEl
[COPY) LKEY) [FUIZ] appear in more than one place
on the bltgad. D:rectlx above the function mode
keys is the STAMP COMMAND AREAR, "Stamping” allows
the user te paint on the current page. Brushes are
defined as boxes selected on the current page. The
user touches the bitpad stylus to one of the stamp
keys, sets the bitpad to stream mode and touches a
brush. After iden

tif{ing a brush the user stamps
b(touching the stylus to the bitpad, Wherever the
stylus touches, the brush/box is copied centered on
the stylus position, Stanping is used to create
diagrams, for example, adding components to an
electrical circuit or arrows to flow chart.

Above the stamp keys is the PAINT COMMAND AREA,
*Painting” wuses both pages; one page contains the
brushes, the other becomes the canvas, The user
defines his/her brushes on the brush page. It's
possible to load from disk_ a -selection of
greviously defined brushes. . Then the user toggles

o the canvas page and points to & brush (or
brushes) with he alternate page vector, for
example, : ‘

(1) [AUTOFIND] [AUTO GRAB] 16 x (bitpad coords)
iz} (P (CE1 (1] (A}

picks sixteen brushes togxlns.to the
and enables brush 1. 8 in
touches the stylus to one of the paint kays, sets
the bitpad to streas mode and “paints" by touching
the stylus to the bitpad. For s lnping paiting
the brushes are treated as boxes, therefor ADD,
SUB, AND, OR, XOR, REP funcion modas are available.
And any combination of scanners can be set. The
color vctor can be used to enable specific colors,
for eaxample,

(1) (@ C1 CKEY PAINT]

will paint only on
foreground intact.

[PEN]

canvas page
stamping the user

the background leaving the

le
he
the

with a sin
the coler of
one of

Allows the user to paint
pixel. (PEN C] sets
pixel and [PEN FUN] enables
six function modes.

[PEN FUZZ]

Allows the fuzz a 3 % 3 pixel
neighbourhood centered on the gtglg!.
The center pixel is _averaged with its
impediate neighbours, Thus the user can
smooth or blend specific areas of an
image, like touching up a photograph.

user to

[PEN FIX] Allows the user to modify specific colors
with the stylus., Pixels pointed to with
the stylus and enabled by the color
vector are set equal to the pen color.
The wuser can clean up an image with this
command, as above, like touching up a

photograph.

A final observation on the power of fade, average,
copy, key, fuzz, color equal color and load .
These seven coamands operate in any of six aodes, a
total of forty plus combinations, anz single cpior
or group of colors can be selected. Multiple
topies, fuzzes and averages can be created with
macros. These operations can be applied to single
boxes or groups of boxes. Various scanner
combinations are available. There must be hundreds
of ways to aprly these operations. We'll examine a
few atter dealing with color and macros.

COLOR COMMANDS

“One or two" togalos between a single
color vector applied to both pages, and
two color vectors, one Eor paae.
Indicators left & right of the COLOR HAP
heading point to the active page(s).

"Set
to select the
code(s) enabled by
vector. Colors are deterained
cosbining red, green and blue. These
primary colors vary in intensity from @

f1/21

[SET RGBI red green and blue” allows the user
color{(s) for the color

the color control

133

(no c¢olor) to 15 (full coaloar). For
example,
[CE] [-1 [@) (7] (C)
(SET RGB] { 8] [@) [B) - black
(151 L 8] [@] ~ red
[8] (151 [@1 - green
[83 [0) [15) - blue
f 81 [15) [158) - cyan
(181 [@) [15) ~ magenta
(151 (151 L 8) - yellow
[13) (1851 [15] - white
There are 16 x 16 x 16 = 4094 possible
colors, ;
[HUE] Allows the color map to be shaded; for
example,
CCE] [@) [15) [C}
[SET RGB1 [@1 [@1 [15)
[151 (81 { @}
(HUE]
creates a color map evenly shaded from
?é?e {color code @) to red (color code
{LITE] Blacks out the screen then hilites each
color code enabled by the color control
vector,
[LITE ALL1I

Blacks out the screen and then hilites

one by one all colors 0-15.
[GREY REB] [BREY R} [GREY 6] [BREY B)

"Grey scale" keys shade the color map for
the appropriate primsary color(s) from [
01 through {15) or -full colaor.

[? RGB3 [? RY [? 6] [? B)

“Random color” selects the color(s) for
the color code(s) enabled in the color
control vector by using the random number
generator. .

[+B) [~R] [-B] [-B]

Allow the user to fine tune any color(s)
enabled by the color control vector. "R

6, B" stand for red, green and bluej + i
~ increase and decrease their intons!ty.

[ROLL DOWN] CROLL UP) [<- ROLLI (ROLL ->]
the intensity

colors in the color
direction indicated.

[+R] (+61]

These keys roll or rotate
levels for enabled
sap according to
For example,

[CE] [ODD] [C) £? RBB) 8 x [ROLL DOWN)

-randomly assigns colors to odd numbered
colors. These colors are rolled through
the nap such that 1->3, 3->5, §-)7, 7->
§-311, 11->13, 13->{5, "18-31." ' Eight
rolls restores Ehn original color map.

MACRO _COMMANDS

[RUN] Followed by a number 8 - 15 invokes a
predefined series of commands. The user
can define up to 146 macros.

[LOOP] "Loop" sets the counter used for repeated
execution of a macro.

(MEN) "Memory" causes MENU tc remember the
following commands.

[8ET] Followed br anumber 8 - {5 terminates a
macro definition. See RUN.

[DEL] "Delete” followed b a number @ - 15
deletes the specified macro. The macro

can be redefined.

APPLICATIONS
Remember FONT? We left FONT with ‘Shazam!’' on the
scraen, Let‘s find a box containing the word and

center it on the screen -

(1) [@1 (8] [BOX GRAB) (bit pad coords) (FIND]

(2) 2 x LUP/DONN <(--/-=>)

(3) [GREY RBB]

(4) ([SAVE) "T@ (return)*

In line (1) we find “Shazam!" using the bit pad

stylus, Line (2) centers the box in the frase.

Note the centering key is hit twice to confirm a
operation. Line (3) sets

eotontially destructive
he standard grey scale, in this case white latters
on a black ba:k?round. Line (4) saves the centered
word in disk file "TO.PIX".

Although the current version of MENU doesn‘t
lettering, future versions will -

fill

(1) LFILL) (bit E.d coords)

(2) [INC) [LABY BAVE]

Hit fill and touch the bitpad stylus to the
interiors of each letter in turn, line (1), When
all the letters are filled, save the image in disk
file "TL{.PIX", line (2).

FIBURE
We have created both outlined and

5 - Shazanm!

filled
saved thems on disk.
for

versions
Thase two
various

of Shazan!’ and
files become the building blocks
special effects.
In the +following applications I have included a
nusber of sample programs, For clarity, these
rograms use more than the necessary number of
eystrokes (the liberal use of clear entry for
|xa|gl| . Since related keys are grouped
together, the extra keys do little to decrease
speed. and probably increase overall efficiency by
preventing errors,

SHADOW

This is a simple and widely
creates shadows as follows-

used effect, Menu

"Shazam!",

e set a jump
ixels left and 15 pinels
elects full frame and
Line (3) reselects

with color @, Now we

color @ wi
d replaces ¢

he original isage over the background,

N ad

nd we have a shadow,

FIBURE & - SHADOMW

STEP REPEAT

This is an effect used in slide animation and is
sade by repeatedly exposing an image while stepeing
it horizontally and/or vertically on the animation

stand. This is how it's done with MENU-

{1) [REP] fLOAD] "T¢ (return)”

(2) (@) £81 [A] [BOX BRAB] (bitpad coords) [FIND]

(3) [PSA) [8<-D} LP]

(4) ([1-15 C1

(5) [MEM]

(6) LCOPY) [P) [MOVEl 3 x [UP/-->] [P]

(7) [SET) (@8]

(8) [LOOP] [2) [@) [RUN) (@] (P}

(9) [OR1 [INC) [LAST LOAD]

(18) CXOR) C[LAST LOAD]

(11) COR) [DEC) [LAST LOAD]

Line (1) loads the outline replacing the image on
the screen. Line (2) finds box @ and points it to
the ogpositc page. Line (3) transfers box @
control info and coords to the alternate page.
Line (4) sets the colors to be copied. Lines (3-7)
create & macro @ which copies "Shazaa!® to the
alternate page then moves the target box on the
alternate page ug three pixels and o the right
three pixels, This macro is run twenty times, then
we go to the alternate page, line (8). Finaliy, to
clean up the image we cut out the original word,

lines (9-11).

FIBURE 7 - STEP REPEAT

HIRROR

b¥ using two scanners moving in
or example,

This effect is made
opposite directions,

(1) [REP] [LDAD] "T@ (return)”

(2) (0] (8] [BOX BRAB] (bitpad coords) [FIND]

(3) [F1 [1] (D<~-8)

(4) [+8] [MOVE] (height + 1) x [DOWN)

(5) (-8) [1-15 C}

(6) (SCAN D] [LR-BT] [COPY]

Line (1) loads the outline replacing the image on
the screen, Line (2) selects and finds box .
Then we force box @ to point to box 1 and transfer

coordinate information, line (3), We select box t

sove it one pixel below box @, line (4), Reseloct
box @ and set colers I - 15, ine (5). Finally,
line (&), the destination scanner is set to move
from bottom to top and box @ is copied bottom ug
}ntu. box 1. We ran enhance the mirror effect wit
uzzing-

CE] [8) [ZIAP F)
} [FU123}

-TB1 [
[D<-81
18] (€

In line (7) we reset the destination scanner and
clear the select box and force vectors. Line (8)
selects box 1, points it to the alternate pazc and
transfers coordinate information to the alternate
gage. Then we set color @ - 15 and fuzz box | to
he -alternate page, line (%), To complate the

effect toggle to the alternate page taking wselect
box and alternate page, and the fuzzy box 1 back
over the original, lines l!l.ll).

FIBURE 8 - MIRROR

NEON
Another common effect, neon is an interesting
application of |noothln?. It is usually made by
cosbining focused and detocused versions of the
same image. MENU does it this way -
(£) [REP) LLOAD] *T1 (return)*
(2) (83 (8] {A)] [BOX BRAB) (bit pad coords)
(3) [PBA) (8¢-D1
(4) [1/21 T1-13 C) [P] CCE) [@) [1-18] [CI
(5) ([MEM)
(6) LFUZZ3 [P) CCEQC] (P)
(7) [BET) (1]
(8) [LOOP3 L&) LRUN) L[1)
(9) (MEM]
(18) LFUZZ1 (P]
(11) [SET] €21
(12) C[LOOP) [6) CRUN) [2)
(13) C(XOR) [LABT LOAD]
We hoain lines (1-3), by loading "Shazaa!" filled
and deflning & box'around the word, This box is
larger than thes word itself by about ten pixels a

135

side. Box control info and coords are set on both
pi?ll- Line (4) sets seperate color maps, colors 1
- I5 on the alternate page and colors @ - 15 on the

original page. Now we define macro 1, lines (5-7),
which fuzzes the image to the alternate page using
all ‘colors 8-15, hen ?oos to the alternate page
and sets colors i{-14 esqual to color 15. Ne run
this macro six times, line (8) expanding the
original word to the maxisum size o} the neon glow.
Now define a short macro to smooth the edges of the
glow and run it six times, lines (9-12). Finally,
we cut out the original ward and veila a neon glow.

FIGURE 9 - NEON

We can refine the effect bK addin? in the original
word outline and coloring the result as folows,
(14) LCE] [18) (C) [-PC) (-A1 [CEAQC] [+PC]

(15) C[OR] [DEC] [LAST LOAD]

(14) [CE) E@] [14) (151 [(C]

(17) [SET RGBI [@) [@1 [@)

(18) t @) L @) [15)

(19) [@) 151 €1§)

(28) [HUE]

Line (14) sets color 15 to {4. We reserve color 15
for the outline which we load in line (15}, Set
colars @, 14 and 15 to black, blue and cvan
roiglctivnly. lines (16~-19), and flnally shade the
inage, line (20),

STREAKING

r to step repeat, the title leaves behind a
of copies each docroasin? in intensity.
ersion of streaking is as ftollows -

Pl [(LOAD] “Ti (return)"
81 [A) [BOX BRAB) (hitpad coords) [FIND]

_— Rrrid
=
e

W BN NHRA N [T =
e~ XnB

[L2 DT]
~

c) :

[MOVE] &6 x LUP/-=~>]
[PC+]

]

£3] CRUN] [3)

€~ o

-
- Y-

neon we start with “Shazam!* #filled,
In line (2) we select box @, point it to
alternate page, find ‘it and togglo o the alternate
.2. taking along box control and coordinate
ntormation, Returning to the original page, set
colors 1 - 15 and set the pen color to 1, line (3).
Lines (4-8) create macro which copies the
original image to tha alternate page using the pen
color, aoves the box on the alternate page up 6
ixels and right & pixels, and last but not least
ncreaents the pen color. Run macro 3 thirteen
tlu::)cnd toggle to the alternate page, lines

(9‘ .

(
¢
(
(
(
{
{
(
A
(

line
.

-
-~
-

FIBURE 1@ - STREAKING
METAL

Metal is a popular effect for jazzing up titles,
logos, etc. Simulating a metallic surface is quite
a challenge, we have several rocedures which
represent & good start. For exasmple,

y lines (3-5). Below "Shazams'!" amake box 1 any
umber of pixels long but only one pixel high,
lines (6,7}, In line (8) we set ADD mode, enable
all colors and set pen color to 2. Llnes (9-12)
are the wmetal bar wmacro which adds 2 to the
contents of the box and expands it up & down. Line
({3) runs the macro five times. Line (14) points
the metal bar at "Shazam!" and keys tha bar over
color 1. Line (15} erases the metal bar.

(1) [REP) LLOAD] “T1 (return)"

(2) [CE) [@) (81 (BOX GRAB] (bitEld coords) [FIND]
¢3) LCE} [15) [C) [PEN €] [1) {CERC)

(4} (OR] [DECY [LAST LOADI

(5) [PEN C] [9] [CEQC]

(6) [+8] [BOX GRAB] (bitpad coords)

(7) CLADJ] [SHRINK] (height / 2) x [UP) [DOWN]

(8) ([ADD) LCEJ (@] C1-151 LC) [PEN C] {2]

(9) [MEM]

(10) [C=C]

(11) [ADJ] [EXPAND] L[UP] [DOWN)

(12) [SETI (4]

(13) [LOOP) (5] [RUN] b]

(14) [F) (@) [CEJ) (1] IC] LKEY]

(15) [ZAP BOX]

We load the filled "Shazam!" and make it box @,
lines (1,2), We change color 15 to color i, OR in
she outline "Bhazam'*” and change colar 15 to color
n

FIGURE 1t - METAL

136

LINES, BOXES AND BRIDS

S0 much for titles and 1logos, how do we create
diagrams, flow charts, organizational charts and
their i1k? We thought about uritin? a large and
obscure software na:ka?e but realized we already
had one, MENU. With a ew siaple wmacros lines

boxes and grids can be created in any size and at
any positionj then these graphic elements can be
noved, cog;td, keyed and combined in any number of
ways, We have created a special font or typeface
of arrowheads and other qraphic symbols, Using
FONY we comabine these symbols and normal word copy
with lines and boxes created with MENU to produce
finished charts. To create a line define a box in
the ap?roxlnate position of the desired line

adjust its length and width and, finally, £ill it
with an appropriate color code. For exaample,

(1) ILCE] {81 [S) [BDX GRAB] (bitpad coords)

(2) ([ADJ] (as required)

(3} [1-15] [C) [FEN C1 (7] [CEGC)]

Creating a filled box is exactly the same as
creating a line. Creating an outlined box is
slightly more complex, as follows -

(1) [+81 [BOXGBRAB) (bitpad coords)

(2) ([ADJ] (as required)

(3) LINV BOX]

(4) [ADJI 2 x [SHRINKI

(5) [INV BDX]

This procedure creates a box with an outline one
pixel wide. ~The outline is in color I8,
variation on this technique creates an outline
around a title or label, as follows -

) [+8] [BOX BRAB) (bitpad coords)
)} L[ADJ) b6 x (EXPAND]
)} CINV BOX]

) [ADJ] 2 x [SHRINK]

{

2

3

3

o hilite a word or number, find the box containin
he copz _expand it, and invert. GBrids are create
y eabe Jzng the line definition inside a macro.
o create a grid of vertical lines use the
ollowing procedure-

i [+S] [BOX GRAB] (bitpad coords)

§ s required)

4
5
b
7
8

2t oot >

) (8] CRUN] (%]

zontal lines is made by altering the
e definition, line (1), and the macro,
A grid Cﬂlpolla of both horizontal and
ines can be wmade by combining the two
as above, or as follows ~-

BOX BRAB) (bitpad coords)
(as reguirod)

E;J[JU T1 [(~--/UP]
aBHRINKJ LUP/=--»

[

L

a<r—0D>
o N D e e
Q
>
ol

B ODONO-ARbI- W
o Wmn e

X1
EXPAND] [UP/--)]

KEY]

We begin by dlfining 3 box equal in size to the
horizontal and vertical lgacing of the ?rid, lines
{1-2). Move the box to the upper lett of the
frame, line (3), Invert the box, move the left and
bottoa Id?ll in one pixel, and reinvert the box,
lines {(4-8). This produces lines on the left side
and bottom of the box. Restore box 5 to its
original size and key it back over the full franme
on color code @, lines (7-10),

PN R A
et e o o S s

FIGURE 12 - BGRIDS

With these examples we have scratched the surface
of MENU. The user controls 40946 colors and
boxes per page. He/she can recall any number of
images stored on disk. Function modes include:
add, subtract, and, or, xor, replace. These modas
can be invoked for any disk load, fade, average,
copy, _key, fuzz, and color egual color. These
operations apply to boxes individually or in
grqugs, they can be filled, inverted, clearad,
shifted justified, adJulied, equivalenced
assigned and found. Colors are set, shaded, raisoé
and [owered in intensity, separated into red, green
and blue components, equivalenced and transformed.
Colar codes are used by the function modes to
produce effects such as smoothing, |dg| detection,
surface texture, etc. MENU allows the user to
define macros which become higher-level operations
and can be used to define grids, shading, animation

gffects, etc.. Everyday we learn lonlth?ng new,

Artistic expression is difficult to achieve in any
aedium. Computer art generally emphasizes
technique over expression., Artifice is not art,

Artistic expression is akin to personal expression,
an artist develops his/her own style. Technique is

important as a starting point and as a foundation
%o bgild upon. MENU demands this technical skill.
n turn,

MENU ofters the gotential for developin
individual style. To illustrate the how and uh{,
will describe some of my own work in more detail.

SCISSORS - 8STILL LIFE IN THE COMPUTER _ABE

An important component of our system is the Via
Video digitizer. It digitizes the image from a biw
video camera and loads that 1n12| onto either page
@ or page I, In the process o digitizin? the
origina video image is serarat-d into 14 grey
levels, color codes through 15, With the color
map shaded from black to white, take
snapshots of any subject.

we can

still life
Thare weren't

An artist has to start sosewhere and
seemed like a 2nod starting point.

any flowers in he studio so I wused scissors.
Computer graphics like any other art fors is
structured by its medium. The medium is an
important part of the message, to amend MclLuhan,
The artist creates aeaning in his work by relating
structure (the medium) and content (the subject).
What do scissors connote? Scissors cut, Scissors
are made of metal, hard and shiny. Scissors are
mass-nanufactured, all conforming to a single mold.

Standing upright, they remind me of soldiers.
8cissors imply paper,

How are these impressions translated into MENU
commands? Depicting scissors cuttin flplr is
easy. A piece of paper is made by ass gn ng a box
and *illin? it with celor 185. One blade of the
scissors s removed by assigning a second box and

then erasing it. The scissors are keyed over the

137

Eapar. An @edge is enhanced using edge detection.
Load the image normally in replace mode, then load
it in xor mode and nvera?e the result back into the
original image. A metallic surface is produced b

shading all, or part, of the color nag rom blac

to white. In the scissors series, colors 1| through
13 are shaded and colors 8, 14 and 15 are used go
add color to the background, Creating a feeling of
regimentation is done with kaxing. A box is
assigned around the handles and this box keyed over

the full frame. Scissors imply paper and together
thez ieply collage. By creatin nattes eying
patterns over hese amattes an rnconbfning the
resulting ‘cutouts’, I created a series of
collages,

FIGURES 13,14 - SCISBORS
LEAVES, TREES AND CREEPER VINES

On to greater challenges, I began playing with
leaves. This led to trees, creeper vines and,
finally, a forest, Starting with real leaves and
the video digitizer, I collected several ilages. I
was thinking abou graphic design an the
polibilit¥ of using computer generated images as
illustrations for advertising, brochures, gostlrs,
etc. And this aeans simple, straightforward,

probably representative images.

] decided on a structured approach. for each real
leaf inage, I created a two color mask setting
colors 3 through 15 equal to color 15 and colors
0,1,2 equal to color 8. Then ["edge detected® the
masks to produce outlines, There are two ways to
do this, either a SUB fuzz to the alternate page or

an XOR fuzz to the alternate page, Again the
outline is saved in two colors @ & i5. Finally,
saved XOR, SUB and AND fuzzes for each image, to be
used as texture and pattern. 3 roduced four
masks, four outlines and twelve textures. Now to
combine them in interesting ways.

1 tried four color patterns., Taking two masks, one
on each page, I set mask 0 to color ¥ and mask | to
color 1@, &dding them together the background
remains color @ but the areas of overlap become
color 15, 1 played with positive and negative
space. REP load a mask then XOR load a second mask
over it. The areas of overlap are inverted to
become background. | experimented with cosbinin
pieces of images with masks and outlines. REP loa
real leat 0, OR load the nmask of leaf 1
innediately followed with an XOR load of the sase
nask. Now OR load the outiine of leaf 1. This
cuts leaf | out of leat @ leaving only the outline
of leat 1. I tried more complex combinations,

FIBURES 15,16 - LEAVES

Now for the forest. I cut tree shapes and leaves
out of graph paper and arranged thea on the copy
stand, 1 saved several images of leaves and trees
trunks. For an added touch of realiem 1 added
string to the graph gaﬁor tree trunks, et voila,
creeper vines. [used XOR, S8UB and AND fuzzes to
create leaf and bark textures. 1 developed a
series of forest scenes by combining all or part of
nasks, outlines and textured isages.

138

FIGURES 17-28 - FOREST

ANIMALE - UNICORN & CATS

A forest is populated by _animals. Dbviously, 1
nesded animals. Using FONT, remember FONT, I
created a unicorn and four cats. They reside in a

file called ANIMALS,FNT
used like text, that is
with a variety of pens,

and being symbols can
scaled, rotated, drawn
Hiled, efc.

1 began with a unicorn and a cat. I was thinking
about illustrations or perhaps images to be used in
an interactive fantasy or adventure game, Using
HENU's box .comsands | perched the cat on the
unicorn’'s back., [saved the outline, filled it and
saved the mask. David had been pilyinq with
*dither” algoritha for shading a box. took
dithered frame, shaded up and down from black ¢t
white, and XORad in the unicorn & cat mask. Siapl
but effective, I XORed in a planet eask.
generated various fuzzes using the anisals and th
lanet. And 1 pieced together masks, outlines an
uzzes,

a
a
o
]
1
]
d

139

FIBURES 21-23 ~ UNICORN & CAT

Then it was time for lots of cats.
frame of several sized cats, I arranged rows of
sans sized catsj the largest cats at the bottom of
the screan and the smallest at the top. Each row
was horizontally centered and saved seperately as
an outline. I fi1lled the outlined images and saved
a sask for each row. Boginntng with the saallest
cats, the row at the top of the screens REP load
the msask, set color 15 to color 4, OR load the
outline and wset color 15 to color 14. Then I lay
in the next row: OR load the sask, set color IJ to

Starting with a

coler 7, OR 1load the ouline and set color 13 to
color 14, Rnflat this process for each row. Now
we have a_lot of cats. Color 14 can be reset to
color 15. The rows are shaded from color & in the

background to color 10 in the foreground (there are
five rows).

FIGURE 24 - LOTS OF CATS

Se far, l've discussed representative images but ay
personal preference is for abstract images.

FEEDBACK - AN ELECTRIC PAINTBRUSH

Abstract Exgressioniln is -my favaorite school of
painting., The content or subject is spiritual, the
soul of the artist. It recognizes feelings and
emptions) defines structure "in terms of balance,
pattern, rhythme, harmony. contrast, counterpoint,
etcy end defines beauty as appropriateness of form
A{content plus structure).

Video feedback has interested many artists in
recent vyears. It produces detailed and dynamic
images which syabolize for many cybernetics, the
computer revolution, and so on, Its basic
structure is recursive, an important 'grogrannin
technique of some philosophical dinterest.
feedback image is produced through a combination of
controlled and random elements. Again, for wmany
thie symbolizes the electronic age.

My feedback images are created by pointing the b &
w video camera at its own monitor. Noise and
sources of illumination reflected on the monitor
screen will be repeated within the loop, like a
hall of mirrors. This convential feedback loop is
smodified by our coluan bg column scanning process.
The image 1s controlled by varying camera position,
lens se tinal, and monitor brightness and contrast,
After considerable tinkering, acceptable images are
selected and stored.

1 use a panoply of techniques to develop these
basic b & w 1images, Fuzzing with either the
subtract or xor ‘sode, produces an edge detected
outline, This outline can be averaged back into
the original image in various modes. Fuzzing in
add mode then reloading the original xnige in and
aode, produces cutouts. These can be used as
mattes for collaging., Sections of the image can be
assigned to boxes and these boxes keyed over the
full frame to produce foraground and/or backaround
pstterns. Color codes can be transliterated. 1
clean up a complex image br setting color codes | -
3 to @, 5 ~7 tod, 9 -1] to 8 and 13 - 15 to 12,
Selecting colors can be approached in nanz NIZI-
Of¢ten 1 randomly select colors @ and 15, shade the
color map to produce an overall tone and, finally,
randomly select only the odd or even colors.

K ‘
FIGURES 25-28 ~ FEEDBACK

For me, using MENU in this manner parallels the
process of ainting, I am directed by sy
intuition, respond to the image as it develops
on the color monitor. I can store an image I'm
havin? trouble with and return to it later. [can
nake talse starts, back up, and start again. I can
develop several images simultaneously. The
computer is my studio,

GEOMETRICS - THE ART MACHINE

In an effort to popularize the artistic potential
of our system, I am creating a series of images
called geometrics, These _lie somewhat closer to
applied or commercial art, They can be used as
book covers, illustrations, wall panels, silk
screens, fahric patterns, and so on.

Appropriately, the techniques used to create these
images closeiy resemble those used in producing
commercial slides. Basic rectangular shapes are
created by deflnxn? boxes. These boxes are
shifted, adjusted and filled with color. I wake

extensive use of MENU's macro capability to develop
simple repetitive series and progressions. Edge
detection, outlinina and keying are used to enhance
the basic shapes. a

smocthing.,

rely, images are softened by

141

FIGURES 29-32 - GEOMETRICS

1 feel there is ?reat potential in the geometric

image. We wil
expand MENU's vocabulary and capabilities in art

and commercial graphics.
A BRIEF EPILOBUE

The moral is computer graphics has unlimited
potential far artists. It deaands a great deal
from the artist, it returns an even greater reward.

add new shape to MENU, his will .

142

Author Index

Chamberlin, H. e e o s o 74
Cook, D. e o o o s o e « 48
DeWitt, Te ¢« &« « ¢ o« « » « 25
Holynski, M. e e e e e o 21
Jenkins, S.E. e + o+ e« o « 36
Keith, M. . . . + ¢« + . « 99
Kolomyjec, W.J. +103
LeWinter, R. ¢« ¢ ¢ o « « o 1
Lewis, E. e e o s o o o o 21
Mansfield, D. . . « « « . 13
Matthews, W. e » s s » o 86
Metros, S. e s o s s « « 30
Palyka, D.M. e« ¢« ¢ « o+ o 89
Podietz, E«S:¢ +« ¢ ¢ « « » 8
Porett, T. e e o s s e o 4
Sachter, J. . . « « « « . 68
Schweppe, M. « o « o« o« o 65
Seidel, S.R. B &
Shafran, J. .« ¢« ¢+ ¢« &« « « 1
Shortess, G.K. e ¢« o« o« o 81
Smullin, F.M: « « + « » 112
Spiegel, L. . . ¢« « o« « o 32
Wiffin, B. e o e o o o 1
Wright, W. e o s o « o 2128

143

%‘

