
PPOCEEDING.5
lrll. q■p■si■■ ■■ s■all
•■■p■lers i■ Ille ar1I

OCTOBER 14-16 1983
PHILADELPHIA, PENNSYLVANIA

SPONSORED BY :
IEEE COMPUTER SOCIETY and IEEE PHILADELPHIA SECTION

✓~,/ / ,
-•a·,~ ''' "" ~

. ~""'' .~ ·~

ISBN 0-8186-0499-9
IEEE CATALOG NO. 83CH1930-7
LIBRARY OF CONGESS NO.83- 81625

I

. {'~/·! .' . ,· .

(}) . -

~

IEEE COMPUTER SOCIETY ORDER NO. 499

:!.~~9..§..:. THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. INC. COMPUTER
SOCIETY~
PRESS ~ •

PPOCEEDINGS
lnl ■ lll■llllsill■ • ■■all

■111q111111rs i■ 11111 arl■
OCTOBER 14-16 1983
PHILADELPHIA, PENNSYLVANIA

SPONSORED BY:
IEEE COMPUTER SOCIETY and IEEE PHILADELPHIA SECTION

//~~~-·,/
" ,,, ~

V.

1891-.. BY THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC COMPUTER
SOCIETY~
PRESS ~ AChlWll'l'O#ntcTJll(:AI.-

ISBN 0-8186-0499-9
IEEE CATALOG NO. 83CH1930-7
LIBRARY OF CONGESS NO.83-81625
IEEE COMPUTER SOCIETY ORDER NO. 499

Order from: IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

The papers appearing in this book comprise the proceedings of the meeting mentioned on the
cover and title page. They reflect the authors' opinions and are published as presented and with
out change, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors, IEEE Computer Society Press, or the Institute
of Electrical and Electronics Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street

Suite 300
Silver Spring, MD 20910

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for
private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish
ing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copy
right© 1983 by The Institute of Electrical and Electronics Engineers, Inc.

ISBN 0-8186-0499-9 (paper)
ISBN 0-8186-4499-0 (microfiche)
ISBN 0-8186-8499-2 (casebound)

Library of Congress No. 83-81625
IEEE Catalog No. 83CH1930-7

IEEE Computer Society Order No. 499

Order from: IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

1ff#-~8'-I The Institute of Electrical and Electronics Engineers, Inc. •-Cll'IJl.fC'I--
ii

1983

Proceedings

of the

Symposium

on

Small

Computers

in the

Arts

October 14-16, 1983
Philadelphia

Sponsored by:

IEEE Computer Society
IEEE Philadelphia Section

Delaware Valley Chapter/SIGGRAPH

Organized and produced by:

Small Computers in the Arts Network

111

Proceedings Committee

Edi tors •••••••.........••••............•..............••.•. Eric Podietz
Dick Moberg
Kerry Sherin
Donna Mansfield

Layout ••• Dick Moberg
Eric Podietz

Symposium Chairman ••• Dick Moberg

iv

Historical Rotes

The Symposium on Small Computers in the Arts grew out of a computer music
concert held in downtown Philadelphia in 1978. It was planned as part of the
Personal Computing '78 show held at the Civic Center. John Dilks, the founder
of the show, graciously backed the idea and provided a hotel ballroom for the
event. As word of the upcoming concert spread, we received calls from people as
far away as the West Coast asking if they could participate. One musician from
New York actually arranged a piece for computer and clarinet especially for the
concert. The evening of the concert, over 500 persons showed up and tried to
squeeze into a room that only held 300. The concert was recorded and an album
made.

The success of that concert led the organizers to form an informal group
to produce similar events and to act as a clearinghouse for those interested in
computer applications in the arts. The 1979 Personal Computer Music Festival,
sponsored by the group, included talks and demonstrations during the day in
addition to the evening concert. In 1980, a separate day of computer graphics
talks and demonstrations was added to make the Personal Computer Arts Festival.
All these events were held at the Personal Computing shows in Philadelphia.

It had always been our desire to some day organize a major meeting solely
dedicated to the use of small computers in the arts. This dream became a
reality with the 1981 Symposium, thanks to the support of the IEEE Computer
Society and the IEEE Philadelphia section.

At the 1981 and 1982 symposiums, 150 computer arts enthusiasts descended
upon the Holiday Inn on the University of Pennsylvania campus. An informal and
very interactive atmosphere prevailed making the symposium a great success with
respect to its goals of increasing the participants' awareness of the uses of
small computers in the arts. In May 1982, response to the symposium and
succeeding interest led to the publications of Scan, a monthly newsletter on
small computers in the arts.

The Small Computers in the Arts Network (formerly the Personal Computer
Arts Group), as a volunteer not for profit group, continues to promote the use
of computers in the arts through its newsletter, concerts, and other informal
events. To contact the group, write to: Small Computers in the Arts Network,
Box 1954, Philadelphia, Pennsylvania, 19105.

V

Table of Contents

Proceedings Conmittee • .

Historical Notes

Approaches to Computer Literacy and Training
for Artists/Designers/Creatives •••••••

R. LeWinter, J. Shafran, and B. Wiffin

Camera In/Camera Out
T. Porett

MovieMaker: A Real Time Microcomputer

iv

V

4

Animation System . 8
E.s. Podietz

Computer Animation as an Art Form ••••••••••••••••••••• 13
D. Mansfield

Experimental Visual Evaluation for
Computer Graphics. . . . • • . • • 21

M. Holynski and E. Lewis

A Pantomation Interface for the Apple II ••••••••••••••••• 25
T. DeWitt

Electronic Thinking Cap. • 30
s. Metros

State-of-the-Art Questions •••••••••••••••••••••••• 32
L. Spiegel

Sound Systems on Micros •••••••••••••••••••••••••• 36
s.E. Jenkins

QuadSurf: A Graphics System for 3-Dimensional
Halftone Images.

S.R. Seidel

Design for an Artist's Workstation for

41

the Microcomputer. 48
D. Cook

Developing a 3-Dimensional Animation System for
the Digital 11/23 Microcomputer •••••••••••••••••••••• 65

M. Schweppe

3-D Computer Graphics for Artists ••••••••••••••••••••• 68
J. Sachter

A Professional Quality Digital Audio

Peripheral for Small Computers

H. Chamberlin

. 74

vi

A Computer Controlled Installation in
a Gallery Space. 81

G.K. Shortess

Computers, Music, and the Arts: A Liberal
Arts College Course • •••••••.•••.•••..••••.••••• 86

w. Matthews

Patter-Pushin'-Palyka Presents Too
Loose-A-Trek Thru the Selling of
a Paint System.

o.M. Palyka
89

Microprocessor Typography ••••••••••••••••••••••••• 99
M. Keith

Keyframe Animation for the Microcomputer ••••••••••••••••• 103
w.J. Kolomyjec

PIPEDREAM--A Complete CAD CAM System for
Tubular Sculpture. • 112

F.M. Smullin

Using an Artist's Workstation ••••••••••••••••••••••• 128
w. Wright

Aut:h.or Index • . • . • • • • • . . . • 14 3

vii

Approaches to Computer Literacy and Training for Artists/Designers/Creatives

Renee LeWinter, Joan Shafran and Brian Wiffin

Massachusetts College of Art, Boston, MA
Jack F. Nolan, President; Marilyn Bever, Advisor

The design and implementation of a Comprehensive
Computer Graphics and Computer Literacy Program
has been seen as an essential addition to the
existing course offerings at the Professional Art
College. Within the Continuing Education Depart
ment and the Day School such courses have been in
existence for several years. Through these
experimental classes, the College and the Visual
Technology Center have seen the need for expan
sion and growth in the area of Computer Graphics,
and are beginning develop interesting course
work and present a new methodology for learning
approaches.

Introduction
Massachusetts College of Art remains the only
publicly supported, professional arts college
in the United States. It was founded to train
art educators for the public schools and
designers for industry. The undergraduate
degrees offered are in Art Education, Critical
Studies, Design, Fine Arts and Media and Per
forming Arts. Graduate Degrees are offered in
Art Education and Fine Arts. There is also an
extensive Continuing Education Program and a
Visual Technology Center which is devoted to
research in the area of High Technology and the
Arts and offers classes and special programs to
students and professionals in the Boston area.

Because of the commitment to a professional
school atmosphere, the faculty and administration
strive to bring the best and most useful curricu
lum to its students. With the increasing
necessity of training in the high technology
field, Mass. College of Art introduced courses
that would be relevant to the designer and the
artist going out into the market place. At
present, the school has a permanent Apple lab:
eleven 64K Apple II Plus, printers, digitizing
camera, Polaroid output, tablets and lightpens.
The school also relies on temporary loan of
equipment.

Demographically the College is uniquely located
near the high tech companies on Route 128, and
has sought support from these companies. One
result was a class given through the Visual
Technology Center using a Camex page ·make-up
system, and was aimed at Mass. Art faculty,
students and professionals in the design field.
The main objective was to acquaint the student

CH1930-7/83/0000/0001$01.00© 1983 IEEE

with using a computer as a design tool and to
gain some literacy. The College sees as one of
its roles that of providing not only training
but also keeping abreast of th~ changing job
markets.

Classes this fall will include Introduction to
Computer Programming, Computers and Visual Commun
ication, Programming Computer Graphics, Computer
Graphics Laboratory, and Advanced Computer
Graphics Applications.

The Resistance/Fascination Factor
With the commitment to providing access to the
creative, it soon becomes clear that a Pandoras
Box, of sorts, has evolved. Through course work
and curriculum development at Mass. Art, it has
become apparent that the need for "finding out"
about computers is strong within the local art
community. However, along with the need to know
comes a variety of fears, expectations and preju
dices. Machine fear is the most common, and in
some cases, actually touching the machine, fear
that pressing the wrong button will do something
horrible. Another very real fear is that these
new technologies will generate loss of jobs.

Expectations and prejudices are prevalent, because
of the "seduction" of the imagery (fascination
factor) or the speed one can access software
particularly in a Paint program. The student at
first is awed by the ease of image making, but
with further exposure discovers the limitations
and complexity of the software. The new user,
prejudiced by traditional methodologies and
techniques, tries to apply them to the creative
process rather than exploring new possibilities.
The question of "Why can'ti I do this?" is a con
stant in a beginning class and it is simply
based on the lack of understanding of what the
technology can do. The confusion and deception
arises with the immediate gratification of seeing
something or the sense of drawing while you're
thinking.

Although these problems are mainly geared toward
using software not writing it, a general literacy
of what the machine can do, or potentially do, is
imperative. The instructor can then proceed to
alleviating these fears and prejudices and begin
to affect change and growth to the creator's
'psyche', by getting them to ask the questions

"How, what and why."

There is also an inherent problem of different
levels of comprehension. Although the creative
person is often nontechnical, there are exceptions
to this. It is often said the greatest problem
with artists learning the computer as a medium is
that the programming is linear and they cannot
think that way. Along with a comprehensive
approach to literacy, careful selection of equip
ment and analogies to traditional artforms are
important. References to mediums such as print
making become obvious, in terms of 'p_rocess'
being used to create an end.

The Design Process
Traditional graphic elements such as "line, compo
sition, space, form, shape" with the addition of
"time" (because of the dynamic nature of the
screen) form a foundation from which the new user
can draw from and apply to the new media. These
associations to known experiences cuts down much
of the fear and learning is faster. It can be
said also, that understanding graphic elements is
helpful in designing comprehensive graphic soft
ware as well.

The Question of Aesthetics:
Establishing a New Criteria
When using microcomputers such as Apples, the
question of image quality comes to bear. Because
of our equipment, the image is unsophisticated
and almost too colorful. To the eye of a designer
or artist the image presents itself as crude and
almost unworkable. The micro does have an
aesthetic life of its own and often, because of
the directness of the micro, students produce
quality graphics once the comparison with other
media or systems subsides. Because of the sim
plicity of the equipment, the student must con
front directly the nature of what the image is
composed of (in our case the PIXEL, or picture
element) and use this as an integral part of their
image.

The responsibility of the instructor and the educa
tional institution is to supply and create an
environment that allows for maximum understanding
of many ways of creating images. The introduction
to other applications such as music and perform
ance and their interconnections is important. It
is having the foundation from which to build that
will allow a new aesthetic to form, whether it be
programming or manipulating graphic software.

Some important questions to consider are 1) what
do we mean by image quality (should this be dic
tated by the capabilities of the machine, should
we encourage the thought that because it was
generated with a computer it must be good; 2) what
is the end product, hard copy, video, digital stor
age, and should the criteria that apply for analog
output have app.lication here; 3) the ephemeral
quality of the computer image; 4) how the idea
becomes an abstraction in its translation to
digital data; 5) seeing the screen as a conceptual
art form; 6) and still seeing the differences
between design vs. fine arts.

2

Selection of Hardware and Software
When considering the selection of hardware and
software to be used in a computer graphics cur
riculum, several choices must be made regarding
dedicated versus all purpose systems; the use of
canned software versus writing one's own and the
establishment of a criterion and a purpose with
respect to limited access and an attempt to
create a broad base of minimum literacy.

Another consideration is addressing the issue of
obsolescence. The very nature of the rapidly
changing computer graphics field dictates the
necessity for intelligent selection of hardware
and software. The importance of effective
research and development to keep abreast of
these changes allows you to maintain a viable
computer graphics program.

As one example of the use of available software
as a tool for literacy, the use of the Gibson
Labs Lightpen and the Graphics Tablet and asso
ciated softwares have proven to be a very accep
table link between traditional drawing media and
packaged graphics software and serve as a
steadying influence in the transition into
"technology".

In the case of using the Gibson Lightpen software
in a week-long twenty-hour intensive literacy
workshop (Computer Literacy for Designers) we
found giving the students actual written explana
tions, or reference sheets as to what the menu
was, how the software interconnected, began
student understanding of the structure of the
software. With the use of only one screen, it
is impossible for the new student to remember
the menu choices. When two monitors are avail
able, it may be important to rewrite the software
so the menu appears on one monitor and the
graphic image is previewed on the other. Supply
ing each student with "PIXEL" paper .helps the
student relate to the new medium in terms of
traditional methodologies. We are not suggesting
that ultimately a student should "hang on" to old
ways, only that for comprehensive literacy, it
supplies a connection that reduces fear and
instills some level of confidence.

Problems with Computer Graphics Education
As with most institutions, obtaining money and
space to purchase equipment for labs and class
rooms is difficult. There are great difficulties
in obtaining hardware donations. Many of the
high technology companies who are clearly inter
ested in creative usage of their equipment are
too small to be able to afford equipment dona
tions to schools. One way around this is to
arrange to be a beta site in lieu of donations.
In this way, the institution would have the
option of testing the equipment and offer
suggestions to the manufacturer, in trade for
having state of the art equipment on site tempor
arily. The Federal Government supports donations
to science programs but not to art programs and
ways have to be found around this bias. We have
found that you need to educate high technology
companies that are either in your area or

their representativeij, of the need for computer
equipment in art related programs. It shou~d be
stressed upon them that many graduates will be in
need of equipment upon graduation. Emphasize the
need for more collaborative efforts between engin
eers and artists to produce better equipment for
all users.

The limits of computer systems are a great problem.
The larger mor~ powerful equipment is prohibitive
ly expensive and the micro systems are limited in
quality. As seen through the courses offered
through Mass. Art, we have seen problems with the
limitations of single user workstations such as
Camex, Scitex and the Artronics. Access time
also presents problems, with these types of work
stations, and the micros to date, although afford
able do not perform the vast functions needed to
present a truly comprehensive program.

Any school or institution should begin to estab
lish an identity of what its major goals are and
who they wish to accollllllodate. In the need to
provide computer literacy both on a global level
and a basic direct level, it is important to
remember that at the base is a development of
visual literacy and the introduction of the com
puter into the classroom should assist in that
application. Programs should not be developed in
a patchwork quilt fashion. The goals of the
school should be carefully defined, along with
guidelines. Current faculty should be trained
and additional faculty selected. At present, many
of the current faculty in these institutions are
overcome with the same problems as are the
students.

Computer graphics does not necessarily fit into
any of the programs already in existence. It
reaches all disciplines, and with clearly defined
goals standards should be set for admission re
quirements and how prerequisite sequences should
be handled.

In our experience, rather than placing people
directly in a programming class, we have offered
a basic foundations course which has consisted
of understanding computers, history, and intro
ducing them to various applications of computer
equipment. There is encouragement to attend
conferences and trade shows. A development of a
reading list and a general awareness of changing
career options is initiated.

To combat fear and resistance among faculty and
students, providing a team teaching approach
proves successful. Drawing instruction from
several disciplines offers the student or faculty
a way of seeing all aspects of computer under
standing. A program coordinator who oversees all
the classes and encourages new approaches to
creativity with the new technologies is essential
to maintain a coherent program.

Conclusion
It is true that computer literacy, training and
education are open ended questions for any edu
cator. No one has yet explored the potential of

3

the equipment, its systems and output possibili
ties. What this means for artists and designers
and the places and people training them will be
seen within the next few years. It is important
to understand the goals of your institution, to
rely on the expertise of not only technicians and
computer scientists, but creatives who have worked
in computers in the arts. As instructors at Mass
achusetts College of Art it has been important to
develop a curriculum that reaches all of the
disciplines, and to develop a collllllon philosophy,
for it is no longer valid to teach design or art
without the enhancement of a tool such as an inter
active graphics system.

About the Authors
Joan Shafran
Poet/Computer Artist/Educator
Masters of Science in Visual Studies
Massachusetts Institute of Technology
Works in visual poetry using computers, electro
graphics and airbrush. Working towards educating
designers and artists in the use of computers
and teaching visual awareness to engineers. Cur
rently instructing at Massachusetts College of
Art, and consults to the computer industry in the
areas of computer graphic applications and train
ing and education.

Brian Wiffin
Artist/Graphic Designer/Computer Artist/Educator
Bachelors of Fine Arts
Massachusetts College of Art
Works in printmaking, illustration, electro
graphics and computers. Currently involved in
curriculum development and computer graphics in
struction at Massachusetts College of Art. Com
puter curriculum consultant to Melrose Public
Schools, Melrose, Massachusetts. Operates a
free-lance graphic design business. Committed to
involving artists and designers in the use of
computers and writing of creative software.

Renee LeWinter
Designer/Printmaker/Educator
BFA Pratt Institute
MA Goddard College
Lecturer at the Visual Technology Center-Camex
Project, and faculty member of the Computer
Graphics program, both at Massachusetts College
of Art. Uses typographic imagery as symbols and
textured marks to create spacial landscapes.
Exploring the possibilities of page make-up
systems as drawing tools and consults in this
area.

Camera In I Camera Out

Thomas Porett

Philadelphia College of Art

Abstract: As microcomputer
graphic capabilities become more
sophisticated, video digitization
is becoming a standard input
process. Hardcopy output includes
both paper printout and
video/photographic recording
devices. This paper will outline
several distinct approaches that
are now available for optical
scanning and hardcopy output.

ANALOB/DIBITAL
Video digitization is actually a
sophisticated analog/digital
conversion proc~ss that "looks" at
the continuously varying voltage
coming from the video camera or
recorder, and assigns a numeric
quantity to signify that voltage.
Typically a system is comprised of
a black and white video camera, an
interface card that accomplishes
the A/D conversion, some software
in RAM or ROM that directs the
hardware, and
image capture
a disk drive,
in some cases

~inally, one or more
devices ranging from
and/or printer, or
a film recorder.

In the simplest configuration,
data are organized through
hardware or software to output
directly onto the graphic screen
in whatever resolution the
particular device is equipped to
display. An example of this is
the manner in which a still video
image ·is scanned into an Apple II+
computer by the Microworks D6-65
digitizer. With this system, an
image is converted into a high
resolution (280 by 192) image
using one of two conversion

CH1930-7/83/0000/0004$01.00©1983 IEEE
4

routines located in ROM, on the
interface card. The resulting
image is a rather crude black and
white facsimile of the original.
Contrast, brightness, and picture
width are adjustable through three
potentiometers located on the
interface.

A more refined image can be
obtained through the use of disk
based software that offers the
user a fair degree of control over
conversion parameters such as
contrast, brightness, and
dithering algorithims. Further
controls are available that amount
to basic image enhancements that
offer substantially greater
control of the final image.
Typically, these controls allow
the user to transpose values, and
manipulate false color by
assigning a color to a gray scale
value.

In spite of these desirable
controls, the inherent limitations
of the Apple's screen resolution
keep the image from attaining a
successful illusion of gradation
in gray scale. This problem is
confronted in some dramatically
differing approaches that are
discussed below.

PRINTER RESOLUTION
One rather elegant strategy that
some manufacturers have settled
upon involves bypassing the Apple
raster screen display in favor of
using the print resolution of a
dot matrix printer which is
typically three to four times
finer in its ultimate resolution.
The Photocaster system available
from Commsoft Inc., is one
prominent example of this
approach. This imaging system is
more accurately described as an
integrated imaging environment.
It relies primarily on software
oriented data manipulation with
extensive image enhancement

capabilities that are designed to
output to the dot matrix printer.

The machine display screen is used
to roughly indicate what changes
are being effected by the system.
These manipulations are
implemented through an extensive
image enhancement section of the
software, and an editing feature
that permits text to be added to
the image. The final image (128 x
128) with 16 level gray scale is
realized on the printer. Although
this figure seemingly implies
limited resolution, the
implementation of gray scale
yields an image of startling
accuracy when compared to
conventional dot matrix screen
dumps.
TRUE COLOR PRINTOUTS
Another unique feature is the
system's potential to create
accurate, full color images by
inputting red, green and blue
filtered images and printing a
composite image with a color
capable printer. A full color
subject is presented the
monochrome video camera, first
with a red filter in place in
front of the lens, and and scanned
into memory then saved as a file.
The same procedure is followed
with the green and blue filters,
resulting in the three files saved
on a floppy disk. Each file is
then printed in the appropriate
color using a printer such as the
IDS Prism BO or 132 ribbon
printer. The task is simplified
substantially by using an
intelligent parallel interface
such as the PKASO card from
Interactive Structures Inc. The
colors are printed in three
successive passes of the paper
through the printer, one for each
of the primary colors, leading to
a full color image remarkably
faithful to the original.

5

IMAGE TRANSMISSION
An added feature of the
Photocaster system is its built in
modem that allows the user to
convert an image into an audio
signal that can be sent over phone
lines or transmitted on radio.
The data structure of the image is
configured to standard slow scan
television format, common to image
transmission used by amateur radio
operators. A futher product
enhancement is soon to be offered
that will allow a 256 x 256 image
resolution.

HIGH RESOLUTION GRAPHICS INTERFACE
A radically different approach to
extending digitized image
resolution is facilitated through
an additional interface that
establishes an entirely new video
display using the host CPU
strictly for processing
information. This interface is
manufactured by Number Nine, and
is available for the Apple or IBM
personal computers. The highest
resolution available is 1000 x
1000, or less depending upon the
number of colors desired. The
complexity of the hardware
necessitates some rather demanding
programming, a task that has been
elegant! filled by Visual Data
Enterprise, a firm offering
software for the Number Nine that
allows use of a graphics tablet
and video digitazation with an
Apple II+ or Ile. This hybrid
approach allows the small computer
to acquire attributes of a
sophisticated imaging workstation,
capable of serving the needs of
the professional graphic artist.
IMAGE STORAGE DIFFICULTIES
Although the added resolution of
such a system is most desirable, a
problem emerges regarding final
image output and storage. The
typical approach used to store an
Apple "high resolution" image is
the floppy disk. Traditionally up
to si~teen images can be stored on

one disk, but this figure is
radically reduced if higher
resolution images are stored.
Assuming a resolution of 500 x 500
with 16 colors, one image would
take up to three floppy disks
depending upon how the data is
organized. Additionally, such an
image cannot be printed on
commonly available printers,
necessitating a turn to some
photographic storage process.
Although it is possible to
photograph a color monitor
directly, suffice it to say this
approach will not lead to optimum
image quality.

FILM RECORDER
In order to gain full benefit of
the enhanced imaging system, one
must utilize a dedicated film
recorder device. Essentially,
this device con~ists of a flat
screen black and white monitor, a
camera, a filter wheel with red,
green, and blue filters, along
with associated electronics that
utilize an RGB video signal.
Although some recent small
computers provide RGB output, such
is not the case with the Apple II+
or Ile. Instead, an additional
interface is required to provide
this signal to the monitor. The
Amdek- DVM BOe, designed for the
Apple Ile BO card auxiliary slot,
is one well designed example. The
video signal from the card is used
to drive an RGB monitor and film
recorder. In a typical image
recording, the camera is loaded
with a color transparency film,
and three successive exposures are
made as the red, green and blue
filters are rotated into place,
and the appropriate values of that
color are displayed on the flat
screen monitor.

The price of film recorders has
been in the range of six to ten
thousand dollars for a low end
unit. This is rapidly changing

6

as, devices such as the Lang
Videoslide 35 make a strong
showing in a price bracket of less
than three thousand, with the
performance that equals the more
expensive units. Using this
approach, the image maker can
photographically save a high
resolution image as photographic
hardcopy on negative or positive,
black and white or color films.

The idea of creating an image
through camera input, digitally
mediating that image through
enhancement programs or electronic
paint programs, and then
finalizing that image in a
photographic medium is truly a
viable approach made possible by
these new graphic tools for the
small computer. These tools are
admirably suited to the graphic or
fine artist as they are reasonably
priced when compared to
commercially available systems,
and offer a great deal of
flexibility through the variety of
configurations possible.

-·. --·· -· -· ---,..._ .. . - -· -· -· -· -· -· -·· -· -·· - .. - .. . - .. . - - ..

© THOMAS PORE1T

7

MOVIEMAKER: A REAL TIME MICROCOMPUTER A!'-!!MATIC~I SYSTE!Yl

Eric S. Podietz

Interactive Picture Systems

ABSTRACT

The average home comouter (under $2000 range)
orovides a balance of features geared toward a
high degree of interactivity. An emphasis is
made on graohics and sound caoability since
seeing and hearing are humar, facilities that
transcend como•Jter 1 i teracy. The anthropomorohic
term 'friendly' is attributed to computer
orograms that relate to oeople in a manner that
comes r,aturally to them. MovieMaker is ar,
animation or,:,grarn that takes advar,tage of these
features ar,d is easy to use.

INTRODUCING: MovieMaker

MovieMaker is a microcomp•Jter program that
allows one to create two dimer,sional ar,ir,,at ior,,
nat•Jrally. The •natural' comooner,t is bred ir,to
the system through its means of interacting with
the user:

- It is a visual, screen oriented system:
"What you see is what you get"

- The keystrokes used to direct the system
corresoond to Er,glish wc,rds that relate to
ar,imat ion. (e, g 'A' for Act ior,, 'C' for
Color)

- Creation, editir,g and reolay occur
immediately, in real time. The res•Jl t of
or,e' s actions is never hidden fc,r any
period of time,

- Division between modules is organized in
such a way as to avoid a tedio•Js
progressic,r, thrc,ugh rner,us.

If one thinks of animation as the motion of
shapes over a backgrc,ur,d ir, time, three distir,ct
data sets emerge:

- a set of shaoes
- a backgrour,d
- an animation describir,g the mc,t ior, of the

shapes over the background

In MovieMaker, shapes and backgrounds are

CH1930-7/83/0000/0008$01. 00 © 1983 IEEE
8

developed in the Compose module, and animation
is created and edited in the Recc,rd n1odule.
Shapes, backgrounds and animations are stored i r,
three distinct files: SHP, BKG ar,d ANI files
(see figures 1,2,3). The Record mod•Jle also
allows sc••.md effects and music to be added at
any point in the animatior,. The sc,1.mds are
selected from predefined sets of sc,ur,d/music
effects stored in a fourth file type, a SND
(sound) file. These four file tyoes are stored
on disk, with names chosen by the user.

COMPOSE: Building Shapes ar,d Backgrounds

In Compose one creates a shape page and
backgro•md <see figures 4,5). Compose utilizes
simple image processi r,g techr,iques, such as
mirroring, color transpositior,, opaqir,g,
brushing, ar,d window d•Jpl icat ion to al l,:,w ir,1age
data to be rapidly built up on the screen. For
example, to create a walking seq•Jence, c,ne would
oaint one position ir, the walk sequence, copy
that position to several other parts of the
screen, and then alter each c,:ipy to correspor,d
to the remair,ir,g positior,s ir", the walk sequence.
Similarly, a f,::irest background could be built by
painting or,e tree, and ther, copying it all c>ver
the screen.

The shape ar,d background pages in Cc~noose are
separate screens which can be flipped bet weer, by
hitting the Escape key. Image data car, be cooied
from either of these screens to the other 1Jsing
the Window and Duplicate fur,ctior,s. The user
frames the area using the Border command, picks
it up with the Duplicate command, directs it to
the area where it is to be placed usir,g a
Joystick or graphics tablet, and drops it by
hitting the Duplicate key again. This
flexibility allows the Background page to be
used as a kind of work page ,:,r palette where
textures can be built up, icons edited, etc.

A shape page is a screer, fu 11 ,:,f shapes; shapes
ar-e delineated by the user's olacir,g a windc,w
around the image data represent i r,g the shape,
and pressing the Out lir,e key. Wher, a shaoe is
Outlined, Compose remembers where it is on the
screen, thus allowing the user to return the
window to that shape, move the shape, and sc, on.
Or,ce several shapes have been Out 1 i ned, they rnay

be put in a sequence. Sequences are created
using the Sequence keystroke; the user
designates the order of shapes in a seouence by
moving the window to the r,ext shape to be in the
sequence and pressing the Joybutton. The first
two shapes of a sequence are shown in figures 5
and 6.

A sequence car, consist of •JP to 16 shapes; there
can be 9 sequences. Or,ce a seouence has beer,
defined, it can immediately be tested by
pressing the Action key. Actic,r, displays the
background page and flips through the shapes in
the sequence at a rate frc,m one tc, thirty frames
per second, selectable with the Frame rate key.
Using the Joystick, the user can position the
moving sequence at any place on the backgrc,ur,d
page, providing a means for mot ic,n testing the
sequence.

At any point in Compose the user can save or
load the shape or background pages. Thus r,ew
shape pages can be built out of data from
several previous shape pages. The ability to
copy data between shape and background pages
would allow the user, for example, to cc,py a
tree from an old background onto the shape page,
make it into a shape, enter it intc, a sequer,ce,
and animate it.

RECORD: Creating ar,d Editir,g Animatior,

In Record animation is created and edited.
Shape, Background, Animation ar,d Sour,d files are
all used in the Record module (see figure 7).
Record is designed to emulate a multi-track
videotape recorder, with fami 1 iar fur,ct ions s•.tch
as play, rewind, and freeze frame. There is a
•track' for each of the elements that can be
changed during the animatior,. The ler,oth of the
animation, types ar,d numbers of track~ varies
with the host computer. MovieMaker on the Atari
800 allows 300 frames of the following tracks tc,
be recorded as part of an animat ior,:

- 6 actor tracks
- 4 color tracks
- 4 sound tracks
- 1 zoom/pan track

Recording of all the tracks is done ir, real
time, as if filming real actior,. All recordir,o
is done by designatirrg which track or,e wishes-to
record on, selecting a frame ir, which to begin
recording, selecting a frame rate at which to
record, and starting the record process. As the
recording proceeds, the user makes changes to
the track which is beir,g recorded. Recording can
be done single frame, or at frame rates ranging
from 1 to 30 frames per secc,nd. The ar,imat ic,r,
can be replayed at any of these frame rates as
well. Figures 8 thru 12 show various frames of
an animation. being replayed. The frame coLmter
is at the lower left.

9

To record on actor track 1, Al (for Actor 1) is
pressed, a sequence selected, ar,d the space bar
hit to begin recording. The selected sequence
then begins execution, and, as in the Action
mode of Compose, the sequence car, be positior,ed
anywhere on the screer, with the Joystick. Record
remembers the screer, locat ior, of the actor as
each frame is recorded. To aid the user ir,
establishir,g the interaction between actc,rs,
Record plays back whatever was rec,:;rded before.

For example, an animation of a man walking his
dog would be done as follows: First the seq1Jence
of the man walkir,g would be laid dowr, on Actor
track 1, by positioning the walkinQ man on the
left hand side of the screen and m~vir,g him
across to the right side of the screer,. This
animation would then be Rewour,d (ar,d yo1J would
see the man walk backwards). Then the dc,o
walking sequence would be selected, ar,d ;.ec,:,rded
as Actor 2. As the dog was recorded, the mar,
would be played back, thus allowing the dog to
be positioned alongside the man in every frame.

Up to 6 actors car, be recorded ir, this manner.
Of course, it is possible t,:::, switch sequet·,ces at
anytime, making it easy to change from a man
walking left to a man running right. Any track
can be recorded over, making the editing c,f
screen position or shape informatior, a cfr,ch.

The 4 sc,und tracks correspond to the 4 voices
available on the Atari 800. For each sour,d
track, 8 predefined sour,ds are available, for a
total of 32 possible sounds. These s,:::,unds can be
continuous sounds that proceed Lmtil they are
shut off, or sour,ds that shut off of their own
accord, such as a musical note or eKplosior,.
Sounds are recorded by selecting which ,:if the
four sound tracks to record or, (e. o Ncoise 1 for
sound track 1l, selecting a frame ;.ate and
hitting the space bar.· As the existing frames
are played back, the user hits the key
corresponding to the sound which is to be
initiated in the frame being displayed. The
sound is heard immediately. Sir,ce Record is
playing back everything that had been recorded
besides sound track 1, synchronizing the sound
to the animation is easily achieved.

The 4 color tracks allow color animation to be
recorded. The 4 color tracks cc,rrespor,d t,:::, the 4
color registers of the Atari 800. Each of the
color registers can be one of 128 colors, which
can be broken down into 16 h•.tes each with 8
luminances. Recording color chanoes allows the
hue and luminar,ce of each color ;.egister to be
adjusted dul"ing the ar,ima-.tion. Aside from
enhancing effects such as sunrises, lightning,
and explosions, traditional color map animation
can also be done.

Finally, the zoom/pan track allows the •camera'
filming the animation to be zoomed to lx, 4x or
16x magnification. In the 4x ar,d 16x levels, the
camera can be 'panned' to show the action
proceeding on any portion of the background.
Zoom/pan recording is invoked with the Zoom key,
and pan tracking is achieved with the Joystick.

POST PRODUCTION: Smooth and Play Modules

The Sn1ooth and Play modules of MovieMaker are
invoked once the user has cc,mpleted an
animation. The Smooth module combines the shape,
background, animation and sound files into one
file, for playback purposes or,ly. The funct ior,
of the Play module is to play these files. Sir,ce
the data in the files is compressed, the
playback files take up cor,siderably less disk
space than the files from which _they were
derived.

Since the Play module offers flicker free
playback, it is possible to videotape the
animations as they are replayed. Ar,imat ions that
were split into several parts due to space
limitations can be linked together by pausing
the videotape recorder between the replay of
each animation.

SECTION 5: Applications of Moviemaker
·---------------------------

MovieMaker•s ease of use and immediacy make it a
valuable tool for previewing animation. This has
application in the animation, broadcast,
advertising and microcomputer software
industries. The issue of prime importance is
that live action can be created and reviewed
rapidly. Traditional animators usir,g MovieMaker
have reported that overall efficiency is
improved 2 to 4 times over traditional eel
animation techniques. This does not include
improvements in the overall quality of the
animation gained by being able to repeatedly
review and edit.

Since the entire animation is in a data as
opposed to program format, the animation is
device independent. This means that the
animation can be moved from one computer to
another. Differences in graphics hardware, such
as color and screen resolution, would be
accomadated by translation programs employing
color and pixel reduction/expansion al~orithms.
Sound effects might have to be omitted on some
systems.

10

Perhaps the most important current application
of MovieMaker is in the design of software f,:,r
low cost microcomputers. By utilizing the
MovieMaker graphic primitives, collectively
known as the MovieMaker Development System,
animation produced using MovieMaker can be
included inside of a user's program. This would
allow, for instance, certain animations to be
called from disk given certain program
conditions. It is also possible using the
runtime routines to produce animation on the
fly, obviating the need for continuous disk
access.

CONCLUSION

While microcomputers have been viewed as
'playtoys', they provide an environment in which
highly interactive graphics programs can run.
MovieMaker is one such program, which allows
animation to be rapidly' developed, edited and
reviewed. It can be expected that as the
graphics resolution and computing power of low
cost computers increases that systems of this
type will become standard items in the toolkits
of those wishing to use computers to produce
video and film.

ACKNOWLEDGEMENTS

I would like to thank Buy Nouri, Mark Scott,
Jimmy Snyder, and Bob Svihovec, all of
Interactive Picture Systems for their help on
MovieMaker. Buy contributed immensely in
ensuring that MovieMaker was easy to use and
effective as an animation tool. Mark, Jimmy, and
I slaved for 18 months programming and
reprogramming MM in 6502 assembly language. Bob
Svihovec, our animator, has created innumerable
animations (including the one in the
illustrations) and has shown incredible patience
with the numerous changes and bugs that MM has
undergone. Finally I would like to thank the
Reston Computer Group who made the financial
commitment that made MovieMaker a reality.

Figure 1 Figure 4

Figure 2 Figure 6

Figure 3
Fi1ure 6

II

Figure 7 Figure 10

Figure 8 Figure 11

Figure 9 Figure 12

12

COMPUTER ANIMATION AS AN ART FORM

Donna Mansfield

Drexel University

Introduction

Computer animation has developed
from a visual method of representing
equations for scientists into an exciting
new art form for artists who use the
computer to produce art. However, there
was a crucial stage before computer
animation moved out of the laboratory and
into the artist's studio. The computer
was used to assist animators in producing
conventional animation. Only after the
computer was successfully integrated into
conventional animation did computer
animation emerge as a new art form. Art
is a difficult word to define, but for the
purposes of this paper we will define art
as the act of producing form for its own
sake. This definition will help us
differentiate between computer graphics
used by artists and computer graphics used
by scientists in the laboratory.

Photography and film both imitated
accepted forms of art before they emerged
as artistic disciplines of their own.
Computer animation has followed the same
path, now emerging as its own art form

only after
integrated

having
into an

been successfully
established art form.

In this paper, I will describe the
evolution of the computer in animation
from a tool that assisted artists in
producing conventional animation to a tool
used by artists to create a new art form.

History of Animation

Animation is the name given to that
branch of the cinema in which films are
created frame by frame and have some
appearance of movement. We have defined
animation as a branch of the cinema, but
it was not always that
way.

The earliest animations were simple:
brightly colored drawings of dogs running

CH1930-7/83/0000/0013$01 .00 © 1983 IEEE
13

or clowns juggling. Each animation was
about 2 seconds long and composed of about
12 different pictures. These animations
were shown on mechanical devices like the
zoetrope or the phenakistoscope. The
drawings were mounted on a drum or disc
that revolved. Spectators viewed the
drawings through slits.

Animation was further developed by
Emile Reynaud who invented the
praxinoscope to show his drawings. This
machine was similar to the zoetrope but
replaced the slits of the zoetrope with
mirrors set at an angle.

In 1888, Reynaund opened the Theatre
Optique in which he showed colored
animations ten to fifteen minutes long.
Initially, Reynaud's animation were very
popular, but 1888 was also the year of the
invention of the first movie camera and
the motion picture cinema quickly drew
Reynaud's audience away from his
animations. No artist of quality would
draw pictures for a machine and Reynaud's
device remained only a novelty.

It is interesting to speculate what
might have happened had Reynaud's device
attracted an artist who drew beautiful
pictures for it. The history of animation
might have developed differently. But
during Reynaud's time, great artists did
not draw for machines and so mechanical
animation died with Reynaud (1).

Subsequent animation did not build on
anything Reynaud had begun.
Essentially,animation was reinvented in
the early 19OO's when it reemerged as part
of the cinema. Artists produced nothing of
the scope of Reynaud's work until the
193O's, and the animations of Walt Disney,
perhaps the best known creator of
animation. Many of the techniques that
Disney used are still being used today.

Techniques of Conventional Animation

Conventional animation is a tedious

process; While there is great creativity
involved in the making of animated films,
much of the work is repetitious and
boring. These are some of the steps
involved in making an animated film:

1. The characters are drawn in pencil on
different sheets of white paper.

2. Backgrounds for the individual frames
are painted on cardboard sheets.

3. Director decides how the camera will
shoot each frame.

4. Cameraman shoots a pencil test to get a
preliminary idea of the final film.

5. The artist traces the outline of the
picture using thiik black lines.

6. The colors of the characters are filled
in.

7. The backgrounds and characters are
combined on the camera stand to create
the correct shot.

8. The frames are filmed (2).

All of this takes much time and money
and many people. Each frame of the film
must be created separately. Studios
usually employ artists to create the "key''
frames, the first and last frame of a
particular movement, and use assistant
artists to draw the frames in between the
key frames. These intermediate frames are
called "in-betweens" and the assistants
who draw them are called "in-betweeners."
The transition of movement must be smooth
from one frame to another and each frame
in the same sequence must have the same
background. A filmed pencil test gives the
artist a primitive idea of the final
project. But the pencil test uses only
black and white outline drawings.
Conventional animation techniques offer no
really effective way of previewing the
action in color before it is finally
filmed by the camera. Errors that appear
here cannot be easily corrected: drawings
must be redone, recolored, etc. It is easy
to see why animation is such a difficult
and expensive process.

Critics of animation often say that
Walt Disney could not afford to produce a
"Fantasia" or a "Snow White" today. The
salaries required to produce an animated
film of this quality would be prohibitive.

The popularity of television kept
audiences home and motion picture studios
were no longer able to afford the high
cost of animation. Animation reemerged as
a staple of Saturday morning TV.

14

The quality of animation greatly
deteriorated after its move to TV in the
late 1950's (3), Disney animations were
famous for their expressive movement and
meticulous attention to background detail,
but now artists were forced to use the
techniques of "limited animation" for TV.
Limited animation meant that the artists
restricted their representations of
movement and simplified the background
detail as much as possible. This was a
result of the smaller budgets and shorter
deadlines of TV. Donald Heraldson says
"the animation industry today (1975) is in
financial trouble and often claims are
made that it is dying. Obviously, for a
fast dollar, it is being smothered from
the inside out" (Heraldson, p.82).

The technology of motion pictures has
improved dramatically since 1888.
Filmakers now reguarly use technical
effects that the early motion picture
pioneers would not have dreamed possible,
George Lucas recently said that the
technical effects used in "The Return of
the Jedi" simply were not possible when he
made "Star Wars" nine years ago (4).
Animation presents a paradoxical example,
in that it is unlikely, given the
techniques of conventional animation and
the present financial realities that we
can produce animations of the same quality
that motion pictures studios produced
fifty years ago.

Conventional animation techniques have
changed very little in the last hundred
years. There was almost no technology
involved ·in conventional animation,
Conventional animation was a labor
intensive, machine poor art form trying to
survive in an industry dominated by
technologically superb motion pictures.
For animation to survive as an art form,
animators like John Halas agreed that
"mechanization was essential to advance
the whole industry" (5). But what
technology could be used to automate
conventional animation without changing
its unique style?

History of Computer Graphics

The use of the computer to generate
movement evolved accidentally, the result
of early experiments by scientists and
engineers who used prototypes of today's
sophisticated systems to analyze objects
in motion and to create or simulate
conditions with graphics that could be
displayed on screens.

Early computer graphics work
exploited the amazing "number crunching"
capabilities of computers. Scientific

events governed by complex equations could
be visually displayed on a computer
screen. Objects could be moved according
to the laws of physics. Computer graphics
was also used extensively to simulate
activities like movements in space that
man could not see.

Computer graphics offered a iechnique
for moving objects around. First,' objects
were defined. The programmer entered the
coordinates for the first and last frame
of movement into the computer and then,
the computer automatically interpolated
the rest. Each frame of a sequence did
not need to be computed separately.
Objects could also be colored easily. The
programmer specified an area, selected the
color he wanted, and that object appeared,
so colored on the screen. The animation of
objects using the computer was certainly
much easier than animations done with the
techniques of conventional animation.

These animations using the computer
were done only in laboratories and in
other scientific settings. No one
attempted to move computer graphics out of
the laboratory. However,in the 197O's
people began to see a natural alliance
between the computer and the beleagured
animation industry. The computer had been
successfully used in animating images in
the laboratory. There was certainly no
reason why that "talent" of the computer
could not be applied to an art form which
tediously executed the same steps by hand.
Conventional animators were still using
the same techniques that had been
developed nearly eighty years ago.

Animators hoped the computer would
liberate them from some of their more
tedious tasks. If the computer could be
successfully integrated into the animation
process, animated films of quality might
produced again. And for computer
scientists, animation represented a good
research problem. The computer scientists
were not interested in changing the art of
animation but only in transferring some of
the techniques of computer graphics to
conventional animation.

Computer Assisted Animation

Much of the work of conventional
animation is repetitious, time consuming
and tedious. This is the sort of work
the computer does well. In the seventies,
some computer graphics researchers began
to actively adapt computer technology to
the techniques of conventional animation.
They reasoned that the computer was

15

already being used to interpolate between
frames in scientific work and they saw no
reason why this technology could not be
adapted to speed up the process of
conventional animation. Specifically,
they hoped that the computer could be used
to assist in the following phases of
animation:

1. tracing the outlines of figures;

2. drawing the in-between frames;

3. filling in the colors for the
figures;

4. visualizing the final project;

5. filming the final project
(Wallace,p.254).

Animators wanted the computer to help
them, but they wanted the computer to be
unobtrusive. They wanted animation to
look the same as it always had. They did
not want a new "look"; they wanted a tool
to help them produce quality animation
like Disney used to do. They wanted to be
freed from some of the more time-consuming
chores of animation. A tool like the
computer could perform some of these
steps. Animators could spend more time
developing original images and would not
have to revert to "limited animation" as
had happened in the 196O's.

Perhaps, the computer could free
animators to be original again.
Paradoxically enough, this new tool might
help them produce animations as original
and innovative as Disney's fifty years
ago.

Computer scientists were willing to
cooperate to help the artists. These
researchers were committed to using the
computer as a tool to help animators. They
were not interested in changing the "face"
of animation. They began to develop
software programs to automate some of the
techniques of conventional animation.
Their committment to automatinJ
established techniques of conventional
animation can be seen in their naming of
the new software programs.

The names of their programs were drawn
from the vocabulary of conventional
animation. An animator who had worked
with Disney would have no trouble
understanding what each of the new
programs did. The programs that were used
to fill in the character outlines with
color were called "paint" programs and the
programs used to create the frames between
the main action frames were called
"in-betweening" programs. Both the basic

steps of animation and the language of
animation remained the same, whether that
animation was completely hand drawn or
computer assisted.

This is important. It is often said
that artists are uncomfortable with
machines. Certainly, there was a time when
no artist of quality would work with a
machine. The early history of animation
is an example of this. Part of this
reaction to the machine must come from a
concern about the new structure that the
machine imposes on their work. The
computer was introduced into animation in
a way that would still those fears. Roy
Madsen says about computer-assisted
animation that the the researchers
considered the artists' needs and the
pleasing result was that "working as a
unit (computer and artist), the computer
not only challenges the animator's most
imaginative efforts but augments them and
responds to the slightest whim in less
time than it takes to sharpen his pencil.
Using familiar tools, as well as equally
familiar industry terms the animator can
generate and control movement, shape and
color simultaneously and instantaneously"
(6) .

People fear that the machine will
replace them. The computer was introduced
into animation to help the artist, not to
replace him. Marc Levoy, a computer
scientist who has been developing
computer-assisted animation software for
Hanna-Barbera says, "We're not out to
replace the cartoon animator. Our goal is
just to relieve him of some of the
horribly tedious, boring and repetitive
work that normally goes into
hand-coloring each of the eels in an
animation sequence"(7)

Computer-assisted animation has been
accepted by the animation industry, and
for good reason. One computer-assisted
animation system now on the market can do
the following: "make in-between drawings
from the key frame drawings what the
animator enters into the system, and will
play back a full pencil test, take
conventionally prevared eel-animated
figures and scan/digitize them; paint the
eels; paint the background art; and record
and composite the images on videotape or
35mm film, including angles such as zooms
and pans"(B). But this system does not
change the way animation looks, "it
preserves the integrity and clarity of the
animator's art"(Ferderber, p.59). The
Hanna-Barbera studio uses a computer to
help them make Fred Flinstone cartoons
now, and these animations look the same as
they did before the computer became a part
of the animation process. The technique
of making Fred Flinstone might be
"high-tech", but Fred still looks quite

16

Stone.Age.

The computer has not altered the
"look" of conventional animation, only
automated some of the processes involved
in making this special art. Neal
Weinstock says in his article, "New
Technologies for the Realization of Ideas"
that with "a computer to remember the
details and a graphics terminal to make
the changes, most of the drudgery can be
taken out of the animation process. The
animator who doesn't want to work with a
computer should be about as rare as the
housekeeper who doesn't want to use
labor-saving devices" (9).

The computer is a tool, and it has
been successfully introducted into
animation without changing the vocabulary
or the style of conventional animation. Ed
Catmull, a leading pioneer in the field of
computer-assisted animation says that
"computer-assisted animation far from
shrinking the role of artist as has
sometimes been thought, greatly enhances
their productivity and so improves the
economics of animation production. As a
tool in the hands of animation artists, a
dedicated computer system automatically
performs many of the non-creative tasks
which have had much to do with the high
cost and extended production schedules of
animated films"(lO).

The computer has been successfully
introduced into animation. Artists worried
that the computer would dehumanize art,
but computer-assisted animation looked the
same as conventional animation. Artists
were not replaced by the computer because
the computer was after all, only a tool.
The quality of the animation still
depended on the imagination and talent of
the artist. The computer simply helped
the artists speed up the production
process. The success of computer-assisted
animation proved that the computer could
be used in art without replacing the
artist or depersonalizing his art. Now
that the computer had been successfully
integrated into this very old established
art form and was being used
enthusiastically by artists it was time to
see if the computer could be used to
create art that was new and distinctive.

The Computer in Art

I do not believe that computer would
have used by artists to create a new art
form if it had not been successfully
integrated into another art form first.
The idea of using the computer in art has
been frightening to some artists. Perhaps
they are afraid the computer will replace
them. David Em, a computer artist
believes that "the art world has put up a

lot of resistance to to it. But the
biggest problem is a pyschological one on
the part of artists .•• There is a
tremendous fear of the computer. People
think the computer is going to do it all.
You are supposed to turn it on and it
produces a picture" (11).

This is, of course not true, but it is
not an uncommon fear and one that has been
true when other technologies were
introduced into art.

When still cameras were first
developed, artists were aghast. The camera
produced pictures of extraordinary
clarity: people and landscapes looked
"real". Artists must have been a afraid
that the photograph would make their
representations of people and landscapes
superfluous. This did not happen because
the photograph and the painting fulfilled
different needs. The photograph slavishly
imitated reality (it could do nothing
else), but paintings created moods and
gave a different sort of pleasure. Artists
realized that photographs could coexist
with paintings and not replace them.
Therefore, artists began to feel
comfortable enough with photographs to use
them as models. If they could not travel
to Greece, they could still paint the
Parthenon from a photograph. The
photograph came to be accepted by the
artist as a tool for his art. It was only
after the artist accepted the photograph
as an aid and not a replacement that
artists began to use the camera as a tool
to create new art (12). Photography became
an art form of its own.

I believe the computer followed this
same path in animation. It was first used
as a tool to help the artist create
animation that looked exactly like
conventionally drawn animation. Having
been assured that the computer would
neither replace them, nor dehumanize ~heir
art, artists were able to imagine a new
art form using the computer. Kadinsky had
envisoned an art form which would radiate
directly from the artist's mind without
the aid of pigment or brushes, Perhaps,
computer animation was that art form.

Computer Animation

The computer had been used
successfully to automate the work of
conventional animation. But this
animation was indistinguishable in style
from animation done totally by hand.
Artists seeing this marriage of machine to
art began to wonder what animation totally
generated from the computer would look
like. These artists wanted to experiment

17

and isolate what the computer could do
that man could not.

Roy Madsen says, "The computer offers
promise in areas of animation requiring
the maximum of mathematical precision ,
such as plotting trajectories and
depicting complex physical relationships.
Pictures may be programmed to move in
accordance with the laws of perspective,
at any desired speed and following any set
of rules or formulae" (p. 190). This is
what computer graphics researchers had
already discovered, but artists now wanted
to use this special "skill" of the
computer, not for science but for art.
Artists were not interested in visualizing
the laws of physics for research, but were
interested in using these visualizations
as a part of something else, like creating
a mood or telling a story. They were not
interested in studying movement itself,
but in using movement in their art. Using
a computer does not bind the artist to
scientific laws. Artists can parody the
precision of the computer by creating
improbable figures which move according to
some laws of nature that exist only in the
artist's head. The computer is not bound
to "the" reality, but is subject to
whatever reality the artist chooses for
it. The computer, then becomes an
extension of the artist's imagination.

Some artists have complained that it
is impossible to certain things with the
computer. But this limitation does not
prevent computer animation from being a
unique art form. David Em says that
"People say computers don't do this or
that. But all art forms are like
that ... Yet it does things no other medium
can do" (Levell, p.39). Artists simply
find ways around the computer's
limitations, as they do with any other
medium's limitations.

For example, the kinds of figures
that the computer can generate are fairly
limited. So far, no one has animated a
completely computer-generated human
figure. The figures that are easily
generated by a computer are different from
anything seen in conventional animation.
For years, the computer had been used to
assist designers to build better cars and
airplanes and most people have seen some
examples of the wire frame figures used in
this work. These wire frame figures looked
like lined grids twisted into whatever
shape they were supposed to represent. In
the early years of computer graphics, wire
frame figures were the easiest to
generate. They were used to model
automobile and airplane strucures. It was
easy for a programmer to rotate, move and
change the scale of the figure. Recently,
I saw an animated film which used totally
wire frame figures, but the film had

nothing to do with designing cars or
studying movement (13). Rather the film
told a story and created a mood. This is
the provinFe of art, not of research. The
film featured a wire frame child who flew
from his wire frame planet through a wire
frame depiction of New York City. The boy
flew by the Statue of Liberty which was
rotated and shown from several different
sides, Bu~ this film was not. made to
demonstrate movement or to model
buildings. This was a film that was
chsrming, affecting and humorous, a wire
frame "Little Prince." It was without a
doubt, art, and it had no purpose other
than to tell its story, create a mood and
give pleasure to its viewers. This film
used a figure traditionally used for
research to create a special kind of art.
The mood was not unique, but the look was.
This was not the sort of figure Disney
ever drew, but it is the the kind of story
he would have told. This film was an
artistic application of a design that is
unique to the computer.

Computer artists do not just have to
contend with the limitations of their new
tool. The artist who uses computers can
take advantage of some unique properties.
One of the most extraordinary is the
interactive capability of the computer.
Flight simulators have used interactive
computer animations for many years. A
pilot who chose one path would see an
entirely "world" different from a pilot
who chose another path. Computer
animation can also be interactive.
Conventional animators draw the pictures
and choose the camera positions which will
be used for the final film. The drawings
are then filmed and the animation sequence
will stay that way forever unless the
drawings are refilmed. Computer animation
does not always have to be the same. The
animations can be different each time.
Interactive computer animation is what is
used to make video games. While this is
not "high art", it is designed to
challenge and give pleasure to its
players. This was not possible with
conventional animation. Interactive
animation is unique to the computer and is
now being used for something other than
research: it is being used to make art.

Computer animation is a
distinctive art form and a new one. David
Em has said that 1981 was the year
computer animation became an art form. It
was the year "artists started to emerge
and started to do things with it
(computer)" (Levell, p.4O). It is no
longer just a research tool, an aid to
another art form or a novelty. Computer
animation is beginning to have a
personality and distinctive look of its
own. Already critics see a change in the

18

look of computer animation, "from grids
and wire frame looks which tend to
produce a technical clean look and toward
highly stylized 3-D work, toward
image-oriented material in which objects
appear to be spatial but do not
necessarily behave acccording
to the laws of physics. They are
structures that come apart or metamorphose
or unfolrl" (14).

There is already evolution in the look
of computer animation and we notice that
is away from grids and wire frames which
are the very structures computer
scientists manipulated in research to new
figures which have resulted from artists
stretching and expanding the forms of the
computer. Saul Bernstein, a prominent
computer artist says, "Sometimes I'm glad
I don't know their (computer's)
limitations. I keep trying to push their
machines; sometimes I get results that
surprise even their creators" (15).

Our first fear about the computer was
that it would constrain the imagination
and limit the personal expression of the
artist. This does not seem to be true. In
fact, the computer responds immediately to
the artist. As Kadinsky envisioned, the
computer offers a direct path from the
artist's imagination to the final piece of
art. To change a finished frame in
conventional animation, the artist must
redo that frame, check the continuity and
then refilm the entire sequence. The
computer animator can select a frame,
change it at his terminal and replay the
entire sequence immediately. His
animations need only exist in two places:
his mind and in the computer, so he does
not need to make changes in a number of
different media (paper and film) before
the proje~t is completed. The computer
allows the artist immediate feedback.
Conventional animators must wait before
the entire sequence is refilmed before
they can see how the correction looks.

Far from constraining the artist's
imagination, the computer responds
directly to it. So powerful is this
response that some critics believe that
new defintions of art must include the
computer as well as the artist (Madsen,
p.8O).

- There is additional evidence for the
emerge~ce of computer animation as its own
art form. Carl Machover estimates that
only 70% of "computer-look" art is done
by a computer (16). The other 30% is drawn
by hand. Computer animation is now so
popular and so distinctive that people who
can not afford to use a computer to
produce their animations hire an artist to
imitate that look.

We seem to have come full circle.
Originally, artists let the computer into
animation to try to save it, to allow
artists to produce quality animation
again. The computer was used only to
relieve some of the tedium of the
animation process. However, after artists
saw that the computer could be useful in
art, that it would help them and not
replace them, they were free to experiment
with the computer to see if they could
create something unique. And they have.
David Em says, "Whenever a new medium
comes along people are going to repeat
what has already been done. Just as when
film came along people tried to do theatre
with it. It took a while for the true
artist of film to come out and start
editing. The same is true of computer
art. It's going to take a while to
establish itself as a truly unique form.
But there's no question that it is"
(Levell, p.39).

Conclusion

Computer animation has followed the
same path as photography and film in its
development as a new art form. Both
photography and film first imitated
already established art forms before they
emerged as artistic displines of their
own. Artists used photographs as models to
paint from, filmakers first shot movies
like theatre with no camera changes at
all, and the computer was used to assist
animators in producing conventional
animation.

New technology brings artists new
fears. They worry that the new technology
will replace them or dehumanize their art.
But, as the new technology imitates older
art forms, those fears are quelled.
Curiosity displaces the fear and some
artists are driven to experiment with the
new technology to create art that is
unique and different. Computer animation
has emerged as an art form recently, but
already artists have created designs that
are unlike anything seen in the laboratory
or in conventional animation.

Artists using the computer have
realized what other artists who have
experimented with other new technologies
eventually realized, that it is the
imagination and the talent of the artist
that creates great art. So the technology
loses its mystique and becomes what it is:
a too·1 to be used, stretched and expanded
by artists. The computer has now been
accepted as a tool and we can look forward
to the further development of this new art
form.

19

References

1. Ralph Stevenson, The Animated Film
(London,Tantivy Press,1981), p.8.

2. Bruce Wallace, "Merging and
Transformation of Raster Images
for Cartoon Animations," Computer
Graphics, No.3 (1981), p.253

Subsequent citations from this work
appear parenthetically in my text.

3. Donald Heraldson, Creators of Life (New
York:Drake Publishers,Inc. ,1975), p.82.

Subsequent citations from this work
appear parenthetically in my text.

4. Paul Scanlon, "George Lucas: The
Rolling Stone Interview," Rolling
Stone, 21 July 1983, p.15.

5. John Halas, Computer Animation (New
York: Hastings House, 1974), p. ix.

6. Roy Madsen, Animated Film (New York:
Interland Publishing, 1969), p. 190.

Subsequent citations from this work
appear parenthetically in my 'text.

7, Robert Rivlin, "Computer Graphics,"
Omni Magazine, 1982, p.33.

8. Skip Ferderber, "The Commercial
Production Designer," Millimeter, Feb.
1983, p.59.

Subsequent citations from t~is work
appear parenthetically in my text.

9. Neal Weinstock, "New Technologies for
the Realization of Ideas,"Millimeter,
Feb. 1983, p. 71.

10. Edwin Catmull, "New Frontiers in
Computer Animation," American
Cinematographers, Oct.1979, p.1001.

11. John Levell, "The Computer Paintings
of David Em," Business Screen, 23 Oct.
1981, p.39.

Subsequent citations from this work
appear parenthetically in my text.

12. Ruth Leavitt, ed., Artist and Computer
(New York: Creative Computing Press,
1979), p.3.

13. Philippe Bergeron, Nadia
Magnenat-Thalmann, Daniel Thalmann,
Vol de Reve (Dreamflight), a film,
1982.

14. Suzan Prince, "LIVE! Pratt's Computer
Graphics Seminar," Computer Pictures,
Jan/Feb 1983, p. 56.

15. Howard Shore,"The Fine Art of Computer
Graphics," Softalk, March 1983, p.
150.

16. Carl Machover,"Patterns in Computer
Graphics," Computer Pictures, May/June
1983, p. 20.

20

EXPERIMENTAL VISUAL EVALUATION FOR COMPUTER GRAPHICS

Marek Holynski and Elaine Lewis

Boston University

Abstract

This paper presents an approach for
evaluating viewer preference for computer
graphics, In this initial experiment, 44
subjects rated 21 computer-generated pat
terns which varied in terms of order and
color. Order was defined through three
levels of visual structure -- reflection,
translation, and random placement -- which
are based on image generation techniques.
Findings suggest that more ordered patterns
are preferred.

Introduction
Standards for the technical aspects of

computer generated imagery are becoming well
established. Graphics producers acknowledge
acceptable levels for many variables like
resolution and speed, These recognized
standards can relate to hardware design and
software organization, yet few address the
basic quality of images. In other words,
existing technical standards do not provide
clues for practical rules that produce
pleasing images, In order to develop
aesthetic evaluation standards, we must
define structural variables for computer
generated images and relate these variables
to human responses like viewer preference.

Aesthetic standards which are tested
for viewer response can be important tools
for graphics producers. The authors propose
an experimental approach for discovering
some formal criteria. This study considers
a dimension of visual structure. order, as
it is defined through computer algorithms
that produce abstract patterns. Three
levels of order are tested for their
relevance to viewer preference.

Previous Work
In Arts and Computers (Holynski, 1976),

Holynski suggests five categories for
classifying images:

1, Images made by random choice alone.
2, Images made randomly but according

to an assumed stochastic distribu
tion which imposes a certain prob
ability for the appearance of basic
elements in different parts of the

CH1930-7/83/0000/0021$01. 00 © 1983 IEEE
21

picture,
J. Images in which random choice was

limited to a given part of the
picture while the rest of the image
was developed from a sy~tematic
combination of the random portion,

4. Images with very limited random
choice which use probability to
reach a state which fulfills some
assumed conditions,

5, Images made according to completely
defined structure using non-random
algorithms.

These classifications relate to tech
niques of image production. Within each,
pictures may vary their manifest structure.
This relates to the way the form of an image
appears to a human viewer, which may in turm
be based on methods that people use to struc
ture cognitive coding of visual messages.

Visual principles which stem from
concepts in graphic design and which are
related to cognitive coding for visual media
are relevant dimensions for definition.
Historically, many similar approaches toward
formalizing criteria for aesthetic standards
have been tried by philosophers, designers,
and art historians. In order to include the
more precise possibilities offered by com
puter graphics, the authors adopt an empiri
cal approach where criteria are systemati
cally tested for viewer response.

In previous work. three visual princi
ple measures. the variables COMPLEXITY
(amount of information), ORDER (pattern of
information), and REGULARITY (proportional
consistency of information), have been
tested for their relation to viewer prefer
ence (Lewis 1983, 1981), When represented
through computer-generated stimuli, these
variables have been shown to be strong
predictors of viewer preference, Order is
especially significant. In some cases,
sixty percent of the variance in preference
has been predicted by a stimulus' level of
order.

In this study, the authors consider one
relevant variable, order, as a standard that
relates to image generation technique,

Research Objectives
This experiment is the beginning of a

larger study which aims to establish visual
standards for computer-generated imagery.
As a starting point, its goals are limited:
1) To discover the interrelation between
three levels of order and viewer preference,
2) To explore how the introduction of color
affects viewer reaction for this type of
stimuli,

Findings from this and subsequent
studies will provide systematic feedback
about viewers' expectations. When refined
these findings will serve as production '
rules, In this way we can produce more
pleasing computer graphics,

Stimuli Development
First, a basic element was designed

to be abstract, because the addition of
representational meaning would confuse the
formal effects of viewer preference; and
~imple, yet capable of producing interest
ing patterns when presented in a display
matrix, This free-form shape, illustrated
by Figure 1, was defined by 60 points
which were entered from a graphics tablet
and stored as a data file containing x-y
coordinates, A scaled version of this
basic element was reproduced, transformed
and manipulated by several computer pro
grams to produce the stimuli,

Figure 1: The Basic Element

Each stimulus pattern is a grid of
sixteen basic elements, The manner of
determining the orientation of these ele
ments defines the order level of each
stimulus. Four orientations of the element
are possible, as illustrated by Figure 2,

22

Figure 2: Four Possible Orientations

For the least ordered type of pattern
RANDOM PLACEMENT -- all orientations

are equally probable for every element in
the grid (this technique corresponds to
group one in Holynski's classification
scheme). Orientation is assigned through
reference to a random number generator
which produces a sequence of 16 random
numbers with a range of one to four. An
example of this category of stimulus is
seen in Figure J,

~··~~

◄
a AA

Figure J: Example of Random Placement

To achieve the two more ordered
types of patterns, element orientation
was varied in a more systematic manner,
Both begin with a four element quadrant
where each element was randomly placed.
A typical quadrant is seen in Figure 4.
(These patterns relate to Holynski's
group three,)

~

Figure 4: A Typical Quadrant

Patterns representing the middle level
for order were produced by duplicating
-- TRANSLATION -- the original quadrant to
fill the remaining three. Figure 5 shows
a typical translation pattern.

~~~~~ 
.. .. .. .. ~ 

Figure 5: Example of a Translation Pattern 

The most ordered patterns were 
produced by reflecting the original quad
rant about both inside edges and the 
central point. This creates a symmetrical 
-- REFLECTION -- pattern as shown by 
Figure 6. 

Figure 6: Example of a Reflection Pattern 

Stimuli were produced on an AED 512 
graphics terminal and recorded with 35mm 
film by a Matrix camera. Twenty-one 
slides were chosen to represent three 
levels of order {seven for reflection, 
eight for translation, and six for random 
placement). An additional dimension, 
color, was explored through three hues 
{nine white, six red, and six blue). 

Testing 
Forty-four Boston University students 

were shown each slide and asked to rate 
them according to preference using a ten 

23 

point rating scale. They were told: 
You will be shown twenty-one slides, 
Each slide is a different abstract 
pattern. Please rate each slide 
with regard to preference by assign
ing a number between 1 and 10 to 
indicate how much you like a partic
ular pattern. Assume 5 represents 
an average amount of liking. Assign 
a large number if you like a particu
lar pattern very much; assign a small 
number if you don't like a particular 
pattern, 

Stimulus patterns were shown for fifteen 
seconds each. 

Analysis and Results 
Mean (average) ratings were calculated 

for all preference ratings. When consider
ed as a whole, the average preference 
rating was 4,829. When considered accord
ing to a particular slide's order value, 
some significant differences appear due 
to a stimulus' order level. A summary 
table follows. 

code value label 
1 REFLECTION 
2 TRANSLATION 
J RANDOM PLACEMENT 

mean 

5,579 
4.881 
J.886 

As this table clearly shows, reflec
tion patterns were most preferred, This 
suggests that viewers like more ordered 
patterns better than less ordered or 
random ones. These results, as expected, 
are consistent with previous findings 
(Lewis and Keith, 198J). 

Although some differences were 
observed according to color (blue was most 
preferred with an average rating of 5,374, 
white next at 4,7131, and red at 4.459), 
these are not as significant. Further 
investigation on the effect of color may 
be an interesting focus for future study, 

References 

Bailey, Chris, "Graphic Standards are Emerging 
Slowly But Surely," Electronic Design, January 20, 
1983, pp. 103-110. 

Fleming, Jim and William Frezza, "NAPLPS: A New 
Standard for Text and Graphics, Part 1: Introduction, 
History and Structure," Byte, February 1983, pp. 
203-254. 

Holynski, Marek, Art and Computers, Wiedza 
Powszechna, Warsaw, 1976. 

Lewis, Elaine, "An Effectiveness Measure for Visual 
Communication Media: Toward Definition of Visual 
Principles," Doctorial Dissertation, Department of 
Language, literature and Communication, Rensselaer 
Polytechnic Institute, 1981. 



Lewis, Elaine and Brian Keith, "The Addition of 
Content and Consistency of Preference Ratings for 
Visual Structures," paper presented at 1983 annual 
meeting of the International Communication 
Association. 

McClearly, George, "An Effective Graphic Vocabulary," 
IEEE CG&A, March/April 1983, pp.46-53. 

Olenchuk, Bruce, "Graphics Standards," Computer 
Graphic World, August 1983, pp.56-60. 

Schneeberger, Reiner, "Experimental Aesthetics with 
Computer Graphics: Analyses of Viewers' Impressions 
of Computer Graphics," Computer Graphics and Art, 
May 1978, pp. 20-28. 

24 



A Pantomation Interface for the Apple II 

Tom DeWitt 

Image Processing Laboratory 
Rensselaer Polytechnic Institute, Troy, N.Y., 12181 

INTRODUCTI ON 

Pantomation is a process of 
tracking objects in the field of view of 
a television camera. The Apple II 
computer presents special problems for a 
video interface of this type, because 
its video circuitry does not conform to 
broadcast television NTSC standards. A 
video interface card has been 
constructed for the Apple II computer 
which takes standard television signals 
as input and makes the derived video 
information available for processing and 
display within the Apple's independent 
time base. In a typical application, 
the board derives the positional 
coordinates of a single tracked point 
each video field (1/60 sec. ) . The 
positional information can be used in 
the same manner as a joystick or other 
positional controller. 

Pantomation has been described in 
the Proceedings of the Second Symposium 
on Small Computers in the Arts. The 
version of Pantomation created for the 
Apple II similar in design, but 
improvements have been made in interrupt 
service handling, key position 
averaging, and system timing. The 
current design is compatible with the 
ubiquitous Apple II, making a tracking 
keyer available to many more potential 
users. 

THE PANTOMATION CONCEPT 

Keeping track of information in a 
video signal is an awesome task if every 
pixel is to be examined. Pantomation 
takes the approach of throwing away most 
of the picture to ferret out selected 
tagged areas. This masking or keying 
operation is performed by external video 
circuits, typically analog comparators. 

CH1930-7/ 83/0000/0025$01.00 © 1983 IEEE 
25 

The resulting signal is a simple binary 
pulse occupying a small portion of the 
video frame. The Pantomation interface 
card takes this simplified video input 
along with three timing signals: pixel 
clock, horizontal sync and v&rtical 
sync. The circuitry on the board 
derives the position in the raster at 
which the masked tag has occurred. This 
reduces the data from the video rate of 
2,000,000 x,y pairs per second at 256 x 
256 resolution to 120 bytes (60 x,y 
pairs ) per second. At this rate of data 
acquisition, even the humble micro 
computer has plenty of time to process 
the incoming data . 

There are devices called frame 
grabbers which accept an an entire video 
image in the time it takes for the 
incoming video source to write the 
frame. Pantomation takes another 
approach to digitizing video 
information. When a frame grabber 
stores the rapidly transmitted pixel 
information, the computer usually idles. 
After tens of thousands of pixels are 
stored for evaluation, image processing 
programs can peruse the pixels to derive 
positional information. These 
operations take place out of real time. 

In Pantomation real time operation 
is achieved by a masking operation that 
takes place at the input. In television 
parlance, this masking technique is 
called Keying. Today television keyers 
have become quite refined. They can 
detect the presence of a specific color 
from a very wide palette. Masking based 
on color is called Chroma Keying. Many 
television studios include chroma keying 
as a standard effect, so Pantomation can 
be immediately implemented in this 
environment. However, unlike 
conventional chroma key applications, 
the Pantograph is not designed to mask 
out large areas and switch in a second 
television signal. In a Pantomation 
application, the chroma keyed area is 
made as small as practical, because it 
is resolved ultimately to a single 
recorded point per frame. 



The Pantomation process is very 
similar in electronic design to the 
Light Pen, but uses a two dimensional 
scanner, a television camera, instead of 
a zero dimensional optical detector, a 
photo cell. As a consequence, the 
"pointer" is not restricted in movement 
to the surface of a CRT display, as are 
light pens. A tag can be made from a 
hand held flash light such as a ~en 
light, so the process can feel like a 
light pen to the user. However, since 
the optical sensor is not separated from 
the light source by a CRT glass 
envelope, Pantomation has superior 
resolution compared to light pens. 
Moreover, as we will see, the pen light 
approach is easily extensible to three 
dimensional tracking, a feature 
impossible to realize with a light pen. 

Three dimensional input and display 
are areas of continuing research in 
computer graphics. To achieve tracking 
in three dimensions, Pantomation uses 
multiple cameras. This configuration 
proves to be a trivial extension of the 
basic implementation. Stereo pair views 
can be obtained by using two c·ameras 
side by side, or greater accuracy of 
depth detection can be obtained by using 
orthogonally placed cameras. The 
positional coordinates tracked by each 
camera are obtained in time by switching 
between the cameras during sequential 
video fields. 

SYSTEM LAYOUT 

A block diagram of the Apple II 
based Pantomation system is broken into 
three sections: video, Apple 
motherboard, and Pantomation interface 
card. The video system must provide 
standard NTSC synchronization pulses: 
horizontal sync, vertical sync, color 
subcarrier (3.58 MHz), and whatever 
drives are required by the system's 
cameras. If more than one camera is 
used, a switching module is required. 
The Apple can select the current camera 
by toggling an annunciator on its game 
paddle interface, so the switching 
module should be a TTL compatible analog 
switch such as a CD 4066. In order to 
detect the tagged area in the video 
signal, the video system must have a 
keyer, indicated in the block diagram by 
an analog comparator. Designs for 
keyers vary widely and are beyond the 
scope of this discussion. 

The Apple II micro computer is 
based on the 6502 processor. The 
motherboard has an architecture which 
extends the bi-directional 8 bit data 
bus and four bits of the address bus to 
each of eight expansion slots. Each 
slot is selected by a separate enable 
line decoded on the motherboard. In 
addition, the IRQ, interrupt request 
line, and the R/W, read/write strobe 
line, appear at each slot. Only one 
expansion slot has the Apple's internal 
3-58 MHz color reference signal, but it 
may be routed by jumpers to any card. 
This approach was taken for the 
prototype Pantomation card, so as to 
leave the special slot available for 
planned expansion of the Apple's video 
output capabilities. 

I - ------- - - I ---------------------------

I Vertical Drive : 

Annunciator 

Switch 

Sync 

Gen 
Horizontal Drive 

3.58 MHz Color Reference ' 

Motherboard Address and Control Bus 

.----_,Expansion Cord 

Video Address 

Signal Decode 

Conditioning and 

Status 

Counter 

Chains 

and 

Latches 

' -------' 
' ' ' ' 

' ' Bi Directional Doto Bus : 
I 
I 

' I 
------------- ---------- ------------- ------------ --------------- --- ------ ------------ I 

Block Diagram 

26 



PANTOMATION INTERFACE CARD DESIGN 

The Apple II based Pantomation 
system is constructed on prototype 
wirewrap card that plugs into the 
expansion slots on the back of the 
motherboard. There are four external 
signals to the board: horizontal sync, 
vertical sync, 3.58 MHz color 
subcarrier, and key pulse. These 
signals are buffered and conditioned to 
TTL levels by LM 319 dual comparators. 
A jumper is provided to select the 
Apple's internal 3.58 MHz color 
reference signal. This proves useful 
when the output display is the Apple's 
bit mapped high resolution screen. 

There are two counter chains and 
three latches on the board. The 
counters are 74LS193's grouped in pairs 
for eight bit accuracy. The horizontal 
counters are clocked up by the 3.58 MHz 
color reference signal and reset by the 
conditioned horizontal sync from off the 
board. Two latches are provided for 
horizontal position: Key Up and Key 
Down. The distinction between Up and 
Down is based on the entry to and exit 
from a keyed area on a scan line. The 
Key Up is left hand position of the tag, 
and the Key Down is the right hand 
position of the tag. Both positions are 
latched for transmission to the CPU 
where a center point will be calculated 
by software. The latches are 74LS173's 
which are commoned to the Apple data bus 
and individually strobed by a 74LS138 
address decoder during a read cycle 
prompted by the R/W line as buffered by 
a 74LS04 on the Pantograph board. The 
vertical counter is clocked up by 
horizontal sync and reset by vertical 
sync. It is latched by another 74LS173 
clocked by the Key Up signal. 

+5 +5 H Sync t5 +5 H S_rnc 

I 
LOAD DOWN CLR Lll'D DOWN ClR 

Key 
Up 

[fill 74LS19J ! UP 

QoQcQeQA 

CARRY afil ! 74LS19J ! UP 

Qo Qc Qe QA 

J.58 MH1 

K 
Down 

Cl C2 I) 2D :ID 4D Cl C2 1D 2D 3D 4D 

CK [fil174LS17J I ~n CK ~ j74LS17JI 

JI M 1Q 2Q JQ 4Q N II 1Q 2Q JQ 4Q 

Horizontal Chain (Xey Down) 

ClR 

27 

+5 i-5 V Sync 

LOAD DOWN CLR 

Qfil jmsmj uP 
QoQcQeQA 

Cl CZ I) 2D 30 4D 

CK [;I 11•LS173 I 
JI II 1Q 2Q JQ 4Q 

Ke 
Up 

CLR 

t5 +5 V Sync 

I 
LOAD DOWN ClR 

CAARill 1 74LS19J I UP 

Qo Qc Qe QA 

Cl C2 ID 20 3D 4D 

CK [fil I rnsm I 
NII 1Q2QJQ4Q 

Rji Ea D3 D2 DJ Do 

Vertical Counter Chain 

H Sync 

CLR 

To insure that the horizontal count 
is transferred accurately to the 
associated latch, a pair of flip flops 
are used as synchronizing buffers 
between the incoming key pulse and the 
latch clock. This circuit locks the Key 
Up and Key Down transitions to the 3.58 
MHz dot clock so the data on the 
counters is transferred to the latches 
after the counters have settlsd. This 
is an improvement over the first 
Pantomation system which stopped the 
horizontal counter at the first key 
occurrence in a scan line to assure 
accurate data transfer to the associated 
latches. The same flip flops store the 
Key Up and Key Down transitions for 
testing by the processor. The 
occurrence of the vertical interval of 
video is also latched by a flip flop. 

+5 

PR 

D Q Key Up 

jmml 
J.58 1117 Color Reference -- f CX Q Key Up 

CI.R 

a.« 
Syncbron.izin& Buf!cr for External Key Pulse 



The status of these three flip 
flops (Key Up, Key Down and Vertical 
Interval) is transmitted to the 
processor through a 74LS125 three state 
bus driver when enabled by a 74LS138 
three to eight address decoder. The 
Pantograph card uses six of the sixteen 
available memory mapped card addresses 
determined by this decoder: 
EO-read •.•••.. vertical count 
E1-read .••••.• horiz. count on Key Up 
E2-read ••..••• horiz. count on Key Down 
E3-read ••••••• status word 
E4-read/write. clear interrupt 
E5-write ••.•.• interrupt enable 
The fourth gate on 74LS125 bus driver is 
used for the Apple's interrupt request 
line which can be toggled by either the 
Vertical Interval or Key Down. Key Up 
could be used to initiate an interrup~, 
but as it is followed immediately (in 
the micro second range) by a Key Down, 
this was deemed redundant and the line 
tied off. 

Key Up 

Key Down 

V Inl 

Or lnt 

Stat 

str~3---1RQ 

Ao 
Al 
A2 
A3 

Dev Sel 
+5V 

JC D-3, 7 4LS 125 

A 
B Yo 
C Yt 
G2A Y2 
G2B Y3 
Gt Y4 

Y5 

lB 

IC C-3, 74LS138 

Eo 
Et 
Ea 
E3 
Clear 
E5 

28 

There are 19 integrated circuits on 
the wirewrap card. To conserve space, 
two Or gate packages (7432) are used for 
both And and Or operations, with the And 
operations being run in negative Boolean 
logic, converted to positive logic on 
the spare lines of a 74LS04 hex inverter 
that was required for other design 
needs. Component costs were about $100 
from a local electronics retailer. All 
parts are commonly availa~1e·off the 
shelf. 

Key 9De Key Or 
Xey Up 10 

E3 12D,1 Stat lt'/R 13 

KayDown~
2 

3 4· 6 Int 
-:- 1 5 

V Int 

IC D-4, 74LS32 

R/i2{>-Lw/R 

lnt ~ lnt 

H Sync -4)»L-ifSyoc 
3.58 MHz -.!.{:>o-!- 3.58 MHz 

Key Or ~ Key Or 

NC ~NC 

IC C-5, 74LS04 



SOFTWARE 

At the time of this writing, driver 
software is still in development. The 
initial set of programs, written in 
Basic, test the board's functions and 
registers. A demonstration program 
written by Eric Podietz was used at the 
Digicon 83 conference in Vancouver in 
August 1983, This program simply polled 
the board for the latest acquired tag 
values and did not use any of the 
board's interrupt features. Currently a 
set of programs are being developed for 
interrupt operation. 

When a hardware interrupt occurs, 
the 6502 vectors to a service routine. 
The first operation of the routine is to 
disable the board's interrupt line. The 
status register is then tested to 
determine whether a key or vertical 
interrupt has occured. If a Key Down 
but no Key Up is detected, an error is 
assumed, and the the board is re-enabled 
and the routine terminated. Otherwise, 
the program jumps to the appropriate 
service routine. 

The Key service routine picks up 
the acquired horizontal and vertical 
position values stored by the board. 
The x value of the tag is calculated by 
finding the midpoint between the Key Up 
and Key Down value. This is called New 
X, and the latest vertical count is 
called New Y. The program then looks to 
see which camera is currently being used 
and recalls the current recorded x,y 
position of the tag from that camera. 
These are called Cur X and Cur Y. The 
New values are subtracted from the 
current values to find how close they 
are to each other, During the course of 
a video frame, all New values are 
compared to the position of the current 
values and the closest New values are 
stored as Temp X and Temp Y. At the 
conclusion of the Key interrupt routine, 
the vertical interrupt flag is tested in 
case it was set while the key interrupt 
was in operation. If it was, the 
program branches to the Vertical 
interrupt, otherwise it re-enables the 
board and exits. 

29 

The Vertical Service routine takes 
the Temp X and Temp Y values determined 
during the video field, and tests them 
to see if they are within a "Jitter 
Window". If they are within a short 
distance from the current x and y 
values, the old x and y values are kept. 
This prevents dither from key sample 
errors that appear as jitter in the 
final output. Typical jitter window 
dimensions are 4 pixels on a side. Once 
the tracked tag moves outside the 
window, full eight bit resolution is 
restored to the data acquisition, 
Additional functions of the vertical 
interval program are toggling between 
multiple cameras and calculating the 
approximate velocity of the tracked 
tags. 

CONCLUSION 

Pantomation, a system for position 
tracking through video camera signals 
has been adapted to the Apple II 
computer. The interface is designed to 
work asynchronously with the Apple's 
internal video timing chain so that 
normal NTSC video sources can be used, 
The data acquisition rate is compatible 
with the Apple's processor speed so that 
real time operation and interactive 

·functions can be realized. The hardware 
investment is low. Driver software is 
under development with demonstration 
scheduled for the the Third Symposium on 
Small Computers in the Arts on October 
14, 198'3, 

ACKNOWLEDGEMENTS 

Hardware design and construction 
for this board was the project of John 
Lattyak, Chief Operator of radio station 
WRPI. Software development is being 
pursued by Russell Brenner, an 
undergraduate student in engineering at 
RPI. Eric Podietz of Interactive 
Picture Systems wrote a demonstration 
driver program for the boa~d and has 
generously provided his Painter Power 
program to help illustrate the board's 
use. The author is grateful to Ed Falk 
and Aaron Heller of the RPI Center for 
Interactive Computer Graphic for helping 
prepare the layout for this paper, and 
the author is indebted to his family for 
their emotional and financial support in 
bringing this project to fruition. 



CH1930-7/8 3/0000/003 © 1983 IEEE 0$01.00 

ATTRIIUTE 
IATA BASE 

• 
~~" 

"HPS Attr1'1:x,ie Hclrdlcv-

30 



£(k/~~C¥--t~1~!!~~t!~!~ 
is a playful visualization of a model for computer assisted Creative 
Problem Solving (1 ). Creative Problem Solving is an essential el
ement in the Graphic Design curriculum at Michigan State Univer
sity. The mission of our program is to educate students in the 
analytical and process phases of design. This kind of backround 
prepares students to successfully fulfill the demands of a comp
etitive job market that seeks creative and innovative professional 
designers. The instruction stresses process over product by teach
ing the students to actively pursue creative solutions to design 
problems rather than passively assimilate knowledge. 

Just like traditional Creative Problem Solving methods, the comp
uterized method employs gaming techniques to playfully coax the 
user into manipulating information in ways that new combinations 
and fresh ideas surface. The advantages of the computer assisted 
method are as follows: 1) information can be logically and sequen
tially processed. 2) a quantity of alternatives can be generated in a 
relatively short period of time. 3) one-to-one interaction is always 
available. 4) an objective appraisal can be used to determine the 
ranking of idea options. 5) students gain important skills related 
to computer literacy. 

The specific work being done at Michigan State University demon
strates how the micro-computer can be used to assist designers and 
artists in improving and learning Creative Problem Solving skills. 
The software being developed, along with commercially available 
software, provides the user with a systematic yet rapid approach 
to generating alternatives for specific design related challenges. 

The system consists of a foundation program (the center of the 
electronic thinking cap) and numerous application modules that 
radiate out from the foundation program. The foundation pro
gram is an attribute data base called, "H DS Attribute Handler". 
It has the ability to maintain, modify,display, and eventually string 
together attributes entered by the user. The application programs 
are individual "games" or methods which playfully coax the user 
into manipulating information, either directly inputed or retrieved 
from "HDS Attribute Handler, in ways that new combinations, 
and fresh ideas surface. In some cases commercially available 
software is being incorporated and in other cases we are develop
ing programs to fulfill specific needs. The panels of Electronic 
Thinking Cap list these programs and how they relate to the indiv
idual steps of Creative Problem Solving. 

Note: The final step under "Directions" was omitted. It should read, 
"5. Insert head." 

( 1) The traditional Creative Problem Solving model used for this 
research is a synthesis of the work done by, 
Don Koberg and Jim Bagnall, 
The Universal Traveler (Los Altos, CA: Wm. Kaufmann, lnc.,1976) 

Sid Parnes, Ruth Noller and A.M. Biondi, 
Guide to Creative Action, (NY: Charles Scribner's & Sons, 1977) 

and personal investigation. 

31 



State-of-the-Art Questions 

Laurie SPiesel 175 Duane Street, New York City, NY 10013 

Ausust 

Amons those of us who used to be an 
orisinal lunatic frinse of artist-hackers, 
who sot lost in the wilderness crevices 
of the computer-and-art intersection, 
a surPrisinS Percentase have bY now been 
vindicated as avant sarde instead of crazy, 
ahead of our times rather than Parallel or 
risht-ansled to them, 

This vindication has taken form in the 
intesration of our work into commercial 
business contexts more often than by its 
intesration into the mainstream worlds of 
music and art, This is understandable, as 
our work, like anw other new art movement, 
breaks with "art world' traditions, in this 
case obscuring boundaries between such 
Previouslw separated realms as art and 
music or science and art, and between such 
separate outPut forms as artists' tools 
and works of art Per se, 

But this one-sided vindication is also 
resrettable, as hiSh tech's Potential of 
wealth and Slamour, and business's more 
abundant financial assets overshadow Art's 
nebulous (and dubious) attractions with 
other distractins imases of reward, 
What seems to Pose threats within the 
mainstream artworld offers Profits in 
the world of business, and so our work 
as artists maw be sidetracked bw offers 
of homes other than those to which we 
had intended to so. 

A surPrisinS number of us are now welcomed 
by companies which PaY us to do work which 
is remarkably similar to what we used to 
do on our own, and at our own expense, to 
be considered crazy for doins, Computer 
imases and sound have chansed from basement 
inventors' midnisht insanities to viable 
business, Larse companies can make lar•e 
amounts of money bY Pluckins the fruits of 
what was till recently only a rather bizarre 
undersround rootwork, The Art sets lost 
in the picture, and Possibly the artist too, 
Paradoxically, we also have unprecedented 
suPPort available for our work, 

32 
CH1930-7/83/0000/0032$01.00©1983 IEEE 

1983 

The 'state of the art' Poses new and 
unforseen auestions at every stase of its 
advance, Many of these auestions 
were not asked within vector spaces whose 
dimensions were Purely technical, structural 
and aesthetic, and whose incentives con
sisted almost entirely of intellectual, 
emotional, and artistic hishs, These 
auestions, new in a new context and for 
the toolmaker, samewriter, and software 
artist, echo their counterpart aueries as 
found in the traditional artworld, in 
which 'commercialization, co-oPtation, and 
compromise' and many other all-too-familiar 
terms already refer to classic dilemmas, 

Ironically, it is a mark of our new arts 
media coming of ase that they have evolved 
to the Point where such auestions aPPlw. 
Since they do aPPlY, they must be stated, 
discussed, and thousht throush by each of 
us. 

This readiness for a sort of conceptual 
adolescence strikes me as the most 
important recent develoPment in the 'state 
of the art' desPite an amazins number of 
other advances, The computer arts are 
beyond their nursery, but far from beins 
maturely Placed in the world, 

For those of us who are addicted to 
challenses, the Sreatest auestions are 
those that can't be answered, ('StuPid 
auestions' are those which are too easy,) 
The following are auestions which I have 
asked myself or heard other PeoPle ask. 
I list them here to clarify, to help 
senerate thousht, discussion, and exchanse, 
and to Predict or forewarn for those who 
haven't encountered them Yet, I also list 
them because they constitute an important 
aspect of the current state of these arts 
which needs and has received insufficient 
documentation, 

MY list bears no Pretense of universality 
or comprehensiveness, Each of us would 
make a different list, 



Computer Arts Businesses: 

In the Ions run, the larsest Perspective, 
is it in the best interest of these new 
media to Provide more People with less 
Powerful lower cost tools, or to endow 
a smaller number of individuals with much 
more Powerful creative and expressive 
Potential? 

If it seems wou are settins Paid at last 
for what wou used to have to do alone at 
nisht at wour own expense, is what wou are 
doins now reallw what wou were doins then? 
How is it different?. Are wou beins Paid, 
rewarded, supported for beins yourself, or 
for not beins wourself in some fairlw 
subtle waw? 

Who 'owns" the 'rishts' to our ideas, 
inventions, and creative output ('software 
art')? Those who do the creative thinkins? 
Those who do the drudse work? Those who 
subsidize and Provide tools, monew, and 
distribution? Those People out in the 
world to whom our creations misht really 
mean somethins or be reallw valuable? 

How can we balance the amount of time we 
sPend makins comPuter arts tools, the time 
sPent makins art or music Per se, and the 
increasins amount of time that successful 
commercialization of the field seems to 
reouire for the '3-D' realitw of: 
Demonstration, Documentation, and 
Distribution? 

How can we continue to oPenlw exchanse 
ideas, to educate and helP each other, to 
swnersisticlw raise the momentum of 
accomPlishment tosether, as more and more 
of us affiliate with seParate comPanies 
in the Private enterprise sphere? 
Much that we create or learn from maw be 
subject to 'non-disclosure' asreements. 
Even if it weren't, business thinkins 
encourases us to be afraid that the other 
suw will steal anwthins we mention. How 
can we Prevent Paranoia from destrowins 
free oPen exchanse? 

If we decide to Publish in the Public 
domain, we can Protect our ideas from ever 
beins the exclusive ProPertw of anw 
interest and suarantee their open access 
bw all+ It also undermines our own self
support for the furtherance of our work, 
and eouallw Suarantees free access to our 
inventions bw the same interests who have 
brousht us Muzak and the '30 second spot,• 
What are the pros and cons of Private 
ownershiP of intellectual ProPertw? 

If Private companies are a new breed of 
Patrons for the arts and sciences, if we 
don't safesuard our creations for them 
th~ waw thew wish, will thew <or anw other 
f>O•tential patrons) continue to be in a 

33 

Position to be able to Provide needed 
subsidy for the creative research and 
development we believe in and want to do? 

What are the differences between 
emPlowers, Patrons, and collaborators? 

What are the trade-offs in workins with 
tinw low budset comPuters while keePins 
total freedom and independence, versus 
losins the latter but settins further in 
in the work via tools we could never 
afford as individuals? What are these 
trade-offs for each of us individuallwT 
What are thew for the whole field~ 
technicallw and artisticlw? 

To what extent do our own Personal and 
artistic interests coincide with those of 
the companies we work for <or start, run, 
and own ourselves)? To what extent do we 
find ourselves overlookins the difference 
because it is easier to be in situations 
where our work is wanted, waited for, 
rewarded, and well-eouiPPed for prosress, 
than to be free, independent, visionarw, 
and broke, frustrated, and unwanted? 

Can visionaries and idealists succeed in 
'business' without beins somehow chansed 
in waws that maw not have been forseen or 
wanted? 

Computer Arts Tools: 

How do the best swstems orsanizations for 
artistic use of computers differ fro• 
those which have been evolved for other 
purposes, such as business or s~ience? 

How do the PUrPoses of comPuter arts 
swstems differ from the Purposes of other 
kinds of computer swstems? 

How does the Process of artistic creation 
differ from other interactive Processes 
to which computers have been aiaPted? 

How can we convew these differences to 
other computer technical professionals 
who we maw be workins with or who maw be 
hired to make instruments bw companies, 
but who have no Personal experience of 
doins music or art? <This maw be 
especiallw Problematic for those who have 
artistic backsrounds but are self-tausht 
and/or without credentials or standard 
vocabulary in technical areas?) 

How much more (and what) should a desisner 
of comPuter-based tools for the arts know 
about these arts than a maker of canvas, 
brushes, or Pianos needed to know to make 
the (simPler?> tools for these olde~ 
arts? 



How much does knowledse of established 
techniaue help, and how misht it hinder, 
the development of new techniaues? (How 
does knowins historw improve the aualitw 
of our actions (works), and how does such 
knowledse inhibit us!) 

How can a losical medium best accommodate 
the intuitive, the irrational, th~ 
emotional, the spontaneous and the 
unpredictable? 

How do seauence and simultaneitw intermix 
in the mind of the musician durins the 
creative process? How can we make both of 
these dimensions eauallw accessible at 
each moment? (Host computer music swstems 
Push People toward the seauential dimension 
bw definins musical voices <"tracks" or 
"channels") which must be entered seauen
tiallw as in multitrack taPe, and also 
reauire to seauential specification of 
Parameters which are to be simultaneouslw 
perceived, instead of allowins all sounds 
or sound Parameters to be defined tosether 
if thew are soins to be heard tosether,) 

How does the overview of a Picture in 
prosress intermix with concentration on 
detail in the mind of a visual artist? 
How is the "shorthand" of sketchins used! 

In creative Processes which artists and 
musicians conceptualize in stases (or 
multiPle •passes"), what are those stases? 
(Roush sketch, lisht and shade, edse 
definition, renderins, color; chord 
seauence or melodic line, voicins and 
orchestration, articulation and dwnamics ... ) 

What do artists and musicians dislike or 
feel constrained bw in traditional media? 
What would thew be willing to learn new 
techniaues to be free of (or free to do)! 

What has Prevented each of us from soinS 
further than we have in our own work in 
•conventional" arts media? 

Whw did we turn to computers in the first 
place instead of sticking with more 
traditional arts media? 

How are the tools we create for others to 
us~ different from the ones we create for 
our own Personal use in doins art or music? 

At what Points and in what waws do we 
choose to sacrifice seneralitw and 
flexibilitw for specialized power in a 
creative swstem or tool? In what 
situations do we make the oPPosite 
trade-off? 

If we desisn a tool dedicated to a hishlw 
defined aPPlication, how do the Processes 

and ~ata structures best for that sPecialtw 
differ from those more general to the 
medium (musical composition versus 
spontaneous improvisation, desisn versus 
drawing)! 

What kinds of individuals do we envision 
usins the swstems we Produce? How much 
learnins time do we expect them to Put in? 
(In the old daws anwone serious about the 
arts expected to invest auite a bit more 
than a sinsle hour in learning to use that 
art's tools, But then again, few attained 
masterw,> 

To what extent and in what waws might the 
tools we create be too "complex• for the 
"averase• user? To what extent are thew 
reallw Just too Personal or Personalized? 
To what extent does a decision to reach 
more peoPle with less of a custom fit, or 
to cut invested ti~e or cost, or set a 
swstem out to •market• faster motivate a 
reduction in comPlexitw or Power (e,g, the 
number of oPtions to learn and use) when 
we so fro·m wri tins for our own use to 
writins for distribution? To what extent 
are we trwins to make it easier to use, 
versus making it easier to create or 
to marl<.et? 

To what extent can each Person be eauiPPed 
or expected to create their own art or 
music (expression, satisfaction) instead 
of relwins on a small number of •talented" 
specialists who create images and music 
for all? (What do •talent", "masterpiece,• 
and •amateur• mean? Is our soal to make 
masterworks more Possible or to increase 
the amount of pleasure PeoPle set from the 
process of doing art? If both, how do we 
balance them asainst each other, and how -
misht the tools for each differ!) 

34 

To what extent do we (or should we) Judse 
what we create bw its Peer context versus 
Judsins in terms of some ideal? <"This is 
amazins for such a small computer• versus 
"How does this fall short of how we can 
envision an ultimate for human expression?" 
"Hore commands than others" versus "How 
would someone saw this in natural lansuase 
or sest•Jre?") 

Do we set further bw startins simPlw and 
then addins features as we need them, or 
bw desisnins a totalitw that would satisfw 
all our envisioned needs and choosins what 
subset we will imPlement? ·what comPlexitw 
or aualitw of orsanization misht make one 
of these oPtions preferable over the other? 

How can one avoid settins so involved in 
the beautw of the tool (prosram, etc,) one 
is creatins that one sets out of touch with 
the Purpose of the tool? If the two 
conflict with each other, which tends to 
set Prioritw in a trade-off? Whw? 



Is distinction between tools to make 
art and actual "artwork" still a valid 
distinction? 

In what ways can new technoloSies reduce 
the need for extensive traininS in artistic 
composition or self-exPression? Just in 
exPeditins the assembly and seneration of 
material, or in the heishtenins and 
refinement of sensitivities as well? How 
else? 

ComPuter Arts: 

What will be the differences between the 
arts of the Past and those of the future? 
What will be the same? 

Will art and music continue to be fields 
of Professional specialization in the 
future in this society if new tools 
Permit easy seneration of material without 
extensive (time-consumins and often 
expensive) trainins and PhYsical coordina
tion skills? 

To what extent is one considered to be an 
artist or musician in this culture because 
ofl 

l+ masterY of specialized technical 
skills 

2, sensativitY to a medium 
3, comPletion and outPuttins into 

Lhe world of finished works, 
resardless of their technical 
soPhistication or of the 
sensativitY or expression 
embodied in them? 

Is it easier to rely on external 
considerations such as audience, market, 
or "fashion" to structure our creative 
outPut, or to let inner directions and 
interests structure our work? For some, 
conflicts with the environment are 
harder to tolerate, and for others, 
conflicts with inner imPetus are more 
intolerable. 

Forset the computers, What is art? What 
is music? What do we need or want them 
for? What drew us to them when we first 
f~lt, heard, or saw them? What parts of us 
do they touch, intrisue, excite, or oPen 
UP? What are the structures of these 
Parts of us? How do we make new lansuases 
to describe and tools to senerate what 
fits these Parts of us? 

What difference is there between sraPhics 
and art? What difference is there between 
audio and music? 

Is there a difference between what we 
started trYins to do once and what we're 
doins now? What is it? Have we evolved, 
or Just forsotten? 

35 

What differences are there between my owr, 
computer music and art and the music and 
art that I do without computers? 

What differences are there between mw art 
and music as I have Produced them and the 
internal visions and feelinss that I have 
tried to embodw in such forms? 

How is mY work different from the work of 
those who are doins thinss most similar to 
what I do? In what ways is my work similar 
to that of those who appear to do these 
thinss most differently from me? How do I 
want to be different? How do I want to be 
the same? How am I the same or different? 
From others? From how I see mYself? 

In what ways do I value the final results 
I comPlete and for how Ions? How do I 
value the Process of doins, creatins? 
Which is more imPortant to me, doins or 
havins done the software, music, or art? 
When is one more important to me than the 
other? What triSSers the chanse back and 
forth? 

To what extent am I creatins for myself 
versus for others? When do I forset them 
and lose mYself in the doins for lonj 
Periods? How does the awareness of mY 
audience <market> influence the work I am 
creatins? How do immersion and self
consciousness alternate or mix? How do 
thew comPete or conflict? How do they 
refine or ProPel each other? 

How can obJectivitY and subJectivitY be 
maintained in balance durins the creative 
process, so that neither overshadows the 
other? 

What moves us emotionally in music and 
art? What excites us intellectually? 
What feels sentle, sratins, or violent to 
the senses? What insPires us as beautiful? 
What reminds us of sadness? What textures, 
imases, and archtYPes do we see when we look 
inside ourselves instead of out? 

What have we experienced in common but 
never had means to Point to or communicate? 

What are we trYins to do that we have been 
unable to do? 

What are we able to do now that we have 
never been able to do before! 

What can each of us do beyond what we've 
already done? 



SOlN) SYSTEMS ON MICROS 

Susan E. Jenkins 

Instruction and Research Computer Center 
The Ohio State University 

Abstract 

This paper examines microcomputer-based music 
systems and their applications for music theorists and 
composers. The examination is based on first-hand 
experience with the microcomputers located in the micro
computer laboratories at The Ohio State University, and 
during demonstrations of equipment at the Instruction and 
Research Computer Center workshops. 

The use of computers is increasingly important in 
theoretical research, music analysis, instruction, and 
composition. Traditionally, composers had to have detailed 
knowledge of digital sound production in order to 
synthesize sound. Theorists had to become involved with 
job control language, system utilities, and high-level 
languages to use the computer for their research. Both 
composers and theorists either hod to share a large system 
not designed specifically for their needs, or invest 
thousands of dollars in their own system. 

Today, these circumstances are changing. 
Technology currently exists that enables a person to obtain 
useful results without being o programmer or an electrical 
engineer. Nor witl cost continue to be as prohibitive a 
factor in computer use. The technology making this 
possible is that of the microcomputer. 

INTRODUCTION 

In this presentation we will be concerned with introducing 
music applications on microcomputers. There has been 
some research recently concerning voice synthesis on 
micros, but it will be covered only briefly. 

Briefly about Voice Synthesis 

Voice synthesis for micros is generally of a different origin 
than that of other sound generation systems. Presently 
there ore three categories: 

* Analog-digital converters like Codex 

* Linear predictive modeling like Speak and Spell 
and Voice Synthesis from Texas Instruments 

* Speech synthesis from phonemes like BS232 
Votrex Box 

CH1930-7/83/0000/0036$01. 00 © 1983 IEEE 
36 

Music and Sound 

Music and sound capabilities on micros were considered 
frills until recently. Sound capability was often known to 
many as one of the micro's many "bells and whistles." In 
other words, having sound on a micro was something extra. 
Most will agree that this is true in many instances today. 
Nevertheless, it is possible to use seriously the sound 
capabilities of many micro systems. Even professional 
musicians are now admitting that micro systems have many 
uses, both musical and nonmusical. 

REASONS FOR USING MICROS FOR SOUND 

Some of the ways micros may be used for sound include: 

* Composition and arranging - immediate feedback 
without having to wait for performance by other 
musicians 

* Storage of melodies for protection against 
copyright violation 

* As a data base for storing compositions (a library 
of your own works in electronic form) 

* As music copyist and printer 

* As an alternative to purchasing a piano or 
keyboard instrument 

* In music education 

- drill and practice 

- music dictation/reading 

- developing aural skills 

* Performance as on instrument itself 

* Explora.tion of new sound capabilities 

* In theoretical research 

- perception 

- psychoacoustics 

- signal processing 

- sound synthesis 



WHAT IS A SOUND SYSTEM FOR A MICRO? 

Combination of hardware and software 

* Some method of inputing music from the 
beginning score; there are three types: 

- coded-entry 

- instrumental keyboard 

- non-traditional 

* Some method of editing musical score mes - may 
or may not be the same method as mentioned 
above 

* Documentation and programming aids 

- manuals 

preprogrammed songs 

- demonstration records and tapes 

- tutorials 

* Graphics on monitor used to see what notation is 
eAtered; usually this is some sort of piano score 

* Other things you can sometimes expect: 

- ability to repeat sections without re-entering 
notes 

- transposition of entire piece, voice or section 

- control of tempo and dynamics 

sequenced playback - file merging, copying 
moving 

control of 'instrument' sound or timbre 

- control of envelope 

- wide range between accuracy of notational 
capabilities on individual systems 

A CLOSER LOOK AT SOUN:> SYSTEMS 

PARAMETERS INVOLVED 

* waveform 

* voices (2-16) 

* envelope - attack, duration, decay 

* channel 

* range frequency, pitch range 

* amplitude control, volume 

37 

* tuning accuracy 

* stereo 

* filtering capabilities 

* timbre control 

- you choose between preprogrammed 
"instruments" 

- you program your own "instruments" 

* more advanced techniques (modulation, re
verberation, etc.) 

SAMPLE SYSTEMS 

Cosio Music Machine 

Name: 

Use: 

Manufacturer: 

Price and Format: 

Computer Model: 

Documentation: 

Audience: 

Atari 

·Name: 

Use: 

Manufacturer: 

Price and Format: 

Computer Model: 
Memory: 

Documentation: 

Audience: 

Commodore 64 

Name 

Use: 

Manufacturer: 

Price and Format: 

Casio Music Machine 

Melody instrument, for 
fun, performance 

Casio 

Keyboard with chip 
$35-$300 

Several models 

Short booklet 

Hobbyists, performers 

Music Composer 

Composition, arral)ging 
performance 

Atari Inc. 

ROM cartridge $59.95 

Atari 400 and 800 
16K RAM 

21-page booklet 

Hobbyists, composers 

Music System 

Composition, performing 
for fun 

Commodore 

3-voice chip included with 
original system software 



Computer Model: 
Memory: 

Documentation: 

Audience: 

Commodore 64 
64K 

A chapter in the Programming 
Guide/Tutorial 

Hobbyists, composers 

Mountain Music System 

Name: 

Use: 

Manufacturer: 

Price and Format: 

Computer Model: 
Memory: 

Documentation: 

Audience: 

AlphaSyntauri System 

Name: 

Use: 

Manufacturer: 

Price and Format: 

Computer Model: 

Audience: 

Synclavier 

Name: 

Use: 

Memory: 

Manufacturer: 

Mountain Music System 

Composition, arranging, theory, 
teaching 

Mountain Computer, Inc. 

Music boards, software (diskettes), 
speaker cables, I ight pen $545 

Apple II 
64K 

2 manuals, updates supplied peri
odically 

Composers, performers, music 
professionals. 

AlphaSyntauri 

Composition, theory, in-struction, 
printing music performance 

Syntauri Corporation 

keyboard, software, 4 octaves, $700; 
12 octaves $1200; Apple II interface 
$30; Apple II cable $35; 
Musicmaster, Theory (diskette) 
$150; Draw Waves (diskette) $30; 
Composer's Assistant (diskette) $295 

Apple II 
64K 

Composers, performers, music 
professionals 

Synclavier II 

Music professionals wanting the 
most control over timbre and note 
creation, high resolution graphics, 
digital readouts of hertz and decibel 
levels, one-stroke transposition of 
key, double command erase button 

New England Digital 

38 

Price and Format: 

Computer Model: 

Audience: 

16-voice 32K synthesiser and 
software $19,750 Add Winchester 
disk drive, dot-matrix printer, and 
graphics terminal to total $40,225 

Dedicated system 

Composers, professional labo-
ratories, millionaires 

GLOSSARY OF TERMS 

amplifier - voltage-controlled amp is usually several 
signals added together in equal proportions; results in 
volume control 

amplitude - is related to the height of a waveshape; 
measured in decibels (dB); strong relationship 
between amplitude and volume 

analog-to-digital conversion - for the input of manual data; 
envelope follows, pitch trackers, filter banks, or 
audio signals converted to digital form; most micros 
use monostable multivibrator 

analysis - thoroughly examining sounds determining the 
sounds' fundamental parameters and how they vary 
with time 

analysis-synthesis - creating sounds as a result of 
understanding the relation between parameter change 
and audible effect 

bandwidth - used to describe filtering techniques; refers to 
a specific range of frequencies 

channel - the method many micro systems use for creating 
a stereo effect; system can have 2-16 channels 

digital oscillator - offers two main advantages over 
conventional voltage-controlled oscillators; enhanced 
frequency accuracy and greater waveform variety 

digital-to-analog converter - one of the most important 
parts of a digital sound synthesis system; converts 
digital data to an analog audio signal 

display - most systems include some method of displaying 
the sounds during editing sessions or even during 
playback; some sort of graphics on the computer 
monitor 

editing - method for inputing musical score or code on 
system; by keyboard, typing, or non-traditional 
methods 

envelope - identification of changes in amplitude; what 
separates one note from another; consists of attack, 
sustaining of shape, and decay with time 

filter - a device which acts directly on the spectrum 
changing the amplitude and phase of each wave 
component of the input by a predictable amount; 



basic filter shapers: low-poss, high-poss, bond-poss, 
bond-reject 

formant - port of the essential character of a sound; 
resonant peaks of a sound 

Fourier transform - way of connecting the time domain 
(waveform and sample values) with frequency domain 
(amplitude and phases) 

frequency - is measured in cycles/second according to the 
number of times a woveshope repeats itself (in hertz, 
Hz; or kilohertz, kHz); strong relationship between 
frequency and pitch 

instrument - in "micro talk" commonly refers to a 
programmed sound with a certain timbre; most 
systems offer choices of preprogrammed sounds 
referred to as instruments 

modulation - amplitude, using the amplitude of one 
waveform to control another; frequency, using the 
frequency of one waveform to control another 

keyboard - most mid-priced to expensive systems include 
electronic keyboard for performance and editing; of 
various lengths and sizes; sometimes independent of 
CPU 

noise generator - makes 'noise' analogous to white light, on 
even mixture of all frequencies 

orchestra - sometimes (in MusiclV) refers to a set of sub
program calls generating a desired group or block of 
sounds or instruments 

phase - shift of a particular frequency determined by 
comparing two waveforms on the oscilloscope face 

reverberation - method of provisions for mixing delayed 
and undeloyed sounds; audible effect-some kind of 
echo 

sample - to convert sound in time to digital representation; 
on individual pulse or number which gives the 
waveform amplitude at a certain point in time 

spectrum analysis - a kind of graph helpful in indicating 
timbre; horizontal axis is frequency, vertical axis is 
amplitude 

stereo - not found on most small micro systems; separation 
and cross tracking of sound 

telehormonioum - one of the earliest musical instruments 
which produced sound by purely electrical means; 
built by Thoddius Cohill in 1903 

timbre - on aspect of sound which assists in identifying it; 
sound quality 

tuning - equol-temperment is used almost exclusively in 
micro systems; all half steps the some size 

voice - in "micro talk" one way of referring to a single 
melodic line of music; not necessarily independent 
from other sounds occurring simultaneously 

39 

waveform - a method of visualizing sound as changes of air 
pressure with time 

AI\INOT A TED BIBLIOGRAPHY 

Adorns, Christopher. "Sound Tobie: Fast Sound Effects 
from BASIC," Creative Computing, July 1983. 
Assembler approach to making sounds. 

Buxton, W., et al. "A Microcomputer-Based Conducting 
System," Com~uter Music Journal, Autumn 1980. 
Description o system for performer to interpret or 
conduct precomposed scores. 

Ciorcio, Steve. "Add Programmable Sound Effects to Your 
Computer," Byte, July 1982. 
Includes instructions for hardware alteration and programs. 

Edwards, John. "Highly Personal Music," Popular 
Computing, June 1983. 
Good introduction to software for Apple, Atari, and Radio 
Shock computers. 

Gold, Jordon. "Keyboard Charisma - Making Music by 
Computer," Personal Computing, Moy 1?82. 
Uses for personal enjoyment, includes buying guide. 

Hammond, Roy. "Musical Computers," Music and Sound 
~. September /October 1982. 
Gooasurvey of dedicated systems; aimed toward the 
performer I composer 

Hiller, Lejoren. "Composing with Computers: A Progress 
Report," Computer Music Journal, Spring, 1982. 
A review from one of the first to use computers for 
composition of his own works. 

Haynes, Stanley. "The Computer as a Sound Processor: A 
Tutorial," Computer Music Journal, Spring 1982. 
Good technical survey of work at lnstitui Recherche et 
Coordination Acoustique/Music and in Fronce. 

Jones, Kevin. "Computers and Musicians in Concert," New 
Scientist, 27 August 1981. -
Good introduction for novice includes a brief history of 
computer music. 

Lubor, David. "So You Wont to Buy a Music Synthesizer," 
Creative Computing. Winter, 1982. 
Sample systems and brief explanation of some terms. 

Shore, Michael and McCain, Lorry. "Computers Rock the 
Music Business," Popular Computing, June 1983. 
Very good survey of commercial uses, and description of 
three types of entry systems. 

Smith, Patricio. "Computers Make Music," Creative 
Computing, July 1983. 
Investigates trends in computer music especially those in 
California. 

Tubb, Phillip. "Pick and Choose," Creative Computing, 
Winter, I 982. 
Somewhat biased but informative comparison of ALF, 
Micro, and Mountain systems; awkward conversational 
writing style 



LIST OF SAMPLE SYSTEMS 

Andex, Sirius Software, Inc., Apple II, $29.95. 

ApSle Super Music Synthesizer, Applied Engineering, Apple 
II, 159. 

Compu-Music, Poland Corporation, Apple II Plus and lie, 
TRS-80 I and Ill, IBM PC, NEC PC-6000 and -8000, cost? 

Electronic Duet, lnsoft, Apple, $29.95. 

Emulator, E-Mu Systems, dedicated system, $6,400-$8,000. 

Fairlight, CMI, dedicated system, $27,500. 

Micro Music, Apple, collection of software and board, $50-
$400. 

Mcleyvier, Mcleyvier, dedicated system, $25,000. 

The Music Box, Newtech Computer Systems, TRS-80, $149. 

The Music Card, ALF Products, Inc., Apple II, MC- I $195, 
MC-16 $245. 
Music Maker, Sublogic Communications Corp., Apple II, II 
Plus, and lie, $49.95. 

Music SMthesis S~stem, Micro Technology Unlimited, Pet, 
AIM, Kl , Apple, 50-$89. 

Orchestra-90, Software Affiar, TRS-80 Model Ill, $149.95 

~. Abacus Software, Vic 20, $22.95. 

Prism, Kinetic Sound Corporation, dedicated system, 
$49,000. 

Soundchoster Digital, Passport Designs, Inc., Apple II, lie, 
$1250. 

Roland CMU-800 and Compu-Music, Roland Corp. US, 
Apple II, NEC, $465. 

~. Adaptive 
~28,600. 

Systems, Inc., dedicated system, 

Vic Music Composer, Thorn EMI, Vic 20, $39.95. 

40 



QUADSURF: A GRAPHICS SYSTEM FOR 3-DIMENSIONAL HALFTONE IMAGES 

Steven R. Seidel 

Mathematical Sciences Department 
Virginia Commonwealth University 

Richmond, Virginia 23284 

ABSTRACT 
A graphics package for producing 

halftone representations of 3-dimensional 
objects has been developed for the 
Apple II+. This package can display any 
quadric surface (a sphere, cone, cylinder, 
etc.) as it would appear when illuminated 
by a point source of light. The shadow 
cast by the surface is also shown. The 
halftone effect is obtained by construc
ting the surface of white points statis
tically distributed according to the pro
portion of light reflected from each ele
ment of the surface to the observer's eye. 
Within the limits of screen resolution 
this technique yields an image with appro
priately highlighted and ambiently lit 
regions and smooth transitions of bright
ness between such regions. The package is 
written in UCSD Pascal and includes 
facilities for storing and retrieving 
complete images from disks, modifying 
images, and a limited form of animation. 

0. INTRODUCTION 

An interactive computer graphics 
package, called QuadSurf, has been 
designed that is capable of producing 
halftone images of certain types of 
3-dimensional objects. This package was 
written for the Apple II+ and was designed 
for inexperienced and non-mathematically 
oriented users. The class of 3-dimen
sional objects the package can draw are 
called quadric surfaces. Common examples 
of such surfaces include spheres, cones, 
footballs, cylinders, and saddle-shaped 
objects. An illusion of depth is created 
by constructing the surface with indivi
dual points of light, where the density of 
points varies over the surface in a manner 
analogous to that of true halftone images. 
The surface is set in a simple background 
consisting of a ground surface that 
recedes to infinity and a "sky" above. 
The shadow of the object is shown as it 
falls on the ground surface. 

The graphics package includes an 
interactive environment to facilitate 

CH1930-7/83/0000/0041$01. 00 © 1983 IEEE 
41 

creating and maintaining a collection of 
images. It provides for the "quick and 
dirty" creation of images so that image 
composition can be judged quickly and it 
has facilities for automatiCQ.lly rendering 
full-scale versions of images without user 
intervention. The latter facility is 
useful since a typical full-scale image 
takes several hours to compute and dis
play. The system also provides for the 
high-speed sequential display of previous
ly created images so that a limited form 
of animation can be obtained. The envi
ronment provided for the user requires no 
knowledge of programming or operating 
system usage. The package is written in 
UCSD Pascal and requires an Apple II+ 
microcomputer with the Pascal language 
option. 

The following three sections describe 
in more detail the kinds of images that 
can be produced by this package, the 
interactive environment provided for the 
user, and the limitations of this system 
and its potential transportability to 
other computers. 

1. IMAGES 

This section informally describes the 
variety of images that can be obtained 
using the QuadSurf package. The name 
QuadSurf is a contraction of quadric 
surface, the mathematical name of the 
class of surfaces this package can pro
duce. Throughout this discussion the word 
"image" refers to the entire contents of 
the graphics display screen. The word 
"surface" refers to the object shown in 
the image, namely, the quadric surface 
apart from its background. Figures 1 and 
2 are examples of images produced by 
QuadSurf. In those figures each surface 
is composed of black and white points, 
the "ground" is green with black horizon
tal lines, the "shadow" is violet, and the 
"sky" is blue. ·The selection of alternate 
colors for the elements of an image may be 
be available in a later version of this 
package. 

In general, the surfaces QuadSurf can 



Figure 2 

42 



produce are smooth and very symmetric. A 
more detailed classification of quadric 
surfaces is given in the Appendix. Here 
it will suffice to think of them as 
cylinders (possibly smoothly gathered in 
at the "waist"), spheres, footballs, 
infinitely deep smooth-sided mixing bowls 
(perhaps with their mirror images), cones 
(perhaps with their mirror images), and 
"infinite" saddles. All but the last of 
these can be of circular or of ellipitical 
(oval) cross section. 

The QuadSurf package can draw any one 
of these surfaces in a given image. The 
surface is presented in relation to a 
"ground plane" with horizontal lines 
across it to give an illusion of depth. 
Any part of the surface that lies below 
the ground is hidden from view. Figure 2 
shows how the bottoms of the two "pods" 
are cut off by the ground. The upper half 
of the background is a simple "sky" that 
lies at infinity. 

Figure 3 shows the observer's position 
with respect to the elements described 
above. The observer is centered behind a 
viewing window. The ground is perpendicu
lar to the window and the bottom edge of 
the window lies directly on the ground. A 
light source above the ground illuminates 
the surface and casts its shadow on the 
ground. Only that portion of the surface 
above the ground and on the side of the 
window opposite the observer is seen by 
the observer. 

The observer's environment is des
cribed to QuadSurf using the conventions 
of a 3-dimensional Cartesian coordinate 

surface 

system. As indicated in Figure 3 the x 
axis of the coordinate system runs right 
and left, the y axis runs parallel to 
the observer's line of sight, and the z 
axis runs up and down. The coordinate 
arrows in Figure 3 indicate the positive 
direction along each axis. The user may 
specify the location of the window any
where in the x-z plane, that is, any
where in space as long as the window is 
perpendicular to the y axis. No corner 
of the window need lie on the origin as 
might be implied by Figure 3. The user 
specifies the location of the light source 
by giving its x, y, and z coordinates. 
Finally, the user describes the surface to 
be displayed by giving numerical values 
for the ten coefficients for the mathema
tical equation of the desired surface. In 
practice, most of those coefficients are 
zero so the user need only reach an under
standing of how a small number of them 
determine the shape of the surface. The 
effects of these coefficients are sum
marized in the Appendix. 

As mentioned earlier, the observer 
sees that portion of the surface that lies 
above the ground and falls on the far side 
of the window. The shadow cast by the 
surface onto the ground is determined in a 
natural way by the location of the light 
source. The manner in which the surface 
appears to the user is determined as 
follows. The window, which corresponds to 
the physical graphics screen, is uniformly 
divided into equal-sized picture elements 
(pixels), the smallest discrete graphic 
elements that the computer can distin-

z 

light 
source 

,, 

X 

observer 

Figure 3 

43 



guish. For each pixel through which tl,E' 
observer sees a portion of the surface 
QuadSurf determines the direction in which 
a beam of light from the light source will 
be reflected off the surface at a point 
within that portion of the surface. The 
angle between the relected beam of light 
and the line of sight of the observer 
determines the brightness with which the 
observer will see that portion of the 
surface. Since the color values of pixels 
on the Apple graphics screen cannot be 
varied in intensity, variations in bright
ness over the surface are simulated by 
statistical means. Simply, the more 
nearly the beam of light is reflected to 
the observer's eye the greater is the 
liklib::>od that the pixel observed will be 
white. Since the resolution of the Apple 
graphics screen is so low (i.e. pixels are 
large) this approach yields a coarse 
stippling of the surface that only 
approximates a high quality halftone 
image. A discussion is given in Section 3 
of the potential for transporting that 
portion of the QuadSurf package respon
sible for producing images to other, 
higher resolution graphics systems. 

2. USER ENV IRONMENI' 

The us er environment is the microcosm 
created by the computer for the person 
using the computer. Just as a video game 
creates a world of its own, every computer 
system and every program run on a computer 
system creates an environment based on the 
manner in which the user interacts with 
the program or system. QuadSurf is 
intended for inexperienced and non-mathe
matically oriented users and so was 
designed to be easy to interact with and 
forgiving in nature. The creation of such 
a user environment posed several problems. 
Altb::>ugh not all of these problems have 
been solved significant progress has been 
made since the earliest versions of this 
package were developed. 

There were three main problems in 
creating the desired user environment. 
First, any surface to be drawn by the 
package is described by a complex-looking 
mathematical formula, a second-degree 
equation in three variables. Such an 
equation has ten coefficients wb::>se values 
must be supplied by the user. Steps were 
taken to make this process as painless as 
possible. Second, the limitations on the 
computational speed of the Apple result in 
the fact that it takes several b::>urs to 
generate full-scale images such as tb::>se 
sb::>wn in Figures 1 and 2. such slow 
"response time" is discouraging to the 
typical user because it makes experimen
tation tedious and delays gratification. 
Finally, given the high cost in time of 
creating images it would be unacceptable 
if images could not be saved, only to have 

44 

to be recomputed "from scratch" to be seen 
again. This section describes b::>w these 
and lesser issues were dealt with in the 
design of QuadSurf. 

Three features are provided to mini
mize the intimidation and confusion that 
might result from requi ri.ng the user to 
supply values for the coefficients of the 
quadric equation and a few other numbers 
that determine window dimensions and the 
location of the window and light source. 
First, default values that will yield an 
image similar to that of Figure 1 are 
initially provided for all of the varia
bles. These default values give the 
user a secure base from which work can 
begin. The user is encouraged to change 
just one or two of tb::>se values at first 
in order to learn how tb::>se values affect 
the image displayed. This provides the 
opportunity to begin slowly and progress 
at a self-determined pace. As usage 
proceeds the default values are taken from 
the most recently di splayed image. 

Second, a technique called scanning 
on the fly [1] is used to guarantee that 
the user does not inadvertently supply 
values that will sooner or later cause 
program failure or other undesirable 
behavior. This technique prohibits the 
user, in a reasonably friendly way, from 
ever typing anything that might lead to 
unfortunate results. In fact, this 
technique is used throughout the package 
wt its most significant use lies here. 

Finally, the user is presented with a 
fixed-format screen for the purpose of 
entering the required nwnbers. This type 
of screen display does not roll up after a 
line is typed as is typical on many 
systems. The screen display consists of 
labelled fields that are to be filled in 
by the user. The default values described 
earlier initially occupy the fields. The 
user is free to jwnp to any one of the 
fields and alter its current contents by 
using a small collection of commands 
presented at the bottom of the screen. 
This design avoids the sb::>rtcomings of the 
usual scrolling of the screen since none 
of the nwnbers that determine the image 
ever disappear past its top edge wt are 
always visible at the same location on the 
screen. In addition, one of the editing 
commands allows the user to flip the 
display between a page of instructions and 
the data entry page. 

The second major difficulty in the 
design of the user environment was the 
unfortunately heavy computational effort 
the Apple must expend to compute a single 
image, typically several b::>urs are re-
qui red. To minimize the impact of this 
delay on the user a facility is provided 
for producing small-scale renderings of 
images. These are simply miniature 
versions of full-scale images and so 
contain proportionally less detail but 
take much less time to compute and dis-



play, typically a few minutes. The user 
is given the opportunity to determine the 
most suitable trade-off between the size 
of the image and the time it takes to 
com?Jte it by choosing the relative sizes 
of these thuml:nail sketches. When the 
user has created the desired image through 
the use of such sketches a facility for 
automatically generating a full-scale 
image can be invoked. This allows the 
user to have the com?Jter work overnight 
or during other low demand periods. A 
future version of the QuadSurf package 
will allow the user to have a collection 
of up to 17 full-scale images com?Jted 
automatically so that the com?Jter can be 
left to do its heavy work, say, over the 
weekend. 

Final! y, in 1 ight of the high cost of 
com?Jting a single image it would be 
unacceptable if there were no means of 
preserving images once they were computed. 
QuadSurf provides a simple facility for 
saving images (of any size) on a disk and 
for subsequently displaying those images 
whenever desired. It takes less than one 
second to transfer a stored image from a 
disk to the grahics screen so the user can 
easily review the fruits of his or her 
labor. A number of other features are 
provided to help the user maintain a 
collection of images. Of greatest impor
tance among these is that the parameters 
used in the creation of each image are 
stored along with the image on the disk. 
Since about twenty numbers are used to 
determine the properties of an image it is 
essential that the com?Jter its elf main
tains such a record. As mentioned ear
lier, QuadSurf uses the parameters asso
ciated with the most recently displayed 
image as the default values for the fields 
in the data entry portion of the package. 
In this way the user can recall and modify 
an existing image without having to re
enter all of the parameters associated 
with it. The user need only specify new 
values for those that are desired to be 
changed. 

Given the speed with which existing 
images can be transferred from a disk to 
the graphics screen it was reasonable to 
provide a means of automatically sequen
cing through a collection of images in 
order to provide a form of an·imation. 
Since at most 17 images can be stored on 
one disk (and for other reasons) a "film" 
of at most 17 frames can be created. At a 
rate of 1.1 frames per second the film 
lasts only 15. 5 seconds but the com?Jter 
repeats the sequence of frames until the 
user tells it to stop. The imaginative 
user can use this facility to create 
interesting "film loops". 

Some simple image management (i.e. 
file management) facilities are also 
provided for listing and changing the 
names of images stored on a disk and for 
deleting images from the disk. These 

45 

duplicate some of the Apple Pascal opera
ting system's file management facilities 
but they eliminate any need for the user 
to leave the QuadSurf program to perform 
such operations. Thus the user need not 
be familiar with the operating system in 
order to make good use of QuadSurf. 

3. LIMITATIONS AND TRANSPORTABILITY 

The QuadSurf package has several 
shortcomings that result from fixed design 
objectives or limitations of the com?Jter 
system for which the package was designed. 
Two of these, the speed with which an 
image can be com?Jted and the resolution 
of the graphics screen, have been men
tioned earlier and will be disqussed 
further. Three other shortcomings of 
QuadSurf are the small variety of surfaces 
that can be COm?Jted, the surface drawing 
algorithm is not particularly sophisti
cated (in contrast, see [2, 3]), and no 
provision is made for drawing more than 
one surface in any one image. (Altmugh 
the surface smwn in Figure 2 has two 
disjoint parts it is a special case. What 
is meant here is that, for example, 
QuadSurf cannot draw two spheres in the 
same image.) Each of these smrtcomi ngs 
was forseen and accepted in order to 
maintain the feasibility of the project. 
A discussion of these issues is outside 
the scope of this paper. This section 
treats the issues of com?Jtational speed 
and screen resolution in terms of the 
potential for transporting QuadSurf to 
other graphics com?Jters. 

QuadSurf would be a much more useful 
package if it were available on a computer 
with a higher resolution graphics screen 
and with better facilities for floating
point arithmetic. Even tmugh QuadSurf is 
written in Pascal, a fairly well-standar
di zed language, transportability is still 
an issue for three reasons. First, UCSD 
Pascal, the flavor Apple supports, has a 
few nonstandard features which QuadSurf 
uses and so the program would require some 
localized mo6ifications. However, this is 
the least of the problems. QuadSurf 
depends heavily on the particular way the 
Apple Pascal system does disk I/O and on 
the particular collection of machine
dependent graphics commands that QuadSurf 
employs to di splay images. These depen
dencies are too involved to discuss at 
1 en gt h. It i s enough to note that 
QuadSurf depends on disk format, disk 
directory format, the locations in memory 
of gr a phi cs di splay pages , and various 
other absolute addresses in memory that 
are part of the run-time environment of an 
Apple Pascal program. However, one of the 
design features of the package is that all 
of these dependencies are restricted to 
the user interface and file mani?Jlation 
facilities provided by the package. 



The QuadSurf package can be separated 
into two main parts of roughly equal size. 
The first of these consists of the outer
most levels of the program and serves to 
er eat e and mai nt ai n the us er environment . 
This portion of the program would be 
difficult to transport because of the 
dependencies mentioned above. Ha...ever, 
the second part is strictly responsible 
for comp..1ting images and itself does very 
little I/0 and uses rut a small collection 
of machine-specific graphics commands. 
(Indeed, this portion was first implemen
ted on a Tektronix 4051, subsequently 
translated into Pascal because of the 
greater readability of that language and 
transported to the Apple.) This portion of 
the program is self-contained and could 
most easily be transported to another 
system. The implementor would need to 
create a new user environment to go along 
with the surface drawing algorithm rut 
this environment could be as simple or 
complex as desired. Thus the comp..1ta-
ti onal and graphical limitations of this 
package can be overcome by transporting 
its core to a more powerful comp..1ter. The 
other issues remain as subjects of future 
efforts. 

4. SUMMARY 

The QuadSurf graphics package is a 
microcomp..1ter-based facility for creating 
and mai nt ai ni ng collections of halftone 
3-dimensional images and is designed for 
inexperienced and non-mathematically 
oriented users. The success of the pack
age with respect to the last of these 
goals remains to be determined. 

APPENDIX 

The types of images QuadSurf can 
produce are now briefly cataloged and 
described. A more comprehensive treatment 
can be found in most any calculus text 
that contains a section on analytic 
geometry. 

In general, QuadSurf can draw what are 
known as quadric surfaces. Such surfaces 
can be described by an equation of the 
form 

Ax 2+By 2+cz2+Dxy+Exz+Fyz+Gx+Hy+Iz = J. 

The choice of values for the coefficients 
A, B, C, .•. , J determines the shape of 
the surface that QuadSurf will draw. In 
the classification below at least six of 
the coefficients will be assumed to be 
zero. The user is left to experimentally 
discover the effects of nonzero values for 
trose coefficients. The remaining coef
ficients in each case are assumed to be 
positive numbers. 

46 

1) Elliptic cylinder: Ax 2+By 2 = J. 
If A = B then the surface has a 
circular cross section, otherwise 
it has an elliptical (oval) crc•s 
section. 

2) Ellipsoid: Ax 2+By 2+cz2 = J. 
a) If A= B = C this is a sphere 

of radius J (see Figure 1). 
b) If two of A, B and C are equal 

and the remaining coefficient is 
less than the other two the surface 
resembles a football. 

c) If two of A, B and C are equal 
and the remaining coefficient is 
greater than the other two the 
surface resembles the earth: a 
slightly "squashed" sphere. 

3) Elliptic hyperboloid of one sheet: 

2 2 2 
Ax +By -Cz = J • 

An elliptical cylinder with a 
smoothly narrowed "waist". 

4) Elliptic hyperboloid of two sheets: 

Ax 2-sy 2-cz2 = J 
This surface can be trought of as 
the surface of case (3) pinched so 
tightly that it separates into two 
pieces (see Figure 2). 

5) Elliptic paraboloid: Ax 2+sy 2-Iz = J. 
This is a surface resembling just 
one of the two pieces of the surface 
of case (4). 

6) Elliptic cone: Ax 2+By 2-cz2 = O. 
This is a surface resembling the 
surface of case (3) but pinched 
down just to the point of 
separating. It resembles two cones 
attached at their tips. 

7) Hyperbolic paraboloid: Ax 2-sy 2-Iz = 0 
This is a saddle-shaped surface 
extending infinitely in all 
dimensions. 

Using the equation for an elliptic 
cylinder as an example, two observations 
can be made that also apply to the other 
surfaces described in this list. First, 
the values chosen for A, B, and J 
determine the cross-sectional area of the 
surface. For example, if A = B = J = 1, 
the cylinder has a radius of 1 unit. By 
increasing J or decreasing A or B the 
cross-sectional area of the surface will 
increase, and vice versa. Second, by 
exchanging the selection of coefficients 
from the general form of the equation the 
orientation of the surface can be altered. 
For example, an elliptic cylinder with 
equation 

2 2 
Ax +By = J 

will be drawn by QuadSurf as a cylinder 
standing on one end, that is, oriented 
along the z axis. The equation 



By2+cz2 = J 
describes a similar surface rut one lying 
on its side extending to either side of 
the viewing window and 

Ax 2+cz2 = J 
is an elliptical cylinder al so lying on 
its side rut extending through the plane 
of the window. 

REFERENCES 

[l] Seidel, s. R., Scanning on the fly: 
An approach to the user interface, 
Comi:ut. Educ., (to appear). 

[2] Potmesil, M., and Chakreverty, I., 
Synthetic image generation with a 
lens and aperture camera model, 
ACM Trans. on Graphics 1, 2 (April, 
1982), 85-108. -

[3] Blinn, J. F., A generalization of 
algebraic surface drawing, ACM 
Trans. on Graphics 1, 3 (July, 
1982), 235-256. -

47 



DESIGN FOR AN ARTISTS' WORKSTATION FOR THE NICRO-CONPUTER 

by David Cook 

Digital l•a9e Corporation 
Grand Rapids, Michigan 

__M~TRACT 

In this papar, a design description for the 
software involved in an artist work ■tation is 
presented. This papar investigates th• u1e1 of 
scanners and functions incorporated into a highly 
defined user interface for the manipulation of 
graphic i1age1. The re ■ults 1how1 that coaplete 
graphics software 1y1te11 can be developed for very 
low cost 1lcro-coaputer1 which can rival if not 
better, currently available and costly aaln-fraae 
sy1te111. 

INTRODUCTION 

In technology's onrush of -coaputer graphics 
hardware and software we repeatedlr haar that in 
order to have truly good, high qua ity graphics, we 
need 1a11ive nu1ber crunching co1puter1 to handle 
fast fourier tran1for11 and other coaplex 
algorithaic strategies. While it is true that 
large aachine running large progra■ s can in turn 
proauce very good graphics, the expense of such a 
1y1te1 is auch beyond most budgets. Three years 
ago I Dig ital I.age Corp oration, I new co■panr, 
decided that for their first project they wou o 
1tte11pt to produce high quality co•puter graphics 
for advertising, slide shows and television. 
Realizing that an equip1ent inve1t1ent of $111,111 
or aore wa1 required to buy a coaaercially 
available coaplete graphic 1y1te1 1 it w11 1110 
decided that the co1p1ny would 1110 dasign th1ir 
own graphics 1y1t1• b111d around the Z81 tight bit 
1icroproce11or. Since tiae w11 a crucial factor it 
w11 d1cid1d that all th1 h1rdw1r1 should bt 
current, off-the-shelf equipaent, with the software 
being designed in-house. 

COMPUTER EQUIPMENT 

Croa,aco Z2D, ZBI based coaputer 1y1t1a 
1 64K RAN - Nain user me ■ory 
* ITUART board (contains 2 p1r1ll1l ports) 
* Two 5 1/4 inch floppy disk drives (386K each) 
* B11hiv1 CRT 

EPSON FX-88 gr1phic1 printer 

BRAPHfCS EQUIPNENl 

Croaeaco SDI graphics boards 
(16 colors out of ■ ap of 41961 
1 Two 48K RAN i ■ age planes 

Via Vid10 fr••• grabb•r with B~W RCA vid10 ca■era 
Hou1ton Instru ■ents HIPAD bitpad 
Aydin Controls RGB •onitor 
3N color •ncoder <RBB to NTSC convert,rl 
Matrix C111ra (produce• 35•• slides of RGB i ■ agel 

Aft1r an initial six aonths of 1oftw1r1 
d1velopa1nt, the 1y1te1 was turn1d over to slide 
production with furth1r 1oftware dev1lop11nt 
occuring in non-production hour ■, At th, tiae of 
thi1 writing, we h1v1 just i1ple1ent•d ver-1ion 4,8 
of our software, One of the di1tinction1 b1twe1n 
our 1y1t11 and the larger co■1arci1lly available 
'cann•~· syste•s is that w1 had to produce a 
Droduct usina our own 1oftw1re, Havino to ,at our 

CH1930-7/83/0000/0048$01. 00 © 1983 IEEE 
48 

own code hai made u1 painfully awir• of our 
1hortcoaing1 in the initial design, This docu11nt 
will describe the basic proble1s 1ncount1red in 
designing a graphics 1y1t11 for an tight bit 
co■puter. We will d11l in concept; inple■entation 
exa ■ples will be in pseudo-code instead of ZBI 
assembler in order to 11ake the ideas universal to 
al I co1puter&, 

BASIC PRO~l,!:NS_ 

The b11ic proble11 we encountered in designing a 
graphic ■ package for a eight bit processor were: 

1 l Resolution 
Would the product contain enough resolution to 
sell professionally in the television and 3511 
11 ide urkets? 

2l Spud 
Would the hardware be fast enough to produce 
the required graphics in a ti ■e fraae which was 
pr of itab I e? 

3 l Ease of use 
Would the systea be useable without the 
operator needing two PhD's from HIT? 

4) Verutility 
Would the 1y1te1 produce effectively without 
restricting the 1rti1t1 creative potential? 

To solve these proble ■ s on a aicro-coaputer 
required a ti9htly designed software 1y1tea based 
around graphics theories which differ fro• the 
currently accepted standards, 

THE SOFTWARE 

The graphics software con1l1t1 of several separate 
progra■ s. FONT is designed to draw vectored stroke 
tables, This handle ■ all lettering (fonts) and 
1pecial i11ge1 such 11 the 2D wlrefra■e outline for 
1 shape used to create I solid, SPECIAL PROBRANS 
consists of several algorlth•s for 1utating raster 
images such 11 tilting, skewing, block pixing, 
sphere generation etc, These are usedi like FONT, 
to generate basic 1h1pe1 or 1ff1ct1, aHOOT is a 
progra• which handles down loading an i ■ age to 35•• 
fil1, The final prograa 1 NENU, will be the topic 
of thi & paper, It is the nub of the sys tea and is 
used to take all the basic coaponents provided by 
the other software and •odify the• to create the 
final l1age, On tha average, the user 1p1nd1 ao1t 
of the tlae in NENU, therefore ■ peed and efficiency 
are of pri11 concern, 

GRAPHICS PRIMITIVE SET, BASIC DESIGN 

Our co•puter Included both zee ASSEMBLY LANGUAGE 
and FORTRAN IV. Speed and efficiency 
con1lder1tlon1 ••de us choose 111eably language for 
i ■ ple1enting the pri1itive1, Since we wanted our 
primitive set useable In both languages , we 
endowed all pri1itiv11 with FORTRAN call co1patible 
para1et1r lists. Additionally{ since our version 
of FORTRAN treats para1eter i1t1 containing ■ore 
than three p1ra1et1r1 differentlr than li1t1 with 
three or 1111 p1r11et1r1, all ca 11 contain no 1or1 
than three paraaeters, Each p1r11eter 11y be 



either 1cal1r or vector, Any routine requiring 
aor1 than thr1e paraa1t1r1 which can not b1 
1pecifi1d in a vector are u1ually 1pecified through 
a 1econd routine which •ake1 the data available to 
the fir1t routine through a global data area. 

BABIC CONCEPTS 

The graphics primitive, are divided into the 
following four ba1ic group11 

1) Environ1ent 1aintenance priaitive1 
2) Reality interface rri•itives 
3) I•age ■ pace •anipu ator ■ 
4) Color space •anipulator ■ 

Group onei the 1nvirona1nt ■aintenance functions, 
are 1i1p y command• to select work page1, di1pl1y 
page1 1 stack usage and so on, Group one is highly 
dependent on the actual graphic ■ hardware selected 
and therefore will not be discu1sed, 

Environment Maintenance Primitive11 

CPPABE - Copy current page to alternate page. 
DIFLIP - Di1play the alternate or flipped page, 
DIBP Di1play a particular graphics page. 
DMAOFF - Turn graphics DMA off, 
DMAON - Turn graphics DMA on, 
EXPAGE - Exchanges one page for another page. 
FXDOT - Nrite pixel via currently 1et function. 
GRAFIX - Move FORTRAN stack for graphics use. 
INIT Initilize general graphics environ ■ent. 
NYBBLE - Bet bit or nybble ■ apped resolution. 
RES Set entire display to high or low 

resolution (high•756x4B2, low•37Bx241l, 
SCROFF - Turn the 1creen off. 
SCRON - Turn the screen on, 
SETFUN - Set logical function for ISM c011and1, 
SFUZZ - Bingle neighborhood pixel average, 
TARBET - Bet target page and scanners IBM co ■aands. 
NINDON - Open a window fr01 page zero to page one. 
NOFLIP - Nork on the alternate or flipped page, 
NORKON Nork on.a rarticular graphics page. 
XDOT Write pixe, 
XREAD - Read the color of any individual pixel, 

Broup two, reality interface functions, are 
c01p01ed of bitpad interfaces fra■e grabber• and 
i ■ age-to-di1k/di1k-to·i•ag1 routine ■, These fairly 
1tandard algorith•• are also extre■ely hardware 
dependent. In a later part of thi1 paper, the two 
■ ajor routines, BITPAD and BITGET, will be 
dilCUIHd, 

Reality Interface Primitive11 

BITGET - Git decoded drta fro■ the bitpad. 
BITPAD - Get non-decoded data fro• the bitpad, 
CURSOR - Display or inhibit display of the cursor. 
FRAME! - Grab a ••all fr111 fro■ the video ca11ra. 
FRAME2 - Grab a big fr111 from the vid10 c111ra, 
FRAME3 - Grab a tilted fra ■ e fro■ th, vid10 ca■1ra. 
ITUART - Set parallel port for bitpad operation. 
RESET - R111t the parallel port for red1finition, 

Th• final ho group• i ■ ag1 and color 1pac1 
■1nipulator1, will con1titut1 our ■ ain focu1 11 
th11e groups contain the 101t u11able conc1pt1, 

IMAGE SPACE MANIPULATORS (ISNl 

Each of th, two i ■ age plan11 ■ ay bt dividtd into 
anr nu•btr of 1ub-i ■ag1 1r111. Th111 1r1a1 art 
ca led box11 and art d1fin1d by 1nt1ring th1 low1r 
11ft and urp•r right coordinat11 of th1 d11ir1d 
aria. Al of th1 ISM pri ■ itiv11 requirt a ■ ini ■ u ■ 
of th, following infor■ation, 

1l Bouret box coordin1t11 
The area containing the i ■age to be 1odified 
by the IBH function, 

2) De1tination box coordinates 
Tht area which will r1c1iv1 the r11ult1 of the 
IBH function, 

31 Color vector 
The color vector has different ■eaning to 
differ1nt !SH pri ■itiv11 b11ed on th1ir 
individual function,. How1v1r, it u1ually 
1p1cifi11 which colors in the 1ourc1 box art 

49 

to be ■odified, 

41 Nathe■atical/Boolean function, 
How the source box will integrate with the 
destination box, Choice ■ 1r11 REPLACE/ ADD, 
8UBTRACT 1 XOR, DR, and AND, The funct on in 
effect at the time of the !SN pri ■ itive call 
will cause the result of the ISM to be ADDed, 
SUBTRACTed, XORed etc, into the destination 
area. Function i1 1et by the routine BETFUN. 

51 Box 1canner1 
Modifies how the source box and de1tination 
box are 1canned, Currently we have eight 
11parate 1canner1, Source and de1tination 
1canner1 netd not be the 11ae, Thi1 allow, 
the user to ■ irror or rotate a ra1ter i ■ age 
91, 181, 271 and 361 degr111, 

61 Source and destination pag11 
Specifies that the source and destination 
boxes exi1t on th1 1111 or 11parat1 p1g11. 
This allows all ISM pri ■ itives to take an 
i ■ age on any page, modify it, and place the 
result <via the function and scanners) to 
any p191, Both ■canners and page, are 
specified by the routine TARGET. 

The fir1t three data ele■ents are included in the 
IBM pri ■itive calling p1r1aet1r li1t in the for11t1 

CALL i1 ■ <source box,destination box,color vector> 

The r111ining thr11 1l1aent1 mu1t b1 1pecifi1d 
through their corresponding routine before calling 
the !SH pri ■ itive. 

!SH PSEUDO-DESIGN 

Since ■ 01t all of th1 IBM pri1itive1 art 1i1ilar in 
design and differ only in the function• they 
perfor ■, wt can 1xpr111 th1■ in a p11udo-language 
shell, The various function, can be placed 
interchangably in the 1hell below. Here then i1 
the b11ic program 1tructur1 for ■01t of th, !SN 
pri ■ itiv111 

i~S
1
~1ource_box,de1tination_box,color_vectorl 

SAVE color vector addre11 
SAVE de1tin1tion 5ox 1ddre11 
CONVERT 10urce box Ta ■ e■ ory coordin1te1 
RETRIEVE de1tination box 1ddr111 
CONVERT de1tination oox fD ■e1ory coordin1te1 
RETRIEVE color vector addr111 -
GET 1ource 1cann1r choice FRON global data 1r1a 
CONVERT 1ourc1 ■canner choice T - -

1c1nner calling 1ddre11 
BET de1tination·1cann1r·choice FROM 

global data·area -
CONVERT deitina£ion ,canner choice TO 

1cann1r calfing 1ddre11 
DO UNTIL NO NORE SOURCE-SCAN POSITIONS 

SET display TO 1ourc1 page 
READ source color FROff 

currenf 1ource 1canner po1ition 
CALL source icanner- • 

< ■ova fo next po1ition in the 10urce box) 
SET display TO de1tination_pag1 

particular IBH pri ■ itive function 
(see de1criptions below) 

CALL de1tination ;canner 

END DO 
END 

(■ove to next po1ition in de1tination box) 

As ■entioned pr1viou1ly, the source_page / 
de1tination page and 1ource 1c1nn1r / 
de1tination·1canner are 1et prior to· calling the 
!SH pri ■itfve through oth1r priaitiv11 and are 
loaded globally by the IBH itself, 

IS" PRIMITIVE DESCRIPTIONS 

The ISM de1cription1 presented 
replace■ent p1eudo-code for 
aath1aatical d11crirtion 
description, The fa lowing 
u11d to de1crib1 IS" pri ■itiv1 

below contain the 
th, ISM 1h1lll I 

and an Eng ish 
k1y c0nt1in1 1y ■bol1 
function11 



RP• Resulting Pixel: Th• resulting ~alu ■ fro■ the 
ISN function for any giv■ n pixel within th1 
scan area, 

SP• Source Pix ■ l: The current source scan position 
piul value, 

DP• Destination Pix■ l1 Th ■ curr ■ nt d ■stination 
scan position pix ■ l value before ■xecution. 

[fl ■ Function: Th• currently set function, one 
of th■ following: REPLACE, XOR, AND, OR, 
SUBTRACT, ADD, 

Here then are the ISN priaitive descriptions: 

~tY.: COPY source box to destination box 

FUNCTION: RP ■ <DP Cfl SP) 

PSEUDO: 
IF source pix ■ l_color IS FOUND IN color vector 

THEN PLOT source pixel TO destination 6ox VIA 
function ANU 1cann ■ r1, -

ENDIF 

COPY takes each pixel in the source box and checks 
to SH if th ■ color is Ht in the color v ■ctor, If 
not, no action is taken for that pixel, If the 
color ii found, the piul is written to th• 
destination area via th• function, with placeaent 
deterained by the scanners, 

AVE: Average sourc• box with destination box 

FUNCTION1 RP ■ <DP Cf l ( (SP + DPl / 2l l 

PSEUD01 
IF source_pix ■ l_color IS FOUND IN color vector 

THEN ADD destination pixel TD source pfxel 
DIVIDE result BY TWO- -
PLOT result TO destination box VIA function 

AND scanners -
ENDIF 

AVERAGE will tak• each pixel in the source box 
which also exists in the color vector and calculate 
a •ix, or average, betw■ en itself and th• 
corresponding pixel in the destination box, The 
result of this calculation is written into the 
destination box via the function with placeaent 
deterained ~Y th• scanners, 

[ADE: Slow 1v1r1g1 source to destination box 

FUNCTION1 IF SP • DP THEN RP • <DP Cfl DPl 

PSEUD01 

IF SP> DP THEN RP ■ (DP Cfl (DP+ 1ll 
IF SP< DP THEN RP• (DP [fl (DP - 1ll 

IF source pix ■ l color IS FOUND IN color vector 
THEN IF iource-pixel IS BREATER THAN -

destination pixel 
THEN ADD ONE TO-destination pix ■ l 

ELSE -
IF source pixel 18 LESS THAN destination pixel 

THEN SUBTRACT ONE FRON destination pixef 
END IF -
PLOT destination pixel via function and scanners 

ENDIF -

FADE is basically a slow AVERAGE, FADE takes each 
pixel in the source box and ch ■ cks to 111 if it is 
s ■t in the color vector. If the color is found, 
FADE ••k•s the corresponding pixel in the 
d ■stination box ONE NORE LIKE th■ sourc ■ pix ■ l, 
This allows-two 111911 to b• faded fro• one to 
another in 1~ steps, 

CEQ~1 Color EQualt Color 

FUNCTIDNt RP• CSP [fl value! 

PBEUDOt 
IF source pix ■ l color IS FOUND IN color vector 

THEN PLOT source pixel NODIFIED BY value VIA 
function TO-d11tination_box 

ENDIF 

CEQC is a raster ori ■nted IF 1tat11ent which allow, 
the u11r to 1odify only particular color, in the 
di10l1v via a value 0r1d1fin1d by the routin• CEQCR 

50 

<value), For exaaple, the user ••Y wish to turn 
all odd colors to even colors, To do this th• user 
need only set the odd colors ON in the 
color v ■ctor, set the function to ADD a•d th• value 
to oni, This will add the value one to all odd 
colors in the source rastor area and plot the 
results in the destination raster area, If the 
function were ••t to REPLACE, all odd color, would 
be replaced by the color one, 

The following IBN priaitives differ froa the la1t 
four in that they perfora ■ore coaplex functions 
and aay alter the for1at of the ISN priaitive 
shell. 

FUZZ: Pixel 1ver1g ■ (11oothingl 

FUNCTION: RP• SP [fl ((8Pt1
1

11+SPC1 11l+SPC1,-1l+ 
SPCll-ll+SP[- l-1l+BPL-1,ll+ 
SPC- ,l]+SPCI, ll/Bl 

PSEUDO: 
IF source pi ■ el .color TS FOUND IN color vector 

THEN SET destination pixtl EQUAL TO ZERO 
DOB TIMES -

HOVE TO next neighboring pixel 
SET destination pixel EQOAL TO destination pixel 

END DbLUS neighboring_pixel_color -
SET de1tin1tion pixel EQUAL TO d11tin1tion pixel 

DIVIDED BY EIGHT -
PLOT destination pixel VIA function AND scanners 

ENDIF -

FUZZ allows the user to exercise several iaage 
enh1nce11nt 1lgorith11 1uch 11 smoothing, 
edge-detection and color wraparound on the 
1ource box, Fuzzing is one of our 101t important 
effect- generators and is responsible for iaproving 
resolution through smoothing, In using functions 
with FUZZ, glows, neons, 5asic textures and i1age 
cleanup may be pertoraed, Basically, FUZZ extends 
an nine pixel neighborhood through the iaage area. 
As the neighborhood aoves through 11th pix•l in the 
scan area, the eight pixels surrounding the c1nt1r 
pixel are 1ver191d, and the result is placed over 
the ninth or center pixel, If the result is 
SUBTRACTED fro■ th1 c1nt1r pix ■ l, th• resulting 
iaage will be edge-detected, Other functions 
p1rfor1 other useful aodificatio~,. For ■ore 
1nfor11tion on impleaenting FUZZ on a 
■icro-coaput1r, pleas■ consult tht JANUARY 'B3 
issue of Cr11t1v1 Co1puting, 

KEY.1 Pattern fill, complex copies 

FUNCTION: RP• (DP Cfl SP) 

PSEUDO: (Note partial sh ■ ll definition included) 
KEV (source box,destination box,color vector) 

BEGIN - - -
SAVE color _vector_address 

Saae 11 gen~ral ISM shill 

CONVERT destination scanner choice TO 
scanner calfing address 

DO UNTIL NO NOR£ SCAN PasITIONS IN 
d11tin1tion box 

SET display Tff source page 
READ source color FROff 

current-source scanner position 
CALL sourc1:sc1nner (1ove to next 

position in th• source boxl 
SET ditplay TO destination page 
READ destination color FROR 

current destination scanner position 
IF d1stin1tion_pixel_col0r IS FOOND IN 

col or vector 
THEN PLaT source pixel TO d ■ atinatian box 

YIA function -
ENDIF 
CALL destination scanner (next position 

in the dtstfnation boxl 
IF destination scan AT START OF NEXT SCAN LINE 

THEN SET 1ourc1 scan TO NEXT SCAN LINE 
ELSE - . 

IF 1ourc1 scan AT END OF CURRENT SCAN_ LINE 



THEN 

ENDIF 
ENDIF 

END DO 
END 

SET source scan TO START OF CURRENT 
SCAN LfNE 

KEY, while looking like COPY, is actually COPY in 
reverie, While COPY allawa the u1er ta copy the 
color vector calar1 from the source baK ta the 
destination baK, KEY will copy ALL the calar1 from 
the source DOK only ONTO the color vector colors in 
the deatinitian bak, Thus, where fn COPY, the u1er 
can specify which colors are ta be copied, in KEY, 
the user 1pecifie1 onto which specific calara the 
key i1 ta occur, Further10re if the source box is 
a different size than the de1tinatian box, KEY will 
repeat the source box within the distinatian box 
until it is completely filled, If different 
scanners are specified for source and destination 
boxes, KEY will rotate the source area before 
platting it into the destination area, This allows 
KEY ta rotate any n by m image into a nl by ml area 
without 11earing, The other ISM primitives require 
that the 10urce box dimen1ian1 be 1imilar to the 
destination box- dimensions (ie source = n by 1, 
destination-may be n by• or m by n), If this is 
not the ca1e, the source box 11 11eared into the 
destination area, KEY overco1e1 this effect by 
rotating each source scan line before plotting 
enabling it to take an by m box, rotate it and 
plat it into a nl by ml area without 11earing, 

!~1 Intensity as a function of space 

FUNCTION: RP• DP [fl SP where RPtx,yl = 
DPt ( (SPtx1) +K >, ( (SPtyml +y) J 

PSEUDO: 
IF source piKel color IS FOUND IN color vector 

THEN MULTIPLY iource piKel color BY K iultiplier 
ADD destination_pixef_K_caordinate TO-RESULT 
MULTIPLY source pixel color BY y multiplier 
ADD destination-piKel-y coardinafe TO RESULT 
PLOT source pixel color-TO destination box VIA 

ENDIF 

scanners AND-function AND tranalafed 
coordinates 

30 takes the desired pixels in the source boK and 
add1 ~heir respective intensitie~ to t~e x and y 
coordinates of the carrespand1ng pixel in the 
deat~na~ion_box, The user is allowed to specify a 
mult1pl1er for bath the Kandy aKes prior to the 
calling of 30 by calling PUT3D (xm,y1), If either 
1ultiplier is zero that axes 11 turned off and 
eKtrapolation occurs for that axes II if cory were 
callea, Figure I shows a before and after ■ age of 
a tiled surface conaisting of two color,, one and 
15, The after i1age shows that the color one tiles 
are shifted one piKtl in the K and y (K1,y1•I) 
while color 15 t1le1 are shifted 15 pixels in the x 
and y, If a Km,ym of ho were used, color one 
tiles would be shifted two pixels and color 15 
til11 would shift 38 fiKel1, This typ1 of 1ff1ct 
has many us11, Firat, tallows a 20 i11ge to b1 
1xtr1polated into a JD image by using color 11 
depth infor1atian. Secondly, since thi1 
IKtrapolation i1 1trong1r for the high1r color1 
shifting them further away fro• di11er colors, it 
will leav, 1h1dow1 fro■ th• shifted position, Th, 
shadows will fall as predicted by where the 
hilights fall in th, image, In fact, if 1or1 than 
one lighting source is hitting the image, 1ultiple 
shadows can result, While this metnod is not 
nearly 11 controllable or accurate 11 raytracing, 
i~ provid11 a 11111, 1low proc111or with a v1ry 
high speed method of obtaining a similar result, 
It should be noted that the internal working, of JD 
ALWAYS ADD the color to the coordinates, This 
111n1 that in ord1r to obtain prop1r tr11t11nt of 
the _image, the user should specify both source and 
destination 1cann1r1 be left to right-top to 
batt01, otherwise overprinting will occur, If the 
1cann1r1 are r1ver11d th1 i11ge will be plotted 
away from the viewer as apposed to towards the 
viewer, It should also be noted that it is 
unde1ir1ble ta JD map with color zero 11 this will 
often delete part of th• resulting i11g1 (color 
zero will not shift in the K and y as it is a value 
of zero), 

51 

Finally, several other ISM pri1itiv11 1xi1t which 
allow tne user to 1odify only a source area. These 
pri ■ itives do not use ■ canners or functions in the 
saae way as th• previous ISMs do, 

SHIF!_1 

SHIFT is identical to COPY in that it will copy a 
source box to a destination area (only on the 1111 
page), It differs in that it replaces each source 
pixel with the background color after the shift, 
Shifts can occur in any direction at any ju1p 
factor but th1 user must 1p1cify th, proper 
scanners <to avoid overwriting) before calling 
SHIFT, 

F IND_1 

FIND is I method of locating a desired rastar i1ag1 
an the screen, FIND is called with the deaired 
coordinates of I source box and will 1tt11pt to 
find a non-background colored iaage within that 
coordinate space, If no i11ge is found, the 
coordinates are returned unchanged, If an iaage is 
found within th, source area, t~, coordinates are 
chan9ed ta fit the i ■age on all four sides, This 
routine do11 not use sc1nn1r1 and perfor1s the 
search two piKel1 at a tiae making it eKtr111ly 
fast, The worst case find for locating a single 
pixel within the entire screen area occurs within 2 
seconds, This is our fifth find 1lgorith1 and 
represents a speed improvement over the last 
algorith1 of aver 88 percent. 

XORBOX1 

XORBOX will take a source boK and XOR it with the 
value 15, This routine doei not use scanners and 
is eKtremely high speed, This 11y be used for 
showing the user which boxe1 are currently in 
effect. 

6ETBOX/PUTBOX1 

BETBOX and PUTBOX allow the user to store up to 96 
separate box coordinates in a 11111 unused portion 
of the i ■ age pl1n1, Since our 1y1t11 con111ts of 
two i1age planes, a total of 192 box coordinates 
can be 1tor1d and retriaved. Thi ■ allows progr111 
to easily communicate boK infor1atian back and 
forth, 

COLOR SPACE MANIPULATORS (CSM) 

Four basic CSM routines exist far manipulating 
colors, These routines are the basis far several 
high1r level routines which perfor1 shading and 
hueing, All data is supplied to the routines 11 
one byte integers, Colors are specified 11 red, 
green and blue gun values where each value is a 
single byte with a valu1 b1tw11n z1ro and 15, 
Calarmap positions are also single byte, with a 
value between zero and 15, Th1r1fore, a gr1y scale 
would look like: 

Color 
e 
I 
2 

14 
15 

Whil1 I 11p shaded fro■ 
background 1ay appear 111 

Color R 6 B e e e I 
I 15 e 
2 15 I 
3 15 2 
4 15 J 
5 15 4 
6 15 5 
7 15 6 
8 15 7 

' I :I e 
18 15 9 
11 15 18 
12 15 11 
13 15 12 
14 15 13 
15 15 15 

R 6 B 
e e e 
I I I 
2 2 2 

14 14 
. 

14 
15 15 15 

red ta y1llow 

(Background) 
<R1dl 

(Ve! law> 

with I blue 



While the following four low-order pri1itive1 
de1cribed below are extre■ely 1i ■ple routines, they 
are the foundation for much more co■plex color 
manipulation routine, 11 described further in this 
paper, 

DEFCl:!_1 DEFine CoLoR 

FUNCTION: 

PSEUDO: 

c ■ < ■ ap+0) z RED 
c1(11p+ll • GREEN 
c ■ < ■ ap+2> • BLUE 

DEFCLR < ■ 1p,rgb_1t1ck) 
BEGIN 

(cm• colormap) 

DO NHILE VERTICAL BLANKING PLUS ZERO TO SET color 11p INDEXED BY map 
rgb 1f1ck(01 

SET color ■ IP INDEXED BY ■ ap PLUS ONE TO 
rgb 1£ack(ll 

SET color ■ IP INDEXED BY map PLUS TNO TD 
rgb 1£1ck(21 

END DD -
END 

DEFCLR allow, the user to 1et an individual c~lor 
map po1ition to a red, green and blue 1et~i~g. 
'Rgb 1tack' 1u1t be I tfire1 byte stack containing 
the aesired R8B value1 (each between zero and 15>1 
'Hap' ■ u1t be a single byte v1lu1 between_z~ro and 
15 indicating the de1ired color map position to 
■edify, 

SETHAP1 SET the 1ntire color HAP 

FUNCTION1 cm(0-15,1) • RED(0-15) 
cm(0-l5,21 • GREEN(0-l51 
c1(0-15,3) • BLUE(0-l5) 

PSEUDO: 
SETHAP < ■ ap_stackl 

BEGIN 
DD LODP•lb TINES 

DO WHILE VERTICAL BLANKING 
SET color map INDEXED BY LOOP PLUS ZERO TO 

■ ap 1£ack<LOOPJ01 
SET color 1ap INDExED BY LOOP PLUS ONE TO 

■ ap 1£ack(LOOPJll 
SET color map INDEXED BY LOOP PLUS TWO TO 

1ap 1£ack(LOOP,21 
END DO -

END DO 
END 

SETHAP allows the user to i1■edi1tely 1et an entire 
color mapJ 'aap_1tack' 1u1t be a lb by 3 byte array 
containing the R G and B value• for each map 
po1ition l0-l51, th11 rou~ine i1 1xt~1mely f11t_a1 
it set1 all lb colors within one vertical blanking 
interval making it ideal for higher order color map 
animation routine,, 

GETHAP/PUTHAP1 

8ETHAP and PUTHAP allow the user to 1tore up to 9b 
separate color ••P• in a 11111 unu1ed portion of 
the i ■ age plane, As with 6ETBOX/PUTBOX, if both 
image pl1n11 ar1 u1ed, • total of 192 ••P• ■ ay be 
stored, Hap storage in no way affects box storage 
or im1g1 di1play, This i1 the only way for 
progr111 to co■■unicate the color 11p1 and box 
coordinates to each other. 

MENU SOFTWARE 

Thi power of the pri ■itive1 can be seen by the fact 
that each ISM priaitive can handle ■any separate 
functions, Just on functions alone\ each ISM 
routine is capable of six diff1rent etfects, one 
for each of th, six po11ibl1 boolean functions. 
When combined with source page/destination page and 
1ourc1 sc1nn1r/de1tin1tion •~•nner, the nuab1r ~f 
po11ible effects is greatly 1ncre111d. Howe~er, 1n 
order to provide tfie user a 11ne way of u11ng the 
primitives, an overall 'ridwork had to be laid over 
the pri1it1ve 1y1te■• his gridwork con1i1t1 of an 
extremely powerful user interface which couples the 
artist to the pri1itiv11 allowin9 co■plete freedo■ 
to acce11 all of the priait1ve1 powers. Menu, 
ther1fore, i1 th• only progra■ to use 111 the 
pri ■itive1, 

52 

Physically, menu is composed of three major 
component11 the CRT screen which contains a 
continuously running environment ■onitor informing 
the user to the currently ■ et par11eter1, the 
bitpad surface ~hich contain, the menu pad, and the 
R8B monitor which di1pl1y1 the complete image, 

THE BITPAD 

The bitpad 1urf1ce i1 phy1ically composed of three 
component11 the digitizing surface, the button 
area, and th~ stylus. Tfie digitizing 1urface_i1 
the area in which the u1er points and draw1 with 
the 1tylu1, The button area 11 on the left of the 
bitpad and consist, of four button, which control 
the 1tylu1. The first button is the RESET button 
and resets bitpad operations, The other three 
buttons are explained later, 

The bitpad is controlled by two primitive 
functions; BITPAD and BITGET. A call to BITPAD 
will return the current K and y coordinate 
addresses of the stylus 11 two values between one 
and 10,100 each. Along with the Kandy position, 
the bitpad returns tfie status of the stylus 
indicating if the 1tylu1 tip it touching the bitpad 
surface 11 well as the con~ition of three switches 
mounted in the bitpad surface. 

BITBETl in most c11e1, i1 used instead of BITPAD 11 
it pertorms several different functions besides 
calling BITPAD for the user. BIT6ET allows the 
user to treat the BITPAD surface in two separate 
w1y1. If the user i1 in STREAM mode (1tream button 
on> BITBET will track the stylus with the cursor. 
If the 1tylu1 is depressed, the cur1or will be 
turned off and the x and y coordinate■ will be 
returned, These coordinates will be extrapolated 
to fit 1creen coordinate, (1-378jl-241), If the 
user is in POINT or SNITCHED STREAM mode, BITGET 
will not display the cursor and will treat the 
bitpad surface 11 if it contained 441 button 1re11 
divided into 21 row ■ by 21 colum~•• Depre1~ing t~e 
stylus into one of these areas will result in their 
coordinates (l-21 1-211 to be returned. The 
difference between POINT and SWITCHED STREAM is 
that in POINT the 1tylu1 must be depre11ed for each 
button desired, while in SWITCHED STREAM, 11 long 
as the stylus is depressed, the button coordinates 
are fed continuou1ly to the host. BITBET performs 
one further operation. A separate routine, BITAVE, 
can be called to toggle an averaging bit in BITGET. 
If the bit is off (,FALSE.I then BITGET behaves as 
aentioned above. If the average bit is set 
(,TRUE.I then each point in STREAM mode 11 
averaged with the most recent point and any new 
points which are further than 15 pixels away from 
the ■ ost recent point are discarded. This all~ws 
the bitpad to be useful even in a no11y 
electromagnetic environment such 11 those often 
present around poorly de1igned RGB monitor,. 

MENU STRUCTURE 

As mentioned earlier, MENU can be thought of as a 
controlling gridwork 1 or interface, between the 
user and tfie pri ■ 1tives. At the heart of this 
gridwork i1 a 441 word (882 byte) table di~ided 
into 21 rows by 21 colu ■n1. Each word 11 an 
1ddre11 pointer to the routine which will handle 
the corre1ponding bitpad button (via BITGET). If 
the pointer i1 zero, no routine exists for that 
button, Otherwise, the 1ddre11 is retrieved and 
jumped to. Thi ■ direct approach to the Ju■p table 
allowed us to easily layout the bitpad buttons 
until a co1fort1ble po1ition w11 found for each 
command. Thi ■ also allow ■ ■ore than one button to_ 
reference the 11me command making the layout ■ore 
versatile by liaiting the 1■ount of operator ar• 
travel aroun~ the bitpad surface, 

MENU divide ■ the bitpad buttons into 
categories (figure 2a and 2bl1 

ll Keypad commands 
2) Color coa■1nd1 
3) Box com■1nd1 
41 Pen co111nd1 
51 Control functions 
b> Other function ■ 

several 



The CRT is controlled by MENU and contains several 
areas. I1portant infor1ation in each area is 
displayed II full intensity, or 'bright'. Any 
unimportant information is alNay1 displayed at half 
intensity, or 'di1', 

The five areas provided by MENU on th1 CRT screen 
are (figure 31: 

ll Kerpad vector 
21 Co or vector 
3) Paga zero vector 
4) Page one vector 
5l Control indicators 

Thi last line on th1 CRT is reserved for a 
co1putar-to-user 1as1age center. Errors, warnings 
and notices are placed here by MENU for the user. 
In designing th1 currant version of 1anu Na decided 
not to give the user audible feedback of button 
hits. In older versions, the CRT 'beeped' 
averyti1a the user hit a valid key. However, after 
eight solid hour ■ of u11, 101t op1r1tor1 want beep 
crazy. MENU noN only beeps Nhen it Nants the user 
to look at the 1111191 lin1, To further enhance 
the oper1tor-co1putar interface, MENU requires the 
user to type into the keyboard only for filan1m11. 
This keeps the operator positioned at the bitpad 
for 101t of the 1111ion, in1t11d of bouncing back 
and forth fro1 keyboard to bitpad. 

KEYPAD COMMANDS - THE KEYPAD VECTOR 

The keypad 
■ action11 

section 

1) Nu11ric keypad 
2> Sequence keys 
3) Control keys 

it divided into several 

Th11e k1y1 are clu1t1r1d in the canter of the 
bitpad surface for 1cc111ability 11 these keys are 
the most frequently used, Th1y function in two 
Nays, First by alloNing the user to specify how 
com1ands are to be executed. Secondly, by alloNing 
the user to use the keypad vector area 11 1 
t11porary storage stack for co1pl1x opar1tion1, 
HoNever, to the co1put1r th11· area i ■ 1e1ningle11 
until applied via one of the vector key operators 
di1cu11ed below. 

NUMERIC KEYS 

The nu1aric key ■ include the nu1ber1 'I' thru '15' 
and one non-nu■eric k1y- 'FF' for Full Fr111, 
D1pre11ing any of the11 k1y1 once c1u111 the 
corr11pondin9 legend under the keypad 1r11 on th ■ 
CRT to be bright, Depressing the key again Nill 
c1u11 it to toggle di ■, This allow ■ t~• u11r to 
specify numeric ker• quickly II Nill II p1rfor1 
corrections quick y. The FF key Nill toggle the 
1111 NIY Nith the corr11pondin~ FF l1g1nd in the 
keypad vector, To th ■ co1put1r, this key 
corre1ponde1 to the value 16i to the user~ it 111n1 
th ■ 1ntir1 screen i1ag1, or tull fr111. NON th111 
keys are used will 0eco1e apparent further in the 
paper, 

SEQUENCE KEYS 

The sequence k1y1 con1i1t of '1-15' 1 EVEN, ODD and 
• - ' < THRU>. Th111 key ■ all ON I tut 11tup of 
certain· 11qu1nc11. 1-15' Nill 1uto11tic1lly 11t 
the nu1b1r1 1 2 3,,,15 bright under th ■ k1ypad 
victor. If one of th ■ nu10er1 i1 1lr11dy bright, 
it will be inv1rt1d to di1. Thus, if 5 thru B is 
already bright Nh ■n '1-15' it issued, 5 thru B will 
toggle di1 and 1-4 and 9-15 Nill beco1e bright. 
The EVEN k1y will r11ct th ■ 1a11 w1r 1 inverting 
only the even nu1b1r keys (I 2 4 6, •• 4), The ODD 
Nill inv1rt only 1 3 5,,,15, Th1 '-' or THRU key 
Nill alloN the user to input a con11cutive 
11qu1nc1. Whan touching THRUL th ■ co1put1r will 
pro1pt the user to 'ENTER FIKST NUMBER' in the CRT 
1111191 area, Th ■ u11r thin touches th ■ button 
corresponding to the desired value, After this 
first value 11 1nt1r1d, th1 1111191 'ENTER SECOND 
NUMBER' is displayed, The user then enters 1 
second value after Nhich th ■ areas b1tN11n and 
including the tNo value ■ are inverted, 

53 

CONTROL KEYS 

The control keys con1i 1t of 'CE' (CLEAR ENTRY) 1 'SKIP' and 'QUIT', The 'CE' key Nill Ht 111 
legends under the keypad vector to di• (off), This 
effectively erases any current entries in this 
vector. To under1t1nd 'SKIP' ind 'QUIT' it 1u1t be 
first understood that b1sides the keypad vector, 
1011 co11and1 also use the numeric 1rea to input 
values for oth1r operation ■ , Th1se include setting 
scaling factors, ju1p value ■ and colors. The 
'SKIP' key 1ll0Ns the user to skip entering 1 
p1rticul1r value. The 'QUIT' key allows the user 
to abort 1ny operation Nhich is currently 
requesting infor11tion via the bitpad. Neither the 
'SKIP' or 'QUIT' key.s affect the keypad vector, 

COLOR KEYS - THE COLOR VECTOR 

One of th ■ easiest war ■ to apply the keypad vector 
is to use it to 11niru 1te colors. However{ before 
any color 1ay be 10d fied the user eust nstruct 
the co1puter WHICH colors are to be 1odified, To 
do this the user sets the keypad vector so that 
only t~e desired colors are bright. To apply the 
kerpad vector to the color vector! the user need 
on y press the 'C' key, This wil brighten 111 the 
R,8 and B colors which correspond to the bright 
keyr1d vector nu1b1r1. Only bright colors are 
mod fie•. Two other key ■ 11d in 1anipul1ting the 
keypad vectors and color vectors, the '(C' key Nill 
load the keypad victor fro• the color victor. In 
other Nords,. what is di• in th ■ color victor 
beco1es di ■ in the k1ypad vector and what is bright 
in the color vector beco■e1 bright in the keyp1d 
vector. No inversion of the keypad victor takes 
plac1 in this in1tanc1. The '(C)' k1y will 
exchange the contents of th ■ keypad vector with the. 
color vector, This allows the u11r to ke1p 
secondary color selections in th ■ keypad vector and 
1w1p the■ b1ck and forth Nith th ■ cont1nt1 of the 
color vector. Two other k1y1, 'C+' and 'C-', will 
rotate the color vector up or down allowing the: 
user to manipulate the color vector Nithout going• 
through the keypad vector for every oper1tion. 
Note that only what is bright ind di• rotates, th ■ 
actual colors do not rotate nor do their settings. 

To the right of the keypad area are the color key ■, 
These keys actually 1odify the color of I given 
area in so•e way, All color key co■■ands use the 
SETMAP and DEFCLR pri1itive1 to p1rfor ■ their 
individual functions. The folloNing is a 
description of each k1y in the color are11 

'SREY RBB', 'SREY R', 'SREY S', 'SR~' 1 

The11 key ■ do not re~uire the color vector to 
contain bright 1re1s, They are built to be single 
key co111nd1 with no setup required. The 'SREY 
RSB' key will sit th ■ entire color ••P bl1ck and 
white. 'SREY R' only sets the red gun to a linear 
scale between zero and 15 (black and Nhite on red 
gun only), 'SREY 8' and 'SREY B' act 11 'SREY R' 
on their corresponding guns. 

'!. RSB', ·u·, ·u·, '!._!'1 

The '+ RBB' ker will incre1ent the R, 8 1nd B 
colors for al bright colors in th ■ color vector, 
Di ■ area re■ain unchanged, For any given color, if 
it incre1ent1 past 15, it is 1uto11tic1lly wrapped 
around to zero, '+ R', '+ 8' and + B' only 
incre■ent th ■ ir respective color guns. Therefore, 
if color five had a RSB of 51 7 and 15 and a '+ 
RBB' followed by I '+ 8' NII issued, th1 result 
would be a RBB of 6, 9 and I. 
'- RS!!,', ':._B_', ':._!', ':__!'1 

These k1y1 1ct 1i1il1rly to the above PLUS keys 
Nith the exce~tion that they d1cre1ent instead of 
incre1ent, If a color is decre1ented past zero, it 
is Nra~~•d around to IS, Th1r1for1, if color two 
h11 1 RBB of I 5 and 15 and 1 '- RSB is issued, 
the result Nouid be a RSB if 15, 4 and 14, 
. ? RBB . ' . ? R . I • ? B. I • ? B. I 

These k1y1 will r1ndo1ly color all RBB guns or any 
individual gun aff1cting only those colors th1t 1r1 
bright in th ■ color vector. The randoelv Dick1d 



value, are betNeen zero and 15. Dim area, are not 
affected. 

'ROLL DONN' 1 'ROLL UP' 1 

The11 key, will rotate all bright color, in th, 
color vector, The action ii to physically rotate 
the 11l1ct1d color, through th1 color aap. Only 
bright colors are rotat,a. Thereforef if only one 
color i1 selected, no action occur,. f two colors 
are 1elect1d 1 th1y ar1 1wapp1d. If three or •ore 
color, are 1el1cted 1 th1y are rot1t1d in the 
desired direction. Thi ■ comaand has th1 ability 
for coloraap aniaation if iaage1 ar1 designed Nith 
color rotation in ■ ind. 

'ROLL RIGHT', 'ROLL LEFT'1 

The RIGHT and LEFT ROLL will rotate all bright 
color ■ in the color vector left or right, In other 
word ■, if rotating right, red ii aov1d to green, 
green to blue and blu1 to red, 

SET RGB1 

The SET RGB key 1lloN1 the u1er to specify exact 
R,G and B values for each bright color. After 
pr111ing BET RGB, th1 coaput,r proapt1 the u11r to 
enter the RED value for the fir1t bright color. 
The u11r then pr11111 the d11ir1d value on the 
kt}'llad <11-15) which ii followed by the prompt for 
GREEN and BLUE, After all three co1pon1nt1 ar1 
1nt1r1d 1 the color i1 changed and the R,G and B for 
the naxt bright color i1 r1gue1t1d. If th, BkIP 
key i1 pressed whan r1que1ting a value, that 
co1pon1nt <R,G or Bl i1 1kipp1d and the naxt 
coapon1nt i1 requ11t1d, If QUIT it hit, SET RGB it 
terminated, 

!,_ITE1 

Thi LITE key allows the u11r to determine what 
color1 1xi1t in th, i11ge currently on the 1creen. 
Upon touching LITE, the 1ntir1 color1ap i1 turned 
to black, Then each color is di1played, one at a 
ti1e in white, with a 1light pau1e between each 
one. Along with thi1, the terminal beer• Nith each 
color enabling the u11r to count the co or1 11 they 
ar, di1play1d, To further aid the u11r, the botto• 
line of the ter ■ inal contain• the current color 
being shown. After 111 bright color, are shown, 
the original color ■ ap is 111u1ed. 

LITE ALLI 

The LITE ALL k1y i1 1i1ili1r to the LITE key Nith 
the exception that it does not 1equ1nc1 through the 
color ■ ap 1 but rather 1h0N1 all bright colors 11 
WHITE at the 11m1 tiae while turning off those 
colors that are di• in the color vector. Thi1 
allows the u11r to 111 which part of an iaage 
contain a c01bin1tion of colors. For exa1ple 1 if 
the user h11 •• bright colors 3 5 and , and 
r1que1t1 LITE ALL, all colors except ~,5 and 9 are 
made black then 315 and 9 are made white and are 
di1pl1red thi1 way for about three 11cond1 before 
restor ng the di1play to th, original color ••P• 

illt 
The 1/2 coaaand allow, the user to u1e one color 
11p or two color map1. Since the u11r ha, two 
iaage page, at th1ir di1po111 1 the u1er aay specify 
that one color 11p 11 for both page,, or that each 
page contain• its oNn color aap. If one ••P is 
chosen, the 1111 ••P 11 applied to both pages. If 
two ■ 1p1 are chosen, the aaps are changaa every 
tiaa the r•ge is changed, Along with two a1p1 1 the 
sy1t1a a 10 k11p1 two color vectors indicating 
which color, are bright in both map,. Th111 
independent color vectors are only in use when two 
maps are cho11n. To infor1 the user Nhich 1od1 i1 
currently in effect. the coaputer Nill briqhten the 
arrows ('<---• and •--->'), which •Pr••r to the 
11ft and right of the color vector •y•nd 11 to 
which page the current 11p ii being •Pfl ed to, If 
both arrow, are bright, the 1ap i1 app ied to both 
p1g11 <one aap), If only one arrow 11 bright, then 
two 11p1 are in effect and the current ••P i1 
pointing to the current page, 

54 

't!_UE ' 1 ' 1 HUE ? ' 1 ' 1 HUE 15' t 

The HUE key allows tha u11r to interpolate color 
values betNeen tNo pr1viou1ly 11t values. If 
colors one and 15 are bright and all other color, 
are dim, and the user hits HUEt colors two through 
14 will become I linear in erpolation betNeen 
colors one and 15. In other Nord1 1 if color 1 is 
RED and color 15 is YELLOW and the u1er hits HUE 
(Nith 1 and 15 bright and all other dial then 
colors two through 14 will beco1e colored from RED 
to YELLOW in linear 1teps, If more than tNo c~lors 
are bright, the co1puter Nill perfor• a linear 
interpolation between the fir1t and second, second 
and third etc., to the last, '1 HUE ? ' Ni 11 
111ume that color one is bright Nhether it is or 
not. This 1lloN1 the u11r to specify a color such 
11 15 to be bright, random color it and shade to 
color one Nithout having modified color one or 
having to redefine the color vector, '1 HUE 15' 
acts a ■ '1 HUE?' except one ,nd 15 are ••,u•~d 
bright. Thi I al 1 OH the user to keep a theH in 
color shading. If color one is set to RED and 
color 15 is set to VELLON and color eight is bright 
Nith all other colors being di•, the user •ay then 
random color only eight ana 1h1ae fro• one to eight 
and eight to 15, This would keep I red to yellow 
theme while throwing in another color to augaent 
the co•bination. 

OTHER COLOR kEYSt 

In order to aid the 1peed by Nhich one can setup 
the color vector, tNo keys were included as pre1et1 
and •ap control, The 'II C' key Nhich is po1ition1d 
in the upper left hand corner of the keypad. vector 
Nill automatically ,et only color zero bright and 
all other colors dim, Thi '1-15 C' Nill 
auto•atically set only 1-15 bright and zero dim, 

BOX KEYS - THE PAGE II AND PAGE 1 VECTOR 

To request the co1puter to 10dify an image in ways 
other than color, the user •u•t •~ply the KEYPAD 
VECTOR to either the PAGE II or PAGE 1 vectors, The 
page zero vector is to the left of the color •ap, 
the pagt one vector to the right of the color ■ ap, 
An individual box in either vector is selected by 
first going to the desired iaage page <via the 'P' 
or 'PSA' keys) Hlecting the de11red boxes to Nork 
on in the KEYPAD VECTOR as described above in COLOR 
and hitting the 'S' key, This Nill SELECT the 
de1ir1d box for Nork, If, for ex11ple, ~he u1~r 
depre1se1 the zero and one keys brightening their 
values in the keypad legend, and then hits the 'S' 
key, the unr wi 11 observe the 1y1bol '<' for page 
zero, or a ')' for page one appear next to the 
desired box, (Note that the •Y•bol POINTS TOWARDS 
the desired box,) This means that the box has been 
selected for Nork, A ■ with the color key?, the 
'(S' key Nill load the keypad vector with the 
contents of the current ~age vector, The '<S>' key 
will swap the contents of the keypad vector with 
the content ■ of the current page vector, Once a 
box has been 1electedt it ••Y be 9rabbed, found and 
•anipulated. Since he IS" pri1itive1 allow a 
source and destination box 1 the 'S' k1y1 defin1 the 
source, To define the aestination box area, the 
user ha• several choices, If a box i1 1iaply 
selected ('S'l, then it is both source and 
destination, If, the destination is desired to be 
on the alternate page 1 the user •av,h~t the :A: 
key, This key will Ht an arrow ( < or > 
depending on which page they are onl POINTING ANAY 
fro• the current page vector, This indicates that 
a box is 11lect1d <the 11l1ct arroNl and is 
pointing to the other page <the alternate arroN), 
Along Nith the A key ii the '(A' and '<A>' key 
which act just 11 <Sand <S>. If it is d11ir1ble 
for a box to point to another box on the SAHE PASE, 
then the FORCE ('F') key1 1ay bt used, 'F' allows 
the u1er to input a value fro• the keypad (nuaber 
b1tween zero and l5) which Nill be entered betwe1n 
the '(' and ')' positions on the current page 
vector, Along Nith the F key is the 'ALL F' key 
which will 11t ALL selected boxes to the sa•e force 
value, The 'ZAP F' key will reaove ALL force 
setting• fro• ALL boxes reg1rdle11 of selection, 
Therefore, the following 1etup 11 po11ibl11 



0) 20 40 
1) 55 11110 
2) 35 110 
3) 
4) 78 40 
5) 35 110 

Page I 
110 241 < 81x 202) < 
121 151 ( 66x 51) < 5 
140 200 < I 06x 91) < > 

200 240 (123x 201) <FF> 
140 200 <106x 91) 

In the above exaaple, box zero contains x,y,xl,yl 
coordinates .of 20,40 by 100,241 and is a box sized 
81 by 202, It is selected and the destination box 
is itself, Box one is selected and point, to box 
five on the same page. Box two 11 selected and 
points to box two on the alternate page, box three 
does not exist (no coordinates) and box four is 
selected and points to the FULL FRANE on the 
alternate page, Box five exists but has no select 
arrow and therefore is not active. 

'S+', ·s-·, 'A+', and 'A-' all act the IHI way al 
the ·c+· and ·c-· keys by rotating the select and 
alternate arrows up and down. The 'F+' and 'F-' 
k1y1 react similarly by rot1ting the FORCE valu11 
up and down. 

Two keys at the lower right hand portion of the 
bitp1d allow the user to 1ave 1v1n 10r• 11tup tim1, 
The 'ZEROS' key will automatically re10ve all 
select arrows and then ■ elect only box zero, The 
'LEGALS' key will re10ve all select arrows and 
then only select box11 with a legal coordinate 
displayed, LEGALS will not select full frame. 
Both keys only effect the current page, 

One final key, 'PSA', allow, the user to instantly 
duplicate select and alternate arrows from one page 
to another when paging. Similar to the P key, 
which will be explained later, PSA will go the the 
alternate page and will then duplicate all select 
and alternate arrows till both pages are identical. 
Coordinates are not changed, nor are force valu1s, 
This is useful when the same commands are to be 
executed from page to page. On the first pag1, the 
user can save setup time by PSA and from t~en on, 
P, 

BOX DEFINITION ~PJ!!1_B_NDS1 

Immediately b1low the keypad ar1 th, box definition 
commands, The first of these commands 'BOX GRAB' 
will proapt the user to inter the lower left and 
upper ri9ht coordinates for each SELECTED box, one 
at a time, The u1er may inter either a 1cr1en 
coordinate by placing the bitpad into STREAM mode 
and using the stylus to indicate the coordinate a 
number from the keypad indicating the coordinate, 
from an already 1xisting box, or a combination of 
the two. If for example, the user is defining the 
location of box zero, and want ■ the lower left to 
be somewhere from the screen but wants the upper 
right to be the 11me as box one, the user aay hit 
<after BOX GRAB) the STREAM mode button and then 
point the 1tylu1 to the desired lower left p01ition 
and then hit the POINT mode button followed by the 
·1' key. This will 111ign th ■ screen coordinate to 
the lower left of box zero and the upper right from 
box one to th1 upper right of box zero, If 'CE' 
<Clear Entry) is enter1d for a box coordinate, its 
coordinates are removed fro• the current page 
vector, If the 'SKIP' key is depresaed, that 
particular coordinate is skipped in definition. If 
'QUIT' is depressed BOX GRAB is terminated, Once 
a box ha1 been defined 1 the c01puter will display 
the coordinates next to the select arrow (to the 
left if page 0 and to the right if page ll, At 
thi1 time, the boxes dimensions will also b1 
calculated and displayed to the riqht of the 
coordinates, The dimensions are computed by the 
display processor 11 opposed to the GRAB routine. 

To the right of BOX GRAB may be found the 'AUTO 
GRAB' button. This is useful when working with 
•any boxes. For ex11pl1 If the u11r withes to 
center 1anr line ■ of t1xt, they need to count the 
lines, 11 ect the proper number of boxes and BOX 
6RAB the ■• In stud, however 1 they uy hit the 
'AUTO GRAB' key, AUTO BRA~ fir ■t er11e1 ALL box 
coordinates for the current page, AUTO GRAB 1!10 
era111 ALL ■ elect arrows for the current page, 
Alternate arrow• and forces are not affected, AUTO 
GRAB then begins asking for coordinates at boK 
••ro. After each set of coordinates are entered, 

55 

the coordinates are placed on the screen and the 
next box is requested, The 'QUIT' key is the ONLY 
way to terainate this com1and if 1111 than 16 box11 
are desired, After all 16 boxes are entered, or 
the QUIT key ia used, the computer will place 
SELECT arrows next to each legal coordinate. In 
this way, the uaer it not required to count and 
select the boxes, just grab the1. 

At ti1e1, it becomes useful to duplicate box 
coordinates in other box p01ition1, U111 for this 
include positioning a box in the sa ■e rosition as 
another box on another p1g1, creat ng I box in 
another location on the same or different page 
which i1 the 1111 size as another box etc. To the 
right of AUTO GRAB are three keys which aid in box 
coordinate duplication. The 'S-->D' key will force 
the source coordinates to the destination box. The 
'D-->S' key will force the destination coordinates 
to the source box. The 'DESTINATION SQUARE' key 
will force the upper right coordinates of the 
destination box to be the same di1tance from the 
lower left of the destination box as the upper 
right of the source box is fro• the lower left of 
the source box. For exa1ple: 

PAGE I 
55 78 111111 210 ( 45x 132) < > 

If the u1er hits 'S-->D', then box zero on page on, 
will contain the same c00rdin1t1 11 the above box. 
If the user hat forced the value five, then box 
five on page one will contain the 1111 coordinate 
as the above box. If the user hits DESTINATION 
SQUARE, then the destination box (zero or fiv1 
d1pend1ng on the above ex1•ple) will have its upper 
right coordinate moved till it is the 1111 distance 
from the lower left as the source box, Thi• will 
make both the 10urc1 and destination box dimen1ion1 
the same while allowing the■ to be in different 
pl aces. 

To the 11ft of BOX GRAB is the 'FIND' key, Thia 
co•mand uses the FIND primitive and allows the user 
to find the i1ag1 within 11ch 11lected box on the 
current page. In other words

1 
1ach box coordinate 

will be adJu ■ ted until each I de of the box touches 

fart of the non-background colored image contained 
n the box. If no i11ge i1 found, the box 

coordinates are unchanged, 

Below the BOX GRAB key is 'AUTO FIND', Depr111ing 
AUTO FIND once will place the word 'FIND' on the 
top line of the CRT. This indicates that the FIND 
command l1 automatically Invoked for each BOX GRAB 
or AUTO 6RAB thus saving the user an extra key hit 
for box as1ign•ent1, Depre ■ sing AUTO FIND again 
will turn the mode off, 

BOX ADJUSTMENT COMMANDS 

To aid the user in creating box coordinates which 
are u11ful 1 a set of box adju1t1ent c011and1 have 
been built in. These com•ands are located in the 
box adjust1ent keypad to the left of the nu1eric 
keypad. Two types of box adju1t1ents are allowed, 
coordinate 11nipulation and r11tor 1anipulation, 
Centered on the bottom and lower right of the 
keypad are the two coordinate 1anipulator keys 
'ADJUST' and 'HOVE'. ADJUST al 1 DWI the UHr to 
adjust the exact size of a box definition without 
modifying the image it contains. Upon depre11ing 
ADJUST, the first box selected is xored with the 
value 15 allowing the user to see the box while 
workinq on it,· The user is then pr01pted via the 
CRT: Adjusting box nn - Enter GROW or SHRINK' 
where 'nn' i I the current box nu1ber, At thi 1 
point, the user may pick either the GROW key, to 
the left of ADJUST 1 or the SHRINK key to the right 
of ADJUST, After indicating the mode, the u11r ■ ay 
hit any of the eight arrow ■ appearing in the center 
of the keypad, In GROW mode, the box will BROW 
only on the 1dg1<1l specified by the currently 
defres ■ed arrow, In SHRINK, the box will shrink 
on yon the specified 1dge(1), In either 10de if 
GROW of SHRINK is again aepr1111d, all ed911 of the 
box will GROW or SHRINK, At any point during 
adju1t1entl the u ■ er m1y push either 'SKIP' or 
'NEXT' wh ch will 1ut011tically 10v1 to the next 
selected box, 'QUIT' will stop adjusting and 
touching any oth1r co111nd will cause execution of 
that command to begin. 



The HOVE c0 ■■1nd will begin by xoring the first 
,elected box. After thi1 1 pre11ing any of the 
eight arrows will re1ult in the box coordinates 
■oving in that direction 10 that the whole box 
■oves. NEXT SKIP and QUIT work as with ADJUST. 
Note that ADJUST and HOVE do not effect the actual 
i ■ a9e. Only the coordinate, are effected and the 
p011ti0ning of the inver1i0n, The inver1i0n lxorl 
11 re ■oved when ADJUST or HOVE are ter ■inated. 
Both HOVE and ADJUST utilize the XORBOX pri ■ itive 
to fir1t invert the box, and thin to invert only 
the 1ide1 which are being ■odified, 

On the left of th1 adju1t1ent keypad 1it1 three 
centering keys. The top i 1 'CENTER IMAGE', CENTER 
IMAGE will take each box selected on the current 
page and center the■, one at a ti••• in th• center 
of the page. Coordinate, and i ■age area are both 
effected. The area 0ri9in1lly occupied by the 
i ■ age before centering 11 r1placed with the 
background color, Below CENTER IMAGE i1 'H 
CENTER', H CENTER will center the iaage in the 
horizontal direction, Only the x coordinate, of 
the imag1 i1 center1d which re1ult1 in th• i11ge 
becoming centered left and right, Below H CENTER 
ii 'V CENTER', V CENTER will c1nter the i ■ age in 
the vertical, or up and down direction, All the 
center keys compute the amount of off1et for the 
image to ■ave and then call the SHIFT pri ■ itive to 
do the ■oveunt. 

On the right of th1 adju1tment keypad ar1 'SHIFT' 
and 'JUSTIFY', JUSTIFY allows th1 u1er to position 
any edge of a 1elected box on the curr1nt page on 
the same edge of any other box on eithar page, 
Source and alternate arrows as well as force value, 
are read to determine which box to justify on. The 
u1er is prompt1d for 1ach selected box to enter the 
de1ired edge for Ju1tification. The eight arrow 
keys are u1ed to specify the de1ir1d edge. NEXT 
and SKIP will automatically ■ave to the next 
1el1cted box without changing the currant box. 
QUIT will abort justify and hitting any other legal 
co■■and will execute that co■■and. 

Above JUSTIFY ii the SHIFT co■■and, SHIFT wi~l 
shift any selected box a given nu ■ber of pixels 1n 
any of the· 8 arrow direction,. After d1pre11ing 
SHIFT 1 the user i1 pro■ptad to entar the direction, 
Touching an arrow will re1ult in the box 1hifting 
in the desired direction. The number of pixel• 
shifted can be adJu1ted br 1even oth1r ker• 
surroundinq the keypad, · JUMP', '5 JUl1P' 1 • 0 
JUl1P' and 50 JUl1P' will 1et SHIFT to ■ove an 1 ■ 1g1 
one, five, 10 or 50 pix1l1, 'XV JUl1P' will pro ■ pt 
the u1er to enter a number of pixels to 1hift the 
box fro ■ the nu ■eric keypad, If tht value 127 is 
dHi red, th1 u1■ r pu1h11 'I·, · 2' and · 7 · to enter 
the v11ue. The '10' through '15' keys are 
disabled. Since the u1er ■ ay reque1t on• of the 
four angled arrows, X and V Ju■P.I 11y be SP.ecified 
independently by u1ing 'X JUMP' and 'V JUl1P' which 
request the nu■ber of pixels in the sa ■ a way as XV 
JUMP, Thus is is po11ible to ■ave a box n P.ixels 
vartical and • pixels horizontal, JUSTIFY and 
SHIFT both Ule th, SHIFT pri ■itivt to ■OVI th, 
i111ge. 

SCANNERS 

Below the box 1dJust ■ent keypad is tht scanner 
keypad. The scanner keyfad consists of two rows of 
five button, each, The eft ■ost button on the top 
row ii the 'SOURCE SCAN' button, Touching thil 
button pro■pts the user to enter tht 10urce box 
scanner, The u1er ■ ay hit any of the 8 po11ible 
1ourc1 1can key1, Under SOURCE SCAN i1 
'DESTINATION SCAN', Hitting thi1 key followed by 1 
1c1nner k1y will enter th, 1ppropr1at1 scanner 11 
with SOURCE BCAN, On th1 upptr 11ft hand corntr of 
tht CRT di1pl1y, th1 u11r 1ay notice two l1g1nd11 

S SCAN1 B-T .. L-R 
D SCAN1 T-B,,R-L 

Th111 art updat1d 1ach till tht u1er 1nt1r1 n1w 
source or d11tination 1cann1r1. The eight possible 
scanners artt 

ll B-T.,L-R • Botto ■ to top, 11ft to right 
21 T-B •• R-L • Top to botto■, right to 11ft 
31 T-B •• L-R • Too to botto1, 11ft to right 

56 

41 B-T.,R-L • Bolto■ to top, right to left 
51 L-R,,B-T • Lift to right, botto1 to top 
bl R-L,,T-B • Right to left, top to botto• 
7) L-R,,T-B • Left to right, top to botto■ 
Bl R-L.,B-T • Right to left, bottom to top 

In reading the legend, the first two directions 
(B-T, R-L etc.I are the first portion of the scan 
to be executed. The second portion of each legend 
(,,L-R, ,,B-T etc,) is ex1cuted after each scan of 
the first portion, In other word11 B-T •• L-R 
indicates that the scan travels fro• Botto• to Top 
first and then that entire scan pattern 1oves fro• 
Left to Right. 

C0■1ands effected by scanners are1 BOX FADE, BOX 
tXf~rB~~Df~p~A1:vxA~f: pfr~T t~~~: pfr~T ~,~~ 1PAi~t 
FUZZi STAMP FADEi 5TRl1P AVE, STAMP COPY, STRl1P KEV 
and bTA11P FUZZ, bc1nn1r1 are sit by a call to 
TARGET at the issue of I ISl1 com■and, 

Above the box adju1t ■ ent keypad is found the ISl1 
COl111AND AREA. This aria con1i1t1 of four line,, 
Tht lowest line ii the BOX COKl1AND AREA. The 
11cond line contains th1 FUNCTION aria, th1 third 
line is the STAMP COl111AND area, and the forth lin1 
is the PAINT area, 

FUNCTION _AREA 

Tha function aria contain• six buttons which read 
from left to right: 

ADD, SUBTRACT, AND, OR, XOR and REP 

Touching any one of the1e boxe1 will set that ■ ode 
for BOX COl111ANDS only, The 'Box F' le9end on the 
upper left hand portion of the CRT will change to 
reflect th1 new choice, All box c011and1 are 
effected along with disk load co■■ands. To set the 
function for STAMP and PAINT c011and1, th, user 
touches the 'PEN FUN' to the right of the 1511 
COl111AND AREA. Th• co ■puter will pro■pt the user to 
'Enter paint function' after which the user point, 
to one of th1 six function,.· The new choice is 
entered under the BOX F legend in the 'PEN F/C' 
legend. This enables the user to keep two 
functions at one time. One for box com■ands and 
one for paint/sta■ p c0111nd1, Sitting of the 
function occurs when an 1811 primitive is executed 
by first calling SETFUN with the currently chosen 
function. 

BOX COl111AND AREA: 

Below the FUNCTION AREA are a 1erias of 1ix keys. 
Each key corr11pond1 to ont of th1 1811 fri ■ itive1. 
Hitting one of the k1ys will resu t in the 
1xacution of the corresponding 1S11 pri ■itive using 
the currently set function and scanners as will 11 
tha box11 1p1cified by the 1ourc1 and alt1rn1t1 
arrow, 11 well 11 the force valu11, Th1r1for1, if 
a user wants to copy a box fro■ one pag1 to 
another, th1 proper boxes, function and 1cann1r1 
1hould be 11t up 11 d11crib1d 1ariler and thin th1 
COPY box co■•and should be issued. Whan th1 
current page vector, contain ■or, than one 1el1cted 
box, each box is executed one at a ti••• The 
co■puter will alway, display tht DESTINATION PA8E 
for each box while th1 co11and is 1xecuting on that 
particular box, Therefore, if box z1ro points to 
the alternate page and box one points to th1 source 
page, the alt1rnat1 page will bt displayed while 
the co■■and is executing box z1ro, then the source 
page will r1app11r while th1 co■■and i1 working on 
box one. Display is always returned to the source 
pag1 after coapletion of th1 ISM co•■and, In this 
way, the user always 111 th• r11ult of each 
operation while the operation is executing, The 
allowad box c01■and1 are FADE 1 AVERABE, COPY, KEV, 
FUZZ and CEQC, For the CEQ~ key, the r1plac1aent 
valua for the CEQC pri ■itiv1 is specified by using 
the PEN COLOR key described below under PEN COl111AND 
AREA, To the upper right of the CEQC key is the 3D 
kty, This is a 1eventh box co■1and which allows 
the user to 3D a source box to a dtstination box. 
To the right of JD, are 3D X and 3D Y, Both of 
these keys allow the user to enter a 1ultiplier for 
the 3D co■■and, Hitting on, of th111 k1y1 will 
result in a pro1pt for tht 1ultipli1r valut, Tht 
user enters the value (b1twe1n z1ro and 2SSl via 



the nu ■eric keypad. The 10-15 keys will not 
function, 10 the nu ■ber 123 ■u1t be 1nt1r1d 'I' 
followed by '2' and 'J'. A 11ultiplier in either or 
both of the axes of zero turns 3D off for that 

· axes. Any ■ ultiplier larger than 128 beco11es 
negativ1 causing the function to b1 r1ver11d for 
that ues. 

Two other box related co ■mand1 can be found two 
keys below FIND and AUTO GRAB, Thi first, 'ZAP 
BOX', allows the user to erase with the background 
color any ael1cted (bright) box on th1 current 
page. Alternate arrows and force values do not 
have any effect. Because ZAP BOX i1 destructive, 
it requires a confir ■ation of hitting the key 
twice. To the right of ZAP BOX is 'INVERT BOX', 
Thi ■ co■Hnd will invert <xor) all selected boxn 
on the current p1g1 with the valu1 IS, Alt1rnat1 
arrows and forces are not used, Both ZAP BOX and 
INVERT BOX exist to save the setup required to do 
the sa ■e effect through CEQC or COPY. 

STAMP_COMNAND AREA1 

Above the FUNCTION AREA is the sta ■p area. The 
1ta11p aria allows th, user ta paint an th1 curr1nt 
page. The user is allows to specify up to 16 paint 
brushes by defining boxes around each of the 
desired brush shapes. Upon touching one of the 
STANP k1y1 th1 u11r is proapted to point to a 
brush. After setting the bitpad to STREAM ■ode, 
the user points to a brush which ■ust be currently 
assigned to a box and 1ade active with a s1lect 
arrow. Upon identifying th1 brush, th, user aay 
then paint with that brush by pushing the stylu1 
anywhere else on the pag1, Each ti ■e the 1tylu1 
touches the bitpad surface, the currently selected 
brush/box will be copied via the cho1en ISN 
priaitive. The box will be copied 10 that the 
c1nt1r of the box ii at the stylus position. If 
the 1tylu1 i1 dragged over the bitpad 1urfac1 1 the 
chosen brush/box will be dragg1d along with it 
leaving copies at each point where the stylu1 
touches the bitpad surface. Setting the function 
for this coa■and is acco11plished by 'PEN FUN' 
follow1d by the appropriate function. It 1hould be 
noted that if the u11r ov1rwrites the brush while 
painting, the brush will be aodifed by the paint 
function which will inturn will ■odify itself, 
STANP functions include: FADE, AVERAGE, COPY{ KEY 
and FUZZ. COPY is the most used function al owing 
the user to aake quick and easy durlicates of any' 
shape on the screen. For exa ■p e, in correcting 
wor~ copy, the user ■ay wi1h to change a lett1r 
without leaving NENU. If the letter 1xi1ts 
1l11where on the screen, the u11r 111y defin1 it 11 
a box, hit STANP COPY and touch th, cursor anywhere 
within th• box area defining the letter 11 1 brush, 
Then 1oving near the area to receive the correction 
and touching the stvlu1 •aain will place the letter 
on the screen centered 11nder the stvl•Js, The user 
would then find the 1ta1ped litter and 1hift it 
into position. Thi ■ typ1 of edit take ■ leis thin a 
ainute to perfor• and can be 1pplied to any 1h1pe. 
The user ■ay even define the entire page to 1t111p 
and 1ta1p it at an offset to itself producing 
infinitely repeating pattern ■, 

PAINT CONNAND AREA1 

To provid1 a aore general 1y1t1■ for painting 1 the 
PAINT co11and1 were deve oped and 1dded to the 
STANP COIIHnds. P1i nt COHlndl inc 1 udll FADE 1 AVERAGE, COPY, KEY and FUZZ, In the paint 
co11 ■ 1nd1, one page 11 kept 11th ■ bru1h p19e. The 
other page becoaes the canva ■ page, To 1el1ct 1 
brush the u ■er would fir ■t 1el1ct all p011ibl1 
brushes on the brush page, Then going ta the 
c1nv11 pag ■, the user pl1ce1 the ALfERNATE ARROW 
painting to the desired bru1h(11I on the other 
pag ■, Drawing 11 the•••• 11 with 1t1■p, Only 
boxes pointed to by the alternate arrow will be 
drawn. If •ore than one alternat ■ arrow 1xi1t1, 
each brush will b1 drawn cent ■red an 11ch other. 
In other words, if the user 11l1ct1 three bru1h11, 
goes ta the canvas page and paints alt1rnat1 arrows 
at all thr11, all thr11 brushes will be ysed, each 
overlapping the other to produce a co1pos1t1 brush. 
If AVERAGE PAINT is u11d with thr11 brushes, 11ch 
will appear transparent allowing the viewer ta 111 
each 11191 through the other ■, FADE painting u ■ ing 
a brush which i ■ a verv 11111 aetallic box allows 

57 

the u11r to 'buff' an 1r11, Thi• 1ffect produces 
very goad 111oke and clouds ind can 1110 bl us1r for 
buffing s ■ooth an edg1. Since the c0■111nd1 are 
treated in the 1a ■e way as their ~OX counterpart~, 
1cann1rs and function (PEN F) are 1n eff~ct. Th11 
also aeans that the color vector 11 tr11tec 
identically as with box co■■and1. For ,x1 ■ple, the 
KEY PAINT co■■and allows the user to p11nt_only or 
a certain color, Therefore, a full color 111191 ••~ 
be brushed onto any part of the canvas page without 
touching oth1r portions of the i ■ age. If the user 
KEY paints onto the background color only, th1 
brush will 1ppear behind any existing i11ag1, even 
the 101t r1cent brush. Thi• allow1 the user tc 
paint '"'Y fro• th111elf 11 apposed to toward ■, 

PEN_CONNANDS AREA1 
The STANP and PAINT com1and1 border two categorie ■, 
that of box co ■mand1 and that of pen co11and1. 
STANP and PAINT u11 boxes hooked up to t~e pen to 
enable brushing on the screen. To th1 right of the 
BOX/STAMP/PAINT are1 is the PEN CONNAND AREA. The 
top 11ft key of thi ■ area i1 the PEN key. Touching 
thi ■ k1y will put the u11r in 'PEN NODE , In thi ■ 
aode the user ■ay paint with I single colored 
pixel onto th, current page, The pixel is placid 
u1ing the function 1pecifi1d by the 'PEN FUN' 
i0111nd (di1cu1sed abov1I, To the right of the 
'PEN FUN' key is the 'PEN COLOR' key. Thu key 
allow1 the user ta 1p1cify th, color of th• pixel 
drawn by the PEN coaaand in two way1. After 
touching PEN COLOR, th1 u11r is pr01pt1d to 'ENTER 
COLOR', The user may tither touch one of the 
nu111ric keys, 0-15 1 indicating that color, or the 
u1er ■ ay put the bitp1d in STREAM aade and touch 
the stylus to 10■1 portion of the i ■ age. The color 
under the cursor point will be used 11 the c~osen 
color, PEN COLOR then performs s1v1ral functions, 
first allowing the user ta •recify a color to be 
u11d by the pin, and second y, to allow the ~•er a 
quick way of deteraining the color of I p1rt1cular 
1rea on the 1cr1•n wit~out having to resort to the 
LITE c011ands and thirdly, ta allow the user to 
specify a color replaceaent value for the CEQC box 
coaand (described abovel and the PEN FIX coaaand 
(de1cribed below). The current pen color is 
display1d to the right of the 'PEN F/C' legend on 
the screen, PEN COLOR is alw1ys bright. If th1 
user is painting with a pen color of one and a pin 
function of ADD, th1 value one ~ill be ad~ed 
everywhere the user points. To fac1Jitat~ qu1~k 
color changes <uuful for NACROS d~•crib,d 1~ 
CONTROL CON"ANDS belowl, two keys 'PC+ and PC -
have been developed, PC + will increment the 
current pen color and PC - will d1cre111nt the 
current pen color, If zero or 15 are exceeded+ the 
pen color is wr1pp1d around, PEN ~••s BI PAD, 
CURSOR and FXDOT to do the actual drawing, 

To the right of the PEN key i ■ the PEN FUZZ key. 
PEN FUZZ use ■ th1 SFUZZ pri1itiv1 (which only 
fuzzes a single neighborh~od) to only fuzz~ eig~t 
pixel neighborhood, The ninth, or c1nt1r, pixel 11 
c1nt1r1d und1r the 1tylu1 point. _Scanner ■, 
function 1nd color vector all hav1 111an1ng. This 
allow• the user to go into an existing i ■ age and 
1 ■ 00th edges only w~ere d11ired by the u ■er, Where 
the FUZZ BOX COMMAND will 1100th an entire box, 
1ven the portion• which do not r ■quire s■oothing, 
PEN FUZZ will only 1 ■O0th where tht user paints to. 

To the right of PEN FUZZ i1 PEN FIX, PEN FIX.ii 
CEQC hooked up to the stylus point. By 1pecify~ng 
the calor1 to aodifr in tht color 11p 1 a function 
via PEN FUN and a rep aceaent color via PEN COLOR, 
th1 u11r will only alter tht colors 1p1cifi1d by 
the color 11p with the current pen color, This i1 
very iaportant in cleaning up an i11g1, The user 
■ay wish to r110ve only color five fro■ a co■plex 
area, To do this, the u ■ er would bright1n color 
five in the color ••PJ specify a replace■ent value 
of zero in with P~N COLOR and ■pacify a.PEN 
FUNCTION of REPLACE, Then any area th1 u11r points 
to while in PEN FIX will convert only color five to 
color zero. 

CONTROL COMMAND AREAS 

The bitpad consists of five separate control 
co111nd 1re111 



1) RESOLUTION/WINDOW CONTROL 
21 CAMERA CONTROL 
31 PAGE BACKUP CONTROL 
41 DISK CONTROL 
51 MEMORY CONTROL 

fil'._SOLUT I ON/WINDOW CONTROL 1 

Above the PEN COMMAND AREA i1 the RESOLUTION and 
WINDOW CONTROL AREA, Our particular hard"are 
1110"1 1et1 of eight pixel• to be declared 11 high 
re1olution, While the re1t of the 1creen re■1in1 
lo" re1olution, The fir1t key, 'HI RES' will 
place the entire 1creen in high re1olution t156 x 
4821, To the right i1 'LOW RES' ".hich placu the 
entire screen in lo" resolution (378 x 2411, To 
the right of LOW RES is 'RES BOX', RES BOX t1ke1 
all selected boxe1 on the current page and fits an 
inverted re1olution 1re1 into the■, Thereforel 1 
selected box "hen RES BOXed "ill flip fro ■ ts 
current re1olution to the inverted r11olution, The 
area which i~ affected i1 •• clo11 to the box size 
11 po11ible within the eight pixel per re1olution 
area rule, To the lower right of RES BOX i1 the 
'RES ON/OFF' key, Thi• key 1110"1 the u11r to 
specify the entire di1pl1y or the currently set 
high resolution 1rea1 to be displayed in low 
re1olution, This allows the entire 1creen to be 
di1played differently than it i1 confiyured, To 
the right of RES ON/OFF is 'WINDOW', W NDOW takes 
each high r11olution 1re1 on the 1cr11n and op1n1 1 
window to the alternate page in it1 po1ition, 
Therefore r11olution 1r111 ••Y 1110 1p1cify "indow1 
depending on the ■ode, Both RES ON/OFF and WINDOW 
are hardware dependent co■■1nd1 and ■1k1 u11 of the 
NYBBLE and WINDOW pri ■ itiv11. Windows are only 
effective fro• page zero to page one, Windows ••Y 
not be opened on page one, The top line of the CRT 
contains two po1ition1 devoted to RES ON/OFF and 
WINDOW. If the option is not enabled, the 
corresponding legend i1 blank. If an option if 
en1bleil 1 the word 'RES ON' and/or 'WINDOW' ii 
di1pl1y1d bright. 

~_MERA CONTROL 1 

Above the PAINT keypad i1 the c1■1r1 keypad, The 
left■o1t key ii the 'SMALL' co■■and, Thia 
corre1pond1 to the FRANE1 pri ■itive. If this key 
ii hit, the u11r ii pro■pttd to confir ■ br hitting 
the kev 1q1in, Once confir ■ed, 1 256 x 24 ca ■1r1 
area is ,canned onto the center of the screen, To 
the right of SMALL i1 "LARGE', Thil t1ke1 1 189 x 
121 c1 ■1r1 area and di1pl1ye1 it t"ice the 1iz1 
over the entire fr•••• The third key is the TILT 
c1■1ra load, TILT t1k11 189 in the X ax11 and 
blo"• it twice the liZI but t1k11 111 241 in the Y 
axes ••king the X IXII appear tilted 45 d1gr111. 

PAGE BACKUP CONTROL1 

To the upper right of the nu11ric keypad appear 
three p1g1 backup keys, Th111 k1y1 allow the u11r 
to quickly backup anil re1tore the current p1g1 with 
the 1lt1rn1te p19e. The first key i1 'COPY S TO 
D', This key requires I confir ■1tion of hitting 
the key 1ga1n, Once confir ■ed, the entire current 
lor 1ourceT page i1 copied to the alternate (or 
d11tin1tionl p191, Included in the backup i1 the 
entire 1ourc1 p1g1 resolution 1r11 and color■ap/box 
1tor1ge 1r11, The 11cond key i1 the 'COPY D TO S' 
key which 1llow1 the d11tin1tion <or 1ltern1tel 
page to be restored on the current (or source) 
p1g1, This co11and 1110 r1quir11 confir11tion, 
The third key ii 'SNAP S WITH D', Thil key 
requires no confir1ation and will p1rfor1 1 high 
1p11d '"'P of both i11ge pl1ne1, All thr11 
co111nd1 are extr11ely high speed, co1pleting their 
operations in under I second, Color11p1 1 
1elect/1lt1rn1t1 1rrow1, force v1lu11 and functions 
1r1 111 ignored. Th111 k1y1 use the CPPABE and 
EXPABE pri1itiv11 to p1rfor1 their functions. 
DISK CONTROL AREA1 

At the top of the bitp1d tow1rd1 the center are the 
eight disk control keys. The first 'LOAD' allows 
the user to load an i11ge fro■ disk, The co■11nd 
pro■pt1 the user to enter the filen111 fro■ the 
keyboard, Once entered the corr11ponding 11191 i1 
loaded using the currently 11t BOX FUNCTION onto 
the current page, After the load, the color••D the 

58 

i ■ age w11 11ved with is 111u■ed ONLY IF. the 
currently set function is REPLACE, Once an i ■19e 
is loaded, the filena1e of that i ■1ge is placed 1n 
the upper left hand corner of the CRT. If the file 
is I write protected file, the 1y111bol '(Pl' i1 
placed after the na■e, A i ■ age filena■ e ■ay be up 
to eight characters long. 

To the lower left of the LOAD key ii the 'LAST 
LOAD' key. Thi1 key will load the last file saved 
or loaded. In other words, this key will load the 
file indicated by the na■e at the top of the CRT, 
Thi1 11ve1 retyping in the filen1■1 and i1 very 
u11ful when ORing I file in and XORing it out to 
produce a 111k. 

To the right of LOAD ii the 'SAVE' key. Touching 
thi1 key will pro■pt the u1er for the filena11 to 
1ave the current i ■ age on. If the file already 
exi1t1 or is protected, the u1er i1 11ked to 
confir1 the action by touching SAVE 1g1in, To the 
lower right of SAVE i1 the 'LAST SAVE' key. Thi1 
key 1ct1 11 LAST LOAD except it re11v11 the current 
i111a91 on the last file loaded or 11ved, 

Below LOAD and SAVE are two keys 'INC' and 'DEC', 
The1e keys help to keep the user fro■ going to the 
keyboard ■ore than nec1s11ry, No1t 1lid11 have 
■ore than one 111oci1t1d image file. For ex11pl1, 
1 tingle slide ■ ay be co■posed of four 1epar1te 
upo1ures, Each upo1ur1 i1 11ved in a 11par1te 
i ■ age file, Thus, 1 slide n1 ■ed 'CHARTl' 11y be 
■1d1 up of CHARTIA, CHARTIB, CHARTIC and CHARTIB, 
INC allows the user to incre ■ ent the last letter of 
th1 current fil1na1e on the upper left hand corner 
of the CRT. DEC 1llow1 the u11r to decre ■ent the 
l11t letter of the filen1■ e, This allows the u11r 
to ■ ove fro ■ CHART1A all the way to CHART1D and 
back without ever going to the keyboard, 

Below INC and DEC are 'A1 DIR' and 'Ba DIR', Th111 
two key1 allow the user to receive I directory of 
di1k A and disk B, The CRT display is era11d and 
the directory is displayed, The u1er i1 then 
pro■pted to enter any character· fro1 the keyboard 
at which time the CRT i1 again 1r111d and the 
original display rewritten. 

~~MORY CONTROL AREA1 

To the upper right of the nu■eric keypad is the 
111ory keypad, The 11■ory keypad con111tl of five 
k1y11 'MEl1, 'SET', 'DEL', 'LOOP' and 'RUN', The 
■e■ory feature allow• the u11r to have the co■puter 
w1tch-1nd-le1rn I particular 11qu1nc1, Once the 
1equence has been entered, the u1er ••Y request it 
repeated up to 999 ti111, Up to 16 different 
sequences ••Y be re■e■bered at one ti11 by the 
co■puter, Each 11qu1nc1 ••Y con1i1t of 11 ■ any 
instructions 11 need1d until the 1t1ck is used up. 

The. HEM key turn• 1e1ory on and off, Touching the 
key once "ill place the 'NENORY' legend to bright 
at the upper right hand corner of the CRT, When 
■e■ory 11 on, 11th k1y1troke entered is executed 
and r1■e1bar1d by the co■puter, tf an error ii 
entered, the u11r ••Y hit the MEN key again. Thi1 
will turn 1a1ory off and delete the entire 1equ1nc1 
allowing the u1er to 1t1rt over. If 1 1equ1nce i1 
entered correctly the user ■u1t 111ign the 
11quanc1 to one of lhe ■aero 1pace1, To do thi1, 
the u11r hit, the SET key, SET allows the u11r to 
1et the current 11111ory to 1 ■aero nu■ber, The u11r 
is pro1ptad to antar I nu1b1r fro1 the nuaeric 
keypad. Legal v1lue1 1r1 zero thru 15. Once the 
nu■ber is entered, the 11cro i1 stored under that 
nu■ber and the ■11ory legend i1 1r111d and turned 
off, To run 1 ■aero, the u1er need only hit the 
RUN key, The co■put1r will request the ■aero 
nu1b1r fro• the nu1eric keypad, Upon receiving the 
nu1b1r, the ■ aero will be 1x1cut1d once, To run 1 
■aero ■ore than one ti ■ el the u11r should hit the 
LOOP key. The co■puter wi 1 r1qu11t I value fro• 
one to 999 be entered fro■ the nu ■eric keypad, 
Once 1nt1r1d 1 the loop v1lu1 will be di1pl1y1il to 
the left ot the MEMORY legend 1r11, The user 1ay 
then u11 the RUN key to 1p1cify the ■aero which 
will be r1p11ted until the loop value i1 zero, The 
DEL key will delete any ■aero by allowing the u11r 
to specify the unde1ir1d ■aero fro• the nu11ric 
keypad, Any ■ aero which u111 ADJUST BOX or MOVE 
BOX will inhibit the inv1r1ion of the box to 
i ■prov1 1p11d, M1cro1 1r1 1xtr1■1ly u11ful for 



repeating large boring tasks and tor 
automatically run animation sequences. 

OTHER FUNCTIONS 

creating 

Included in the bitpad 1enu layout ar1 1ev1ral 
other function keys which aid the user in 
1anipulating the display and 1nviron11nt, 

A1 1ention1d before 7 to the right in the numeric 
keypad is the 'P key, This key will flip the 
display to the alternate page each time it i1 hit, 
The 'PASE 8'/'PAGE I' legend will alternate from 
bright to dim to indicate on which page the user is 
currently. If two colorups are in effect (1/2), 
the proper colormap is assumed. The P key also 
handles the internal switching of source, alternate 
and force vectors from the page zero vector set to 
the page one vector set. 

The upper left hand corner of the bitpad contains 
the 'CRT' key, Touching this key will cause all 
information on the CRT to era1e and then reappear. 
This allow1 the user to verify what appears on the 
CRT. This is helpful for problems due to data 
tran11i11ion error or keypunching error. 

To the right of the CRT key i1 the '10' key, 
Touching this button once will erase the CRT and 
display the me11age 'HIT CRT OR 10 TO REDISPLAY', 
This mode will inhibit the co1puter fro• sending 
any information to the CRT, In thi1 mode, the ustr 
i1 operating blind 11 far as box coordinates and 
colormap value• and other l1gend1 are concerned, 
This co1mand is used to speed up the system, 
especially when modifying colors, When IO i1 
inhibited and the user is rolling the colormap 1 color will rotate with speeds in excess of o4 
colors per second, Thia command will 1110 allow 
macros to run faster by inhibiting all display of 
new coordinate updates, etc. 

To th!.' ri qht nf tht> Jn ~ey is the '7AP' ~"Y• Thi!! 
key require, the user to confirm by hlttinq the kty 
twice. Once confirmed, the current pa9e i1 cl1ared 
with color zero, To the right of ZAP 11 'ZAP ALT', 
After confirming this key 1 the alternate page is 
cleared with color z1ro. Th11 allow, th, u11r to 
delete the alternate page without having to go to 
the alternate page before executing a co11and which 
will result in the alternate page being modified, 

To the upper left of the bitpad under the CRT ker 
are two keys, 'FAST' and 'SLOW', These keys wi 1 
set the bitpad (via BITAVE) to fast or slow 
optration, In fast, the bitpad coordinates are 
s11ply returned to the user when in SWITCH STREAH 
mode. In 1low 1ode, each point i1 averaged with 
the last point and any points further than 15 
pixel ■ away from the l11t point is discarded, This 
allows more accurate drawing with the stylus, This 
only effects the bitpad wh1n the SWITCH STREAH 
switch is in effect. 

The final key is in the upper right hand corner of 
the bitpad, This key physically contains the area 
of four keys grouped two by two. Thi ■ key is the 
'EXIT' key and will exit the u11r to th, operating 
1y1tu. 

FUTURE FUNCTIONS 

Our software system is forever bting modified and 
improved, Because of this we have several 
functions which currently exist as FORTRAN test 
programs that are waiting to be converted i~to 
ASSEHBLV LANSUAGE pri1itives and incorporated into 
MENU, Stveral such functions require 11ntioning, 
The fir1t, FILL is a adaptation of the SNITH 
algorithm 11 pr111nt1d in the SISGRAPH '79 
proce1ding1, This is a very high 1pe1d horizontal 
scan line flood fill algorithm which u111 1111 than 
a 2K stack for worst case fill, HENU currently has 
• 2K fill stack reserved for this function. 

The second routine to be included is a 1100th zoom 
algorithm. This routine is basically FUZZ in 
r1v1r11. An iaage i1 enlarged by plotting each 
pixel leaving a background pixel in between. In 
this way, a 2 x 2 pixel area is converted to a J x 
J pixel area. A neighborhood scanner i1 then 
invoked to aver101 t~e intensities of the four 

59 

existings pixels in order to creat, the missing 
data. Th11 has the effect of z001ing up a ra1ter 
image while keeping all edges saooth and defined, 
lnst1ad of duplicating pixels when zooa\ngl thi1 
routine interpolate ■ the five 1i11ing p1x1 • to 
deteraine the proper data which should 1x11t t~ere. 
This keeps the edge and prevents the zooaed 11191 
from becoming blocky, Th ■ following 1x11pl1 will 
help clarify the effect: 

Before zooming: 
PP • 11 9 - Four pixels valutd 1,9,4 and b 
PP • 4,b in a 2 x 2 area. 

First ZOOI step: 
PbP • 1,8 19 - Image i1 zoomed leaving 
bbb • 8 1 8 1 8 background pixels between 
PbP ■ 4,8,b the original pixels 

Lut z 0011 step 1 
PPP = 1,5 1 9 
PPP ■ 2,4,7 
PPP• 4,5,b 

- Background inforaation i1 
interpolated by averaging the 
endpo1 nts. 

Finally, no provisions have been included for 
1aving aultiple 1aps using the SETHAP/PUTHAP 
primitives, These will be included with a quick 
recall aethod allowing the user to be able to 
ripple through all 9b stored maps. 

OBSCURITY 

Because the menu 1y1te1 allows the u1er to have 
extreme amounts of control over the graphics 
environaent certain aeasures have been included to 
insure ease of use. 

As described earlier in the paper, the CRT is 
divided into many bright and dim areas. Only 
bright areas are of importance to the user. Thi1 
allows the user to quickly focus the eyes on the 
desired area of the CRT without having to search 
around, Secondly, all legends output to the CRT 
are always cursor 1ddr1111d as apposed to 1crolled, 
Thi1 alway1 keeps information in the 1111 place on 
the CRT reducing the a10unt of starching reguired, 
The CRT cursor 11 turned off to keep it from 
becoming distracting. Display updates ar1 all 
handled by a11e1bly langua91 routines which talk at 
19,2K baud to the CRT, This 1ak11 leg1nd updates 
extremely fast and allow1 the entire screen to be 
rewritten (CRT key) within five 1acond1, 

To keep a rapid flow of com1ands fro• the user to 
the computer, all coa■ands which keep you in a mode 
(ie, SHIFT, ADJUST, SET RGB etc,,) are abortable 
by using the QUIT key or by just hitting another 
key to imm1di1t1ly execute another command, Keys 
which require confirmation, 1uch 11 ZAP, ZAP BOX 
etc., only require the Key to be hit twice. The 
CRT always p1u111 at least two 11cond1 btfore 
requesting a confiraation via tht legtnd 
'((CONFIRM?>>', Confirmations are only allowed in 
the POINT aode which 11an1 that the confirm button 
won't accidentally strea1 in via the SWITCH STREAH 
mode, 

However, no 1att1r what pr1caution1 one takes in 
designing a software package, 1011 11ount of 
obscurity always occur, In our 1yst11 1 th, w11k 
point is in the complexity of the c011ands. 
Operator, often forg1t that 111ar scanners are in 
effect, or that XOR is 11t instead of REPLACE. To 
help reduce the a10unt of incorrect key1trok11, no 
c01■1nd is executed if the basic component, for its 
execution are not present. For 1x1apl1 1 if colors 
are to be set and no color is bright 1n the color 
vector, the color c011and will beep and display a 
'1i11ing color 1ap' error on the CRT. 

Another problea which prtsented itself to us wa1 
the fact that th, 1y1t11 w11 too powtrful, It 
takes a new operator about two ■ onths to becoae 
effective on the coaputer (working around 
production), The reason for this is the large 
nuaber of possible effects for each coamand. You 
can tell a potential op1rator the purpose behind 
taking a rastor imagel assigning it a box, edge 
detecting only color 5 and xor plotting it back on 
it11lf rotated 188 degrees, but it still tak11 them 
ti ■ e to expari ■ent with the effect ■ and all their 
functions before th1y realize the use of 1uch a 



sequence. The obvious solution to this proble• is 
large 11ounts of high quality docu1ent1tion 
expressing all useful controls and functions using 
pictures to conv1y the actions, 

PROBRAMMINB PHILOSOP~y 

In designing co1put1r graphics software for 11111 
systems, one 1u1t be careful as to the approach 
taken with the actual pr0gr111ing, While 
structured pr0gra1ming is a good practice{ keeping 
to all the structured pr0gr111ing rules wi I result 
in a program which runs slowly and poorly, The 
method we adopted for our 1y1t11 was that of a 
powerful pri ■itive system which allowed the 
pri1itive1 to call the11elve1. To handle global 
events such 11 scanners and functions, each 
pri ■ itive which uses the ■, when called, calls 
$SCAN$, $SCAN$ is called by placing in the A 
register the value zero (for source ■canner) or the 
value one (for destination ■canner), The HL 
register 1h0uld point to the position in the 
primitive itself where it calls the actual ■ canner, 
The $SCAN$ function then write ■ into the address 
pointed to by the HL register th1 1ddr11s for the 
proper scanner, Th1r1f0re 1 each primitive when 
called im■ediately call ■ $~CAN$ to 'write' the 
proper CALL addres1 into the primitive code it1elf, 
ln the same way, the function 1pecified to the 
SETFUN r0utin1 i1 converted by SETFUN to a one byte 
instruction lie NOP; ADD A,D; SUB A,DJ XOR A,DI OR 
A,DI AND A,D) and stored in a g10b1l location 
labeled $$FUN, When a primitive is called which 
requires a function, it loads the function from 
ttFUN and writes It into the area needed in itself, 
This area is reserved with a NOP instruction, Thi• 
mean, that when each ISM pri ■ itive i1 executed, it 
actually rewrites itself to perform for the 
currently set environ ■ent p1ra1eter1, This saved a 
large a1ount of code from ever being written, 
However, self ■edifying code i1 also a bad 
pr0gr111ing practice. It ■ust be 1een that when 
programming for an application which require• a 
tight hardw1r1/10ftware integration, certain 
pr0gra11ing practices must be weighed against 
factors such as speed and efficiency, 

CONCLUSION 

Our design ha ■ 1h0wn that to force the 101t a10unt 
of war~ out of the hardware, each software 
pri ■ itive mu1t be de1igned to allow the 101t number 
of functions p0s1ible within that pri1itive, Great 
care mu1t be given to the c01put1r/u1er interface 
to help 1111 the p01sible obscurities which 1ay 
re1ult, Care mu1t 1!10 be taken in u1ing each 
device to it ■ gr1at11t potiential, Function, 1uch 
11 1creen area 1h0uld not be duplicated 11 ■ any 
manufactur1rs do by placing the 1cr1en area in the 
bitpad and displaying the 1enu ch0ic11 in the image 
plane. This is a great waste of both speed and 
space and should be avoided by careful planning of 
the available devices. 

Finally, it can be seen from the presented system, 
that an 1xtre11ly advanced graphic ■ software 
package can be implemented on a 11111 computer 
1y1tem, The advent of secondary 10urc11 of image 
boards designed for 11111 computers such 11 t~e 
APPLE II and IBM PC etc,, all0w1 pr0gra11ers to 
create highly advanced artist w0rk1tati0ns for 1111 
than $4 BIi d0llar1, Together, the new hardware 
combined with new 10ftw1re can 11ke for a complete 
product which will outperfor• much of the 
currently, c011ercially available equip1ent that 
co1t1 hundred ■ of thou11nd1 ■ore, 

ACKNOWLEDGEMENJ_! 

I would like to think Deborah Seller ■ , Andrea 
Sweti1h and Walter Wright for their valuable time 
■ pent in 1ugge1ti0n1 ind correction, on this paper 
and Bill R01anow1ki for fre1h idea ■ including the 
JD alg0righ1, Al10, thank ■ to our EPSON printer 
for printing this paper and di1gra11 ■any ti1e1 
without breaking down. And a final thanks to J, 
D, Foley and A, Van Da• for their wonderful book 
'Fund111ntal1 of Interactive Co1put1r Br1fhic1' 
which has pr0v1d1d valuable in1ight1 on a I the 
alg0rith11 that could never run on a 
1icr0-c01puter, 



BEFORE 

AFTER 

_.,ii': 

fl on-anti a i i ased t,»o co I or· 91" id 

before 3D mapping algorithm. 

Dense black areas are co!or 15 

Light black areas are color one 

Non-anti aliased two color grid 

after 3D mapping algorithm. 

Notice the shift of the color 15 

ti !es leaving the shadow area in 

their original po,ition. 

Printout is performed by an EPSON printer thus al I shades are reversed and non-anti aliased. 

FIGURE 1 - Tiled surfaces before and after 3D treatment 

61 



houston 
instrument 

0 RESET 

0 POINT 

□ SU/ITCH 
STRE>..M 

0 STRE>..M 

MISC 

MISl 
1-..,.J 1-..,.J 

PAINT KEYS 

STAMP KEYS 

FUNCTION KEYS 

BOX KEYS 

BOX 
ADJUSTMENT 

KEYS 

SCANNER 
KEYS 

HIP.\DTM 

PEN 
KEVS 

BOX KEYS 

CONTROL 

MEMORV KEVS 

BACKUP 

SEQUENCE KE',,S 

NUMERIC CONTROL 
KEYS KEYS 

CONTROL 
KEYS 

DIGITIZER 

COLOR 

KEYS 

MISC 

FIGURE 2a - Bitpad surface: Buttons and menu/screen area 

62 



°' ..., 

FAS'l'ISLOW SM LGB 
FADE AUE COP'/ KEV FUZZ 

FADE AUE COP'/ KEV FUZZ 

ADD SUB AND OR XOR 

FADE Al.1E COP'/ KEV FUZZ 

1 X xv 'r' 10 
JUMP JUMP JUMP JUMP JUMP 

+ . ~-. i ;~ 
./ SHIFT 

~ t- NEXT -➔ JUST 

! / J. '::.: MOUE ~.: 
5 ·x; ~-! V- 50 ' ' ADJ JUMP ~-1 ..... , ..... JUMP 

SCAN t 
.. l J, 

.. 
t s . . .. 

SCAN· • •f--. •➔• • 
D • ---+. • .. . ·-· 

dig i ta I image 

REP 

CEQC 

HI I LO I RES 
RES RES BQ)<; 

PEN PEN PEN 
FUZZ Fr:,,: 

PEN PEN PC 
FUN C + 

30 
3D 

>~ 

0 SKIP C 

1-15 EUEN ODD 

12 13 14 

8 8 10 

4 5 6 

0 1 2 

FI ND I BOX J AUTO 
GRA8_ G_RAB 
AUTO 
FIND 

LOAD 

PC 
-
30 
'-I 

1-15 
C 

FF 

15 

11 

7 

3 

SAi.iE 

DEC I LAST SAI..JE 

I ~~~ I w I 
LOOP MEM 

RUN 

COPV 
s ➔ o 

QUIT 
p 

S A 

CE - p 

C f. C f. C ➔ 

s f. s f. s ➔ 

A f. A f. A ➔ 

ALL ZAP F F F 

!s~DID~s!@] ! 
C s A 
+ + + 
C s A 
- - -

EXIT 

SET DEL 

COP',' .-..,..:i. 0 D➔ S ~-. 

-1 ,· 

4/ 2 GREI' GRE'I GREV GREV 
RGB R G E: 

SET + + + + 
RGB RGB R G E: - -LITE RGB R 13 E: -LITE ? ? ? ? 
ALL RGB R 13 E: 

"1T 
..t!.!JL HUE 1 15 

HUE 
ROLL ROLL ROLL ROLL 

-!, t· -,. t-

F 
+ IZESRO I L ~G , 

F 
-

FIGURE 2b ·- Bitpad surface: Menu key closeup 



Fi i,;;: PICTURE [P] FINO RES OFF l,JINDOl~ MEMORY 

s SC:At'!: L-R .T-8 Bo:,,: Fun: :>(OR 30 X V: 1/1 ~< ',' )UMP: 10/0 15 

D SCAN: 8-T. .R-L Pen Fun. REP./15 

KEV PAGE 0 +- COLOR MAP -'l- PAGE l 

PAD ::-:: LL \' ~~: UR V '' h X V RR GG 88 ;.; LL \-' ;-:: UR t/ X X V 

0 80 28 111 46 32 18 < :; 0 0 0 ,(4 f 88 123 115 148 27 27 

50 102 78 138 28 37 < 6 15 0 0 ., 255 186 300 181 46 6 
2 104 202 142 217 39 18 < 4 :; 15 1 0 { -~ 134 28 212 54 78 27 
3 234 22 277 41 48 20 ( 15 2 0 10 41 55 61 46 21 
4 127 83 191 122 65 :30 ( 15 3 0 
5 280 144 309 148 20 5 < FF) 15 4 0 { 136 56 218 106 83 51 
6 194 117 194 117 15 5 0 0-, 61 130 100 162 40 33 
7 184 117 194 117 ( 15 F ... 0 
8 15 7 0 

9 15 8 0 
10 15 ::1 0 183 30 261 73 79 44 
11 15 10 0 
12 15 11 0 
13 193 65 281 125 89 61 ( 15 12 0 
l 'l 29'l 178 348 203 55 26 { ) 15 13 0 
15 15 15 0 
FF l '.37E: 2'l l 378 241 { :~ 378 241 378 241 

FIGURE 3 ··· Menu CRT display 

64 



DEVELOPING A 3-DIMENSIONAL ANIMATION SYSTEM FOR THE 
DIGITAL 11/23 MICRO COMPUTER 

Marla Schweppe 

Art Education Department 
The Ohio State University 

Columbus, Ohio 

The animation system currently in use in 
the Art Education Department at The Ohio State 
University will be the topic of this presenta
tion, The hardware configuration, the software 
or animation tools which are currently in use 
and the new projects under development will be 
discussed. This discussion will include data 
generation, the creation of 3-dimentional 
scenes, the process of animation, and the final 
product. The courses offered here in computer 
animation will be briefly outlined and anima
tion produced by students working on the Digital 
11/23 will be shown. The possibilities and 
limitations of doing animation on the 11/23 will 
be discussed in depth. 

This presentation is designed for people 
with a general understanding of computer 
graphics. 

The computer animation group in the Art 
Education Department at The Ohio State Uni
versity has a Digital Equipment Corporation 
PDP 11/23 microcomputer system. Students also 
have access to a VAX 11/780 through the faci
lities Computer Graphics Research Group. The 
11/23 animation system is basically a limited 
version of the animation software available on 
the VA~. The 11/23 is used primarily in the 
introductory computer animation class. The 
environment is a research one. This means that 
new ideas are constantly being tested. The 
animator therefore has an opportunity to make 
contributions to the development of new software. 
However, this also means that the software is 
in a constant state of flux. 

Hardware Configuration 

For the first two or three quarters stu
dents design their animation on the PDP 11/23. 
This 11/23 has a 16 bit micro processor, float
ing point, memory management, a quarter mega 
byte of memory, and four serial interfaces. 
The interfaces go to three terminals, two 
VTlOO's with VT640 retrographics boards and an 
Zenith H-19. The fourth serial interface is 
used for communication to the VAX (mail and 
shipping files back and forth). The VTlOO's 
with 640 x 480 line drawing capability and the 

CH1930-7/83/0000/0065$01,00©1983 IEEE 
65 

H-19 which gives a very coarse image are the 
principal display devices. There are two, 
double-density, floppy drives with a half a mega 
byte of memory each and ten mega bytes of memory 
on four surfaces of hard disc. 

Software/Animation Tools 

The system uses UNIX Version 7 DEC modifi
cation 2.1, the C programming language with a 
math library and the Bourne shell. The animation 
software was written locally, originally for the 
VAX and was transported to the 11/23. The local 
software includes sen assmblr2, which allows for 
the manipulation of objects and view parameters 
and a data generation programl. 

Data Generation 

Data or objects can be created using either 
the data generation program developed by Wayne 
Carlson and modified by Paul MacDougal or by hand. 
In creating data by hand the animator must specify 
points in x, y, z space and connect those points 
to specify polygons. This is done in an ascii 
format. The data is then transformed into a bin
ary format for later use. We also use an ascii 
description file which contains necessary infor
mation for the animator. It includes information 
like the name of the binary file, a comment, the 
display algorithm to be used and the bounding box 
of the object. Currently there is only one dis
play algorithm which outputs to the VTlOO retro
graphics display or the H-19. Later, with a color 
display and therefore different display algo
rithms, the data description file will also con
tain some information about color. Since the 
ascii data files take up a fair amount of space 
in memory, these are usually deleted leaving the 
binary version of the data and the ascii descrip
tion file. If for some reason the ascii data 
file is needed again it can be converted back 
into the ascii format. It is also possible to 
have more than one ascii description file point
ing to the same binary file. For instance, dif
ferent display algorithms or color maps could be 
specified for the same piece of data. 

Three types of data can be created using the 
data generation program: solids of revolution, 
tubular objects, and projected objects. The data 
generation program (DG) uses menu selection in 
combination with input from the terminal. In the 



2d drawing mode the user specifies paths and pro
files for solids of revolution, 2d paths for 
tubular objects, and profiles for projected ob
jects. There are menus for each type of object 
that allow the artist to adjust various para
meters. When an object is output from DG, the 
binary data file and the ascii description are 
created. The animator can convert this binary 
file to ascii format ifs/he wants to change 
the object by changing the coordinates of some 
of the points. 

Scene Description 

In order to describe scenes we use a program 
called sen assmblr which was developed by F.C. 
Crow for use on the VAX and transported to the 
11/23 by Michael Girard. Sen assmblr allows the 
animator to instance a piece of data as many 
times ass/he wants by simply calling it any 
number of times. It then allows all objects 
called to be placed, rotated and scaled inde
pendently in three dimensions. Once the scene 
is created the animator can decide where the 
eyepoint should be and in which direction it 
should be pointed. The animator can also control 
the view angle, which gives the effective control 
of a zoom lens going from wide angle to tele
photo. The user can ask to see the scene from 
any direction at any time and can then make the 
necessary adjustments to get the desired effect. 

Sen assemblr can be used in an interactive 
mode or ft can take input from a file. In the 
interactive mode, the commands are typed in line 
by line. This mode is useful when initially 
creating a scene. There is a counnand which 
causes the current status of all parameters to 
be output to a file for later use. 

The mode which allows input from a file is 
useful both for viewing of a single frame which 
was created in the past and stored in a file, 
and for doing animation. Animated movement is 
created by moving an object or objects some 
amount from frame to frame. Therefore it is 
preferrable to write a script for input into 
sen assmblr which will describe one frame after 
another, display the frame on the screen and send 
a signal to click the camera. If the animation 
is to be recorded on 16mm film as we do, 24 
frames per second must be generated. This means 
there are 1440 frames for a minute of animation. 
There are several systems available on the VAX 
which generate these long files that describe 
each of the frames. One is a key framing system. 
One is a skeleton animation system and another 
simply does linear interpolation for independent 
objects. For the present the scripts for ani
mation are being created by an adhoc method. The 
animator writes a C program with lots of print 
statements and arithmetic expressions that gen
erates a file in the proper format for sen 
assmblr. This method requires that the animator 
have a fair amount of programming experience. 
Animation students have also put their program
ming skills to use writing subroutines that per
form various functions like ease-ins, ease-outs, 
acceleration and deceleration. 

66 

The Development of the System 

The main objective of the development is to 
create an environment where students can become 
familiar with the tools for computer animation in 
a way that is easily transferrable to later work 
on the VAX. At the same time, the system must 
include enough tools for the beginning student to 
create interesting animation and to transfer work 
done on the 11/23 to the VAX for later use. For 
this reason, the software currently implemented 
on the VAX was transported to the 11/23. In order 
to transport sen assmblr the limit of objects 
allowed was lowered from 64 to 16 and the number 
of points and polygons per object was lowered from 
several thousand to 700. In order to transport 
DG, the option to create objects by lofting was 
eliminated. The mode of interaction was trans
ferred from a Megatek to the VTlOO with keyboard 
control of the cursor. The code for DG also had 
to be rewritten into modules that would fit onto 
the system at the same time as the data being 
created. Many programs available on the VAX will 
not be transported to the 11/23 due to size limit
ations, but others are under evaluation. The 
current display algorithm includes clipping, per
spective and the ~emoval of backfacing polygons. 

Future Improvements 

A Peritek Frame Buffer and a Barco monitor 
will provide a 512 x 512 x 4 display with 16 
colors chosen from 4096. Most of the user inter
faces now available on the VAX will be transport
ed. TWIXT, a 3d keyframing system written by 
Julian Gomez, is one example of such an inter--· 
face3. This system allows the user to specify 
key frames of an animation and the intermediate 
frames are generated through linear interpola
tion. A version of TWIXT works from a keyboard, 
and will be transported to the smaller machine. 
TWIXT on the VAX interacts with a Megatek in near 
real-time display. This capacity allows for fast 
feedback and debugging of animation. Only single 
frames can be displayed on the 11/23. The only 
way to provide real-time playback for animation 
done on the 11/23 is through film. The skeleton 
animation (SA) system developed by David 
Zeltzer4 is also planned for transport. 

Outline of the Beginning Computer Animation Class 

The beginning Computer Animation class is 
designed for students with a background in art 
and computer science. Students are also re
quM.red to take a survey course in Computer 
Graphics which familiarizes them with the history, 
state of the art and basic terms of computer 
graphics. The introductory class presents a wide 
variety of information. During the first quarter 
the student must become familiar with the system 
and local software, basic film techniques, the 
theory of additive versus subtractive color, 
temporal-spacial skills and prograunning skills. 
Relative to system software, the student must 
learn the UNIX operating system, the editor, and 
the C progra!lllling language. They must become 



familiar with the application of basic film tech
niques like cuts, pans, and zooms through control 
of the eyepoint and direction of view. Conven
tional animation is studied in depth in order to 
develop a sense of timing and motion control. 
Most students must switch their thinking from 
using subtractive color as with pigment to using 
additive color. 

The student first creates a scene using 
primitive objects (balls, cubes, cones, pyramids 
and cylinders). The student draws the scene in 
orthographic projections before beginning work 
on the computer. Two objects in this scene must 
be in contact with each other in order to demon
strate control over placement, Three, well
composed views of the scene must be displayed on 
the screen. This demonstrates control of the 
eyepoint and direction of view. This assignment 
familiarizes the student with sen assmblr without 
having to know any other programs-:-

The second assignment requires that the 
student build three objects using three possible 
options of the data generation program. This 
assignment familiarizes the student with the kinds 
of objects that are easily built in DG. 

Assignment Three requires that the student 
build an object by hand. The object must be 
drawn in orthographic projections. If it is a 
complicated object a rough model may need to be 
built as well. The object must be one which 
cannot easily be built using the methods of DG. 
This avoids wasting a lot of time building an 
object by hand that could have been done more 
quickly in DG. 

Controlling movement is crucial to animation 
so the last two assignments require the student 
to demonstrate motion control. The first re
quires that the student use one or two objects 
in 10 seconds of animation. A storyboard of 
the animation is required, This gives the stu
dent practice in visualizing an animation from 
start to finish and forces them to control the 
movement and timing in a structured rather than 
an arbitrary way. 

The second animation allows the student to 
use up to the maximum number of objects (16) 
and encourages the student to create an environ
ment as well as have moving objects. 

Summary 

A microcomputer can be a powerful tool for 
doing animation. The animation will not compare 
to that utilizing complex display algorithms and 
large data bases generated on larger systems. 
However, if compared to the many conventional 
animation techniques, the animation that is 
possible on a micro should entice many artists. 
Much, state-of-the-art computer animation done 
today is designed to produce special effects. 
The micro, with current capabilities, is less 
useful in creating animation for these purposes. 
The relative low-cost of micro systems however, 
should make them more available to artists to 
develop standards and an aesthetic based on the 
system's potential. 

67 

References 

1. Techniques for the Generation of Three Dimen
sional Data For Use in Complex Image Synthesis, 
W. Carlson, Ph.D. Thesis, The Ohio State Uni
versity, September, 1982. 

2. flA Comparison of Antialiasing Techniques, fl 
F.C. Crow, IEEE Computer Graphics and Appli
cations, January, 1981. 

3. TWIXT User's Manual, Julian Gomez, Computer 
Graphics Research Group, Columbus, Ohio, 
September, 1983, Unpublished. 

4. ''Motor Control Techniques for Figure Anima
tion, fl D. Zeltzer, IEEE Computer Graphics and 
~oplications, Vol. 2, No. 9, November, 1982, 
i:,g. 53-59. 



l_-~ Computer Graphics for Artists 

Judy Sachter 

Department of Art Education 
The Ohio State University 

Columbus, Ohio 43201 

Artists need to understand the techniques and 
limitations of computer graphics in order to fully 
utilize this new medium, While graphics software 
may differ from system to system, this paper 
addresses basic concepts in 3-D computer graphics 
that are independent of a particular language or 
graphics device, 

1. Introduction 

Computer graphics opens up a totally new 
medium for the artistic community, In order to 
fully utilize this new medium artists need to 
understand its techniques and limitations. The 
nature of computer graphics demands a variety of 
both technical and aesthetic skills, Artists 
have to learn where previous artistic skills and 
concepts will or will not transfer to this new 
medium, It is important for them to become com
fortable with the computer environment, both the 
hardware and the software, They need to fami
liarize themselves with the use of the computer, 
the operating system, the text editor, and the 
graphics language as well as the input and output 
devices available on the particular system they 
are using. 

As artists see the world (real or imaginary) 
they create an image of this world in their 
minds, This image is transformed mentally into 
a visualization, and rendered in a particular 
medium either two or three dimensionally by the 
artist, In 3-D computer graphics it is necessary 
to create a mathematically model of the world in 
the computer memory. Creating objects in this 
'digital,, world is similar to creating sculpture 
or architecture. The artist needs a good under
standing of space and form. These objects can 
be painted and manipulated by changing their 
size, position in space, and their orientation 
(rotation) in space to create a scene. This 
scene is similar to setting up a stage with 
actors, props, and background for film or theater. 
The light or lights are placed for the best 
effect. Then the artist chooses a window from 
which he will view this world and where he is 
looking. This building of models, and organiza
tion of space, color, light and view are where 
the artist has control, the rendering of the 
shaded 2-D image is all done by programs or 
algorithms. 

CH1930-7/83/0000/0068$01. 00 © 1983 IEEE 
68 

·Artists consider the level of realism of 
their work in relation to the subject matter, the 
materials used, the amount of time they have, their 
skills at rendering realistically, the amount of 
detail necessary, the expressive content, and how 
it will be perceived by an observer. This is· also 
true in computer graphics. Computer scientists 
must take into consideration the level of real-
ism needed for a particular application, the 
amount of detail recorded in the model, the pro
cessing time required of a computer to generate 
the image, the capabilities of the computer and 
the hardware display, and the perceptual effects 
of the image on the observer. This has led to 
choices in how the artist and the computer 
scientist model the world in a way that is 
appropriately believable for a particular purpose. 

Graphics software may differ from system to 
system; there may be more options on some systems 
than others and the graphics or animation lan
guage may be different on each system. This 
paper addresses the basic concepts in 3-D com
puter graphics that are independent of a parti
cular language or graphics device. 

2. Illusion of Depth 

The basic problem addressed by visualization 
techniques in 3-D computer graphics is depth 
cuing[2]. Artists have used various techniques 
to create an illusion of 3-D space on a 2-D sur
face using an intuitive knowledge of space and 
the human visual system. 

Largeness of scale can be interpreted as 
nearness, and conversely, smaller scale is inter
preted as spatial distance. The position of a 
form near the lower edge is perceived as near 
spatially and anything above the horizon line 
or the center is interpreted as farther away. 

Linear perspective is a geometric system 
which uses the spatial indication of size, posi
tion and converging parallels and converts size 
and distance into a unified spatial order as 
seen from one viewpoint. This visual logic of 
linear perspective can be prograumed into the 
computer. 

Overlapping planes or volumes are a powerful 
indication of space and take precedence over 
other depth cues. An object covering the visible 
surface of another object is assumed to be nearer. 
Overlapping, one of the strongest depth cues, is 
handled by what is called a hidden-line or 
hidden-surface algorithm. This eliminates 



-

surfaces or parts of surfaces that are not seen 
from the designated view. Transparencies can 
also be synthesized by the computer but are ex
pensive computationally. Light is a significant 
indicator of volume of an object in space. Light 
reveals the form and surface qualitites through 
a gradation from light to dark. Other surface 
qualities such as color, texture, degree of 
reflection are the result of the play of light on 
the surface. Shadows indicate both the form of 
solid objects as well as position of the light 
source. [ 3] [ 6] 

The qualities of light can be modeled in 
the computer in various ways. Diffuse shading 
can be easily simulated in the computer. Some 
effects create more realism, such as cast shad
ows, transparencies, and reflections, but are 
computationally very expensive. The construc
tion of the human visual system doesn't allow the 
eye to see near and distant objects at the same 
time with equal clarity. Distant objects lose 
their sharp edges, have less detail, and colors 
tend to be lighter and less brilliant. Artists 
call this phenomenon aerial or atmospheric per
spective [3,6].The depth cue of atmospheric 
effects might be programmed with a haze factor 
and adjustment of colors in the distance. The 
techniques necessary to incorporate most of these 
depth cues into computer graphics algorithms are 
worked out [ .:ii, but when programing depth cues 
the scientist has to take into consideration the 
amount of computation time for an effect. 

3. The Cartesian Coordinate System 

The world is modeled in a digital computer 
mathematically in a form understandable to the 
computer. Each 3-D model nrust have a complete 
3-D definition in space. The frame of reference 
for this space is the cartesian coordinate system, 
which gives us a standard mathematical reference 
for specifying 3-D space. There are various con
ventions used in reference to this system. The 
center of the system is called the origin. The 
X axis runs horizontally with positive X (X) to 
the right and negative X (-X) to the left of 
the origin. Y is the ·vertical axis with Y going 
up and -Y going down from the origin. The Z 
axis is the depth axis, with positive Z forward 
in space and the -z going back in space. This 
gives us a right-handed system, which is important 
to know when it comes to rotating an object in 
space. I will go into this in more detail later. 

4. Data 

Each coordinate point in this space can now 
be defined as an (X, Y, Z) triple, Connecting 
these points or vertices with lines creates a 
wireframe view of an object. If this object is to 
be shaded, the surface not just the edges needs 
to be .defined. One way of approximating this 
surface, is by defining a planar polygon or 
face. To define the face the coordinate of each 
vertex is listed. In a consistent order around 
the periphery of the polygon. For example, a 
triangle would be made up of three vertices and 
a square would be made up of four vertices. 

69 

A face has two sides that need to be distinguished 
from each other. A consistent order in describ
ing the vertices that make up the polygon is impor
tant to determine if the polygon is facing towards 
or away from the viewer. A clockwise order as 
seen from the observer position or the outside is 
used to define the front of the face. The reverse 
order as seen from the eyepoint would indicate 
that the polygon is facing 1JMay or backfacing. 
These backfacing polygons are identified and not 
displayed. [2] [4] [5J 

This ordered list provides a description of 
the face normal. The face normal is a vector 
perpendicular to the plane of the face directed 
outward from a front-facing polygon. This face 
normal is used to determine hidden-surfaces and 
used for shading [5]. This system speeds up the 
hidden-surface calculation. An object is a col
lection of adjoining polygons. Since neighboring 
polygons share vertices along common edges, 
objects can be easily and compactly defined by 
listing each vertex once and polygons are defined 
as a list of pointers to the vertices they use. 
Another way to speed up calculations is to be sure 
that all polygons are convex. This means that a 
point is not closer to the center of the ~olygon 
than either of its neighbors. [2] [4] [5J 

The model is a simplification. The closer 
the approximation of computer data to reality, 
the more complex. Realistic objects may become 
very complex, which tends to increase the com
putation time needed for display. Sometimes hav
ing the same object with different levels of detail 
can be helpful. An object displayed in the dis
tance does not need to be as complex, and thus 
take as much time to display, as an object close 
up. There are several things to consider when 
planning and creating a piece of data. One thing 
to keep in mind, is that a polygon has to be a 
plane. A triangle by definition is a plane, and 
if there is any doubt about a surface then it 
should be broken down into triangular polygons. 
Backfaces can be a problem in debugging.a piece 
of data, as well as a design consideration. 
Backfacing polygons can leave holes in an object. 
If the eyepoint is placed inside a box, the box 
would not be visible because all the polygons 
would be backfacing. To eliminate this problem 
all the polygons can be defined twice, once 
clockwise and once counter-clockwise. Another 
method is to turn off the culling of backfacing 
polygons for the boject. Purposely designing in 
backfaces allows one to play with space and the 
object. Another thing to keep in mind when 
designing data is the fact that it can be viewed 
from any point in space. As in sculpture, the 
data may need to be interesting from multiple 
viewpoints. 

There are various methods for planning an 
object and picking the coordinates of the vertices. 
One method that is very useful is orthographic 
projection. This involves plotting 3-D points 
on a piece of 2-D graph paper using the cartesian 
coordinate system. The front or plan view of the 
object is projected onto the XY plane. A side 
view is projected onto the YZ plane. A top or 
bottom view is projected onto the XZ plane. These 
plans are similar to an architect's blueprints. 



-
Folding these plans into a box with the side and 
top folded back provides us a model of this ob
ject in 3-D space. These plans assist in finding 
the coordinate of a point in each axis, X, Y, Z 
by marking the origin and counting spaces on the 
graph paper. One consideration is the location 
of the origin in relation to the object. Most 
the time the origin is in the center of the ob
ject. Then it is simply a matter of connecting 
points in a clockwise order to define the 
polygons. 

Many systems have a library of pre-defined 
geometric models or primitives (cube, cone, 
sphere, pyramid, and cylinder, etc.). These 
primitives can be scaled, rotated, and placed in 
space to build new objects. This is the building 
block or combinatory approach to data generation. 
Since a sphere can become an ovoid, a cylinder 
can change from a long thin rod to a flat coin. 
Many possible forms may be created using this 
method. Another thing that can be done with 
primitives is warping. Some of the points making 
up a sphere can have the value of their coordin
ates changed. In effect, we can 'push' and 'pull' 
points to create a new shape. Projection is a 
fairly simple way to create data. It is somewhat 
like a cookie cutter approach. The points for 
a shape are plotted in the XY plane and then 
repeated with a changed Z value in each vertex. 
Solids of revolution are very useful in plotting 
the points for a symmetrically curved surface, 
such as a vase. The data is created for a 
'piece of the pie' or the profile and then ro
tated an appropriate number of times at the 
correct intervals to form the entire object. 
Lofting is very much like defining the contours 
for a topographic map, where a series of cross
section of an object are defined. This method 
can be very simple or become very exacting. It 
is similar to creating a sculpture by cutting it 
into many thin slices and serially plotting the 
points. The slices are then connected and defined 
as polygon surfaces. (4] 

Many of these methods, as well as others, 
have been implemented into data generation pro
grams that are interactive, in such cases the 
artist is usually able to input points with a 
'drawing' or digitizing tablet. Polygonal data 
is a linear approximation of a curved surface. 
Other software may have methods of creating data 
that can more closely represent curved surfaces. 
An example of these higher-ordered approximations 
are B-sline and Bezier patches (5] .[4]. 

5. Object Transformations 

Once various objects are defined in the com
puter there are several things one can do with 
each object to create a scene. They can be made 
larger or smaller or scale it. They can be moved 
around in space or traiisi'ate it. They can be 
turned in space or rotate it. The manipulation of 
an object is performed on a copy or instance of 
the original. In this way one can have several 
instances of the same original object and mani
pulate each individually. Generally the copy can 
be given a name so that it is easier to keep 
track of the many objects in a scene. These 

70 

9 

manipulations of the object we call transforma
tion. These transformations can be expressed 
mathematically in matrix algebra by a single 
entity called the transformation matrix. Complex 
or several transformations of an object can com
bined or concatenated into one matrix (2]. 
Matrices are usually invisible to the user. It is 
important to only understand what they do. 

5.1. Scaling 

When scaling each coordinate is multiplied 
by a scale factor [2]. One is free to scale in
dependently in each axis to change the shape or 
proportions of an object. Objects can also be 
scaled equally in each axis and maintain a larger 
or smaller version of the same object. In this 
way it is very easy to turn a cube into a board 
by scaling it up in X by 4 and scaling it down in 
Y by .SO. For example here are the coordinate 
points for a cube: 

X y z 
1. 1 1 1 
2. -1 1 1 
3. -1 -1 1 
4. 1 -1 1 
s. 1 1 -1 
6. -1 1 -1 
7. -1 -1 -1 
8. 1 -1 -1 

Each point in the X column would be multiplied by 
4 (4 x 1 = 4 and -4 x 1 • -4). Each point in the 
Y column would be multiplied by .5 (1 x .5 = .5 
and -1 x .5 = -.5). The Z coordinates would 
remain the same. Thus we have changed an object 
with the outer limits or bounding box of -1 to 1 
in X, -1 to 1 in Y, and -1 to 1 in Z to -4 to 4 
in X, -.5 to .Sin Y and -1 to 1 in Z. 

Another thing to keep in mind in designing 
data is the location of the origin of the object. 
If an object is designed with coordinate points 
with a zero value in any axis then any multipli
cation of zero is still zero. This can be used 
creatively if controlled, but can be difficult to 
control because it may not only scale an object 
it can also move it. The scaling can be used 
very effectively for instance in animation to 
incrementally scale an object down to the point 
where it disappears or up to ~he point where it 
takes over the screen. In fact scaling an object 
by a negative number can tum it inside out and 
reverse the order of the polygon description. 
If an object is designed for this it can actually 
become another object on the inside. 

1•l• Translation 

In translation a factor is either added or 
subtracted from each coordinate to move it around 
in space (2] [5]. As with scaling this can be 
done independently along each axis or in more 
than one to place it where desired in space. In 
the example of data for the cube listed before, 
the object has its origin at OX O YO Z (0,0,0). 
If this object is placed at 0,0,0 it will not 
have moved. If it is placed at -2, 1, -3 values 



will have been added or subtracted respectively 
from each coordinate of the object. This cube 
will have just moved to the left in X up in Y and 
back in z. A shorthand method for thinking 
about this that the origin 0,0,0 of object is 
actually placed at -2, 1, -3. Using this method 
it is fairly easy to figure out where the object 
is placed. 

Translations are very useful in organizing 
and placing things in space. Incrementally 
placing the same object at various intervals can 
be used to build more complex images, such as a 
steps or bars on a crib. In animation this can 
be used to simulate motion. If one displays a 
box, takes a picture of it with a movie camera 
(stop motion), then moves the box a little more 
and takes another picture of this frame, we have 
animation. Translation is very important in ani
mation. By varying the distance between moves 
one can either speed up or slow down the motion. 

5.3. Rotation 

Rotations are mathematically more complex. 
They are done through matrix multiplication using 
sines and cosines [2J [SJ. Artists need to only 
understand how to control rotations. In trans
lation a positive number in X moves the object 
to the right and a negative number moves it to 
the left. In scale large numbers expand the 
object and small numbers contract it. In rota
tion one has to think of the direction of the 
rotation. As stated previously, these examples 
will use, a right-handed space. With the right 
hand one grasps the axis with the thumb pointing 
towards the positive end of the axis, your fingers 
will curl in the direction of a positive rota
tion. When looking down an axis from the posi
tive end towards the origin a positive rotation 
will be counter-clockwise [2J. Rotations are 
usually specified by the axis of rotation and 
degrees of rotation either positive or negative 
for the direction. 

A simple rotation is a rotation around a 
single axis in the coordinate system [2J. This 
is a rotation~ the origin of the object in a 
specific axis. The order of rotation is impor
tant. This concept is not immediately obvious 
but must be understood. The reader can demon
strate this principle by holding an object and 
performing these operations. Rotate an object 
on its X axis, then on its Y axis. Then repeat 
the same operation -in reverse order. You should 
see that the resulting orientations in space are 
different due to the order of rotations. 

A concatenated rotation is a rotation about 
more than one axis at a time [2]. If an object 
is rotated in X and then in Y, a concatenated 
rotation would be rotating it in X and Y at the 
same time. The order of the rotations are still 
important even when rotations are concatenated. 
Keeping track of rotations can become very com
plex and requires skill and a good sense of 
spacial orientation. 

Rotations off the origin of the object are 
different from on-origin rotations. This can 
be thought of in terms of the solar system. An 
on-origin rotation is like the earth rotating 

71 

on its own axis, and an off-origin rotation cor
responds to the earth orbiting around the sun. It 
is important to realize that several rotations on
origin and off-origin can be going on at once 
increasing the complexity. A common error is to 
rotate an object so that it moves completely off 
the display screen. The beginner is often unable 
to understand why the object can't be seen. 

Rotations, like scaling and translating, can 
be used effectively in animation. By incremental
ly rotating an object it can appear to spin, tumble 
or roll. The speed of this motion depends on the 
size of the increments. For example, if it only 
rotates by .5 degrees per frame it will appear to 
rotate very slowly. 

6. View Transformation 

Once all the objects are arranged as desired 
in the scene, an eyepoint to view the scene must 
be selected. The eyepoint is placed by locating 
it in the coordinate system through an X, Y, Z) 
triple. The point in space at which one is look
ing must also be specified. This point is the 
center of interest and is placed by defining its 
X, Y, Z position. These two points in space 
create a line of sight. The viewing angle, 
which is the angle on either side of this line 
makes up the viewing pyramid. The eyepoint is at 
the apex of the pyramid. Anything outside this 
view pyramid is clipped and not displayed. A 
view angle of 90 degrees indicates a 45 degree 
view on either side of the line of sight. Depend
ing on the system, this angle is either fixed or 
can be changed, but it is important to know. 
Setting the viewing angle is similar to chaning 
the focal length of a camera lens, in that the 
size of the angle of view controls how much of a 
scene will be seen in the display. Similarly, 
a long focal length telephoto lens gives a narrow 
field of view, while a short focal length wide
angle lens, of course, gives a very wide field 
of view. 

Once this view pyramid is defined, all the 
coordinates of the objects in the scene are trans
formed to~ coordinates. The view that appears 
on the display device seems to be centered along 
the specified line of sight. These new X Y Z 
coordinates of each of the objects in the scene 
are projected onto a 2-D picture plane by one of 
several known mathematical techniques for gener
ating perspective, orthographic, or other kinds 
of projections. The perspective· projection is 
the one we are most familiar with, because it 
remarkably is similar to the photographic image. 
In any case, the 3 X Y Z coordinates of the ob ~ 
jects have been transformed into eye space, and 
then into the two dimensional X and Y coordinates 
of the objects have been transformed into eye 
space, and then into the two dimensional X and Y 
coordinates of the display screen. Thus the 3-D 
eye space is transformed to a 2-D screen space and 
completed the view transformation [2J [4J [SJ. 

The eyepoint and center of interest can be 
used in animation to simulate filming conventions 
or techniques, such as cuts, pans, dolly, truck
ing and crane shots. By changing the view angle, 



a wide angle or telephoto lens can be simulated. 
One unique property of computer graphics is the 
ability to arbitrarily move your 'camera' or use 
views impossible in other medium. 

7. Color, Light and Shading 

The color raster display device has indi
vidual video input of red, green, and blue (R G 
B). The three g\llls excite the phosphor dots 
which make up each picture element or pixel. 
Each gun is individually controlled for inten
sity. The eye blends these dots of R GB into 
the visible colors of the spectrum [4]. This 
color phenomenon was used by the Pointillist 
painters. The light reflection model that des
cribes both the color and distribution of reflec
ted light in computer graphics is similar to the 
way some artists approach a painting. The illu
mination and the color of an object are painted 
separately. The entire painting is done achro
matically in white, greys and black creating the 
shading gradients, then local color is applied 
with glazes [ 1] • 

Now that we have calculated the visible sur
faces of our image, we need to compute the cor
rect intensity value for each pixel in the shaded 
image. A light reflection model that describes 
both the color and the distribution of reflected 
light. This intensity value is determined by the 
position of the light source, the polygon orient
ation and the surface properties of the object. 
The shading gradient is determined by the angle of 
incidence of the light source to the normal· 
vector, which is perpendicular to the plane of 
each polygon [4]. The closer this angle is to 
zero the brighter the face, and conversely the 
greater the angle the closer to black the face 
will be. These value gradients are usually 
stored in a color look-up table. If these 
tables can be accessed the artist can play with 
reversing light and dark, 'bumping' the dark 
values, and change the hue of highlights and 
shadows, etc, 

Now that each polygon has a value, the 
image can be displayed. Each polygon would be 
seen as faceted, or one value for each polygon. 
Gouraud and Phong shading models create more 
realistic images of curved surfaces of~ 

·shading, even if the data is polygonal [4] [S]. 
Gouraud shading is a fast approximation of smooth 
shading. The normal is calculated for each ver
tices and the intensity is then linearly inter
polated across the surface of the polygon. 
Phong shading is a closer approximation to real
ity. This algorithm computes a normal at each 
pixel to obtain the intensity, but is computa
tionally more expensive. Ray tracing is the 
most exact model, it takes into consideration 
highlights, shading, cast shadows, and reflec
tions, of course it takes a very long time to com
pute an image [4]. These shading algorithms are 
invisible to the user. The artist must only 
understand the principles so that he may achieve 
the desired effect by placing the light source 
and coloring their objects. The point light 
source is placed at an X Y Z coordinate in space 
in relation to the position of the other objects 

72 

in the scene. Depending on the system, the artist 
may have access to more than one light source. He 
may even be able to scale and color the light 
source. The point light source is usually thought 
of as a sphere of light with the scale factor a 
radius. Thelight model for directed light as 
modelled after stage lighting could be very 
exciting, but is not yet used. 

Color in computer graphics is made up strictly 
of the three primary colors red, greem and blue 
(R GB), due to the limitations of the raster 
display. This system is modeled after the light 
primaries and is an additive color system. Colors 
are specified numerically with a discrete inten
sity value for each component. Colors can be 
specified in two ways. In the H LS (hue, light
ness, and saturation) modei, hue is specified as 
a given angle of a circle, lightness is from 
black to white, and saturation is used to specify 
the degree the color differs from grey •. 

The R GB system is modeled after a color 
cube with black at 0,0,0, and white at 1,1,1, 
White is made up of full intensity of each pri
mary and black is the absence of any color. 
This color can be more readily visualized by 
creating a color wheel with red, green and blue 
as primaries and yellow, cyan, and magenta as 
intermediary colors. 

R G B 
red 1 0 0 
yellow 1 1 0 
green 0 1 0 
cyan 0 1 1 
blue 0 0 1 
magenta 1 0 0 
white 1 1 1 
black 0 0 0 

The higher the number the brighter the color. 
A bright blue would have the value of 1,0,0 and 
a darker blue would have a value of .2,0,0. 
The artist has several adjustments to make in 
using color on a computer. Colors are specified 
with numbers, and additive color systems is dif
ferent from substractive color system which the 
artist is used to. A colored light can drasti
cally change the hue of a scene. The artist has 
to practice using a particular system and a par
ticular display device to be able to anticipate 
hue and saturation of a color mixture. 

The possibilities for artists in computer 
graphics are endless. Presently the design of 
hardware and software is geared to science and 
technology. The artist needs to become more 
familiar with computer graphics and form a_part
nership with computer scientists. Through col
laboration of these two fields, computer graphics 
can become a more natural, dynamic and artistic 
medium. 

References 

1. Arnheine, R., Art and Visual Perception, 
University of California Press (1974). 

2. Crow, F.C., Three-Dimensional Computer 



Graphics, Part I, Byte, Vol. 6, (3), p. 54 
March, 1981. 

3. Knobler, N., The Visual Dialogue, Holt, 
Rinehart, and Winston,Inc. (1966). 

4. Greenberg, D.P., An Overview ~f Compucer 
Graphics, Addison- Wesley (1982). 

5. Newman, W. and Sproull, R., Principles of 
Interactive Computer Graphics, 2nd Edition, 
McGraw- Hill, New York, (1979). 

6. Ocvirk, 0., Bone , R., Stinson, R., and Wigg, 
P., Art Fundamentals Theory and Practice, 
Wm. C. Brown Co. Publishers (1975). 

73 



A PROFESSIONAL QUALITY DIGITAL AUDIO PERIPHERAL FOR SMALL COMPUTERS 

by Hal Chamberlin 

Micro Technology Unlimited 
2806 Hillsborough St., Raleigh, North Carolina 

ABSTRACT 

During the past couple of years the development of 
low-cost digital audio systems has proceeded at an 
astonishing pace. Already announced, and in many cases 
available to consumers, are encoders/decoders which turn a 
video cassette recorder into a digital audio recorder, and 
•compact disk" digital audio playback systems. The ability 
to offer such devices at reasonable cost (under $2000) is 
due primarily to advances in semiconductor processing (for 
the 16 bit DACs and ADCs involved) and willingness of large, 
established audio equipment suppliers to invest in LSI 
controller ICs to handle the difficult synchronization and 
error control logic involved. While these developments are 
a boon for the critical audiophile, they have not so far 
been exploited in the design of a professional quality 
digital audio computer peripheral suitable for use in smal I 
systems. This paper describes the design features of such a 
device which is flexible, is easily interfaced to any small 
computer, and is much lower in cost than previous units 
intended for use with minicomputers or mainframes. 

Introduction 

Digital recording and playback of audio signals is 
currently the hottest topic in audio, both in the 
professional recording industry and in high-end consumer 
products, It is difficult now to find an audio journal or 
magazine without at least one article .or product review on 
digital audio equipment. The advantages of using digital 
techniques in what has been the weakest link in the audio 
chain are Indisputable (although a handful of ill-informed 
critics nevertheless try to dispute them). This fact, 
coupled with recent advances In IC and laser disk 
technology, has encouraged established audio equipment 
manufacturers to make the investment necessary to 
manufacture digital audio equipment at low cost and in large 
volumes. 

While these developments promise to revolutionize the 
quality of recorded and reproduced sound, they so far have 
not been applied to any great extent in synthesis and 
processing of sound material with small computers, When one 
realizes that sound in digital form is completely accessable 
to manipulation by computer (just as tape recording made 
sound a;cessable to manipulation by hand 35 years ago), one 
also realizes that a whole new world of creative 
possibilities has been opened up, With today's powerful 
personal computers, inexpensive mass-storage peripherals, 
and a suitable digital encoding/decoding peripheral, even 
small institutions and individuals with limited expertise 

CH1930-7/83/0000/0074$01.00@1983 IEEE 
74 

can now explore this world which heretofore has been limited 
to large organizations. 

To date, computer processing of digital audio has been 
performed on three fairly distinct "planes" of 
sophistication, On the highest plane are the professional 
recording studio equipment suppliers who design, 
manufacture, and program the entire system including a 
special purpose computer and cost-is-no-object A-to-D and 
D-to-A converters. The cost of such sys terns is accordingly 
high while their flexibility Is usually limited to the Job 
at hand such as equalization (tone control) and multt-track 
emulation, 

Next down are large research organizations such as music 
departments at major universities, They typically use a 
campus mainframe or large departmental mini-computer and 
either buy the A-to-D and D-to-A conversion equipment 
off-the-shelf (if something suitable can be found), or more 
frequently design and build one unit in-house. While cost 
is usually an important factor (relative to the commercial 
plane), these computer music installations nevertheless 
represent several tens of thousands of dollars worth of 
equipment. 

0 n the lowest plane are small organizations and 
individuals using personal computers and relatively crude 
commercial or home-made conversion equipment, Much has been 
accomplished on this plane in the short history of personal 
computers (1, 3, 4) but the lack of reasonably priced, high 
quality conversion equipment has restricted serious artistic 
application of the results. While the participants on this 
plane may be fully capable of designing and implementing 
audio signal analysis, processing, and synthesis software; 
the expertise needed to integrate an IC data converter into 
a high quality conversion peripheral is lacking. It is this 
need that the device to be described is designed to 
f u 11 f i 11, 

Desirable Characteristics 

Since this project was untertaken as a product design to 
be manufactured by a small company, there was the initial 
task of determining what features were desired by potential 
customers. Of course there is always the issue of cost 
since a unit that incorporates every desired feature at the 
highest possible accuracy level would clearly be too 
expensive for the intended market. Nevertheless the final 
design is remarkably free of compromises. 

The fir-st issue that seems to come to any prospective 
user's mind is sampling rate, While data throughput 
considerations in the host computer often limit the 
attainable system sample rate (2), nearly everyone felt 
that the conversion peripheral should have as high a sample 



rate capability as possible, at least up to 45-50KHz in 
order to cover the accepted 20Hz-20KHz audio range. 
Frequently noted were requests to provide the "commercial 
standard" sampling rate of 44.056KHz and the •professional 
standard" of 48.000KHz with zero error. Besides these, a 
continuously programmable rate was also desired with 
particular emphasis on 1/2 the commercial rate (22.028KHz), 
1/2 the professional rate (24,000KHz), and typical "speech 
rates" of 8 and 10KHz. 

Equally as important as sampling rate was the issue of 
wordlength or the number of bits in the converter. Again, 
almost reflexively, 16 bits was des ired. The desire 
persisted even after extended discussions of what was likely 
to be audible when an analog recording device was in the 
chain (as it would likely be to hold the initial input or 
receive the final output) and the impact on cost, 
particularly of A-to-D conversion. In many cases, the 
ability to operate with shorter words, such as 12 bits or 
even 8 bits, when acceptable was desired to minimize data 
storage requirements. 

Closely associated with the sampling frequency is the 
issue of anti-alias filters. Since low noise, sharp cutoff 
filters are difficult to design and build and are expensive 
to buy off-the-shelf, most respondants preferred that they 
be supplied along with the converter. An additional problem 
with filters is that high quality with selectable or 
programmable cutoff frequency entails a very high cost. 
Conversely, it was undesirable to closely integrate the 
filter with the converter and thus force selection of a 
fixed sample rate when the unit is built. The use of 
fixed-frequency plug-in filter boards was found to be an 
accept ab le com pr om ise in most cases. 

Both analog-to-digital operation (recording) and 
digital-to-analog operation (playback) were desired. When 
the considerable cost increment to provide 16 bit A-to-D 
conversion was discussed, its acceptance as an extra-cost 
optional feature greatly increased. Sometimes simultaneous 
A-to-D and D-to-A operation was also desired for 
applications such as real-time digital signal processing. 
However, after discussing the difficulties and expense 
involved, most indicated that the use of two lower cost 
units, one A-to-D only and one D-to-A only, would be 
acceptable. Most everyone preferred at least the option of 
stereo. Those most interested in analysis were the least 
likely to require stereo while those primarily interested in 
synthesis universally wanted stereo. Occasionally, even 
more than two channels was desired for non-audio data 
acquisition applications. 

The question of interface technique to the host computer 
proved to be especially sticky. The first experimental 
conversion peripheral constructed in 1979 was a stand-alone 
device interfaced via a parallel 1/0 port to the host. 
There were several design problems related to the lack of 
synchronization between host-converter data transfers and 
the sample rate but that method did have the advantage of 
being non computer specific. The second experimental 
converter (2) was implemented as a plug-in bus peripheral 
for the MTU-130 computer which solved those problems but 
a_!lded some others such as digital noise pickup from adjacent 
boards. With the current proliferation of powerful 16 bit 
systems it was clear that a successful unit must again be 
non-computer specific. Additionally, 16 bit operation 
essentially mandates packaging in a separate, shielded box 
(the experimental units were 12 bits). Also, it was deemed 
desriable in some cases to provide for DMA transfer of data 

75 

through a DMA port as well as program med transfer through a 
parallel 1/0 port. 

The last issue was buffer size. Potential users weren't 
overly concerned with the buffer as long as it was possible 
to perform continuous digital recording and playback to or 
from disk. Since sample rates, particularly with 16 bit 
samples, have to be rock steady, at least one buffer 
register is always required. The earlier prototypes 
extended this minimum to a more generous 256 and 1024 
samples respectively which simplified record/playback 
program ming by al I owing up to several milliseconds of host 
inattention before data loss (recording) or sound gaps 
(playback) is experienced. However, when disks are used for 
digital data storage, considerably more buffering is 
required (2), This is usually provided by the host 
computer's main memory and a fairly sophisticated buffer 
management program. With today's low cost memory ICs, it 
should be feasible to provide this very large buffer right 
in the converter and thus simplify programming even further. 

Given these market inputs then, the design task is how 
to best satisfy them at a reasonable cost. Additionally, to 
be a feasible product for a small manufacturer, the design 
should only use standard components. The following sections 
briefly describe the reasoning behind design decisions in 
each of these areas and more fully describe the final unit. 

Converter Selection 

Great strides in low-cost monolithic and hybrid A-to-D 
and D-to-A converters have been made in the past 2-3 years. 
In particular, units designed for audio have appeared to 
meet the projected need in consumer digital audio devices. 
This is significant because in audio applications absolute 
accuracy (percent of full scale) is not very important while 
relative accuracy (linearity) is quite important. While 
both are difficult to achieve at the 16 bit level, removing 
concern over absolute accuracy has a very favorable effect 
on cost. 

When selecting the D-to-A converter, it turned out that 
quite a variety were available. Th is is probably due to the 
expected sizable market for •compact disk" playback 
equipment. Major contenders in the US merchant market 
include the Hybrid Sys terns HS3160, Inters ii ICL 7134, Analog 
Devices AD7546 and DAC9331, Harris HI-DAC16, Analogic 
MP1926, and Burr-Brown PCM51. There are undoubtedly others 
available in Japan or under license in large quantities. 

The HS3160 is a CMOS device which uses a segmented 
technique with 16 segments of 4096 steps each. Although 
rated for 1.5uS current output settHng time, the large 
output capacitance characteristic of CMOS converters makes 
the practical value several times longer. Cost is about 
$50. The DAC9331 is also a CMOS device but uses an R-2R 
ladder for identical differential and integral Ii neari ty. 
Its cost is about $80. The AD7546 too is CMOS and uses 
segmentation to attain 16 bit monotonicity. In practice it 
needs 3 external op-amps and the total sett( ing time is 
about twice the amplifier settling time or typically 10uS. 
One unique feature is a built-in deglitching switch. It 
costs about $45. The ICL7134 is unique in that an on-chip 
PROM is programmed after manufacture to correct for 
nonlinearities. The PCM51 is a bipolar R-2R unit with a 
settling time of just 350NS current output. It costs only 
about $25. The MP1926 is probably the best unit available 
specwise (it uses sign-magnitude architecture) but its cost 



of nearly $200 limits use to the very best professional 
equipment, 

In a stereo system there is the decision between using 
two DA Cs, one for each channel, and using a single DAC which 
flip-flops between channels. The former places the least 
demand on c·onverter (and other circuits) speed while the 
latter should be lower in cost. Another consideration is 
that the flip-flop arrangement introduces a slight 
differential delay between the left and right channels. At 
50KHz this would amount to l0uS which is about 1/8 inch in 
air and so was dismissed as being insignificant. 

Given these considerations, the Burr-Brown PCM51-V was 
chosen as the best all-around value. This unit has an 
on-chip reference and an on-chip amplifier to provide a +-5 
or +-10 vo It output voltage with a 5uS settling time. Spec 
sheets just received from Burr-Brown indicate that a new 
model, the PCM-53, is now available at a slightly lower cost 
and with slightly better low-level distortion specs (i.e., 
better zero-crossing linearity), This was achieved by 
switching from the brute-force R-2R ladder used in the 
PCM50/51 to a segmented architecture, Since it is 
essentially plug-compatible with the older unit, it will 
probably be used when production starts, 

The range of possibilities for 16 bit A-to-D converters 
was much more restricted, Since the potential market for 
consumer digital audio recorders is much smaller than 
compact disk players, there is less incentive to develop 
very low-cost A-to-D converters, Most units evaluated were 
relatively slow at 30uS (30KHz maximum sample rate, single 
channel) or very expensive large potted modules; al I 
intended for data acquisition use, One designed-for-audio 
standout was the Burr-Brown PCM75 which has a 17uS 
conversion time (8uS with reduced specs), small 1•x2• size 
and acceptable cost of $250, Another possibility was 
constructing an ADC from one of the Burr-Brown DACs, a 
successive approximation register, and a high speed 
comparator. Although likely to be much lower in cost, the 
thought of shielding a comparator with 150uV sensitivity and 
l00NS speed made the integrated unit seem much more 
at tractive. 

Note that at 17uS the PCM75 is not fast enough to 
perform 50KHz stereo digitizing at full 16 bit linearity 
with just one unit. According to the spec sheet however, 
one looses just about one bit of linearity when sped up to 
l0uS. By using a separate sample-and-hold for each channel, 
l0uS is fast enough for stereo at 50KHz and the slight loss 
in linearity was judged to be an acceptable tradeoff for the 
substantial reduction in cost from two units. 

Sample-and-Hold and Deglitcher 

0 ne of the secrets of successful audio D-to-A conversion 
is the sample-and-hold circuit used for deglitching. 
Monolithic SAH circuits are woefully inadequate (2) while 
hybrid modules are expensive and usually undergo distortion 
inducing slewing when switching from hold to sample modes, 
Analogic does make a device designed specifically for audio 
reconstruction but again its cost is beyond acceptable 
limits, The only alternative seems to be constructing the 
deglitcher from descrete components. 

In the past the author would have used -Signetics SD211 
DMOS transistors or an SD5001 DMOS transistor array for the 
analog switches due to their extremely high speed (l0NS) and 
very low gate-to-drain capacitance (0.2pF), Unfortunately 

76 

these devices have been discontinued, Harris however makes 
a nice, fast (30NS) CMOS integrated quad switch-driver array 
known as the H1201HS. For stereo deglitching, four switches 
are assembled into a non-slewing sample-and-ho Id arrangement 
illustrated in figure 1, 

The sample-and-ho! d circuit used ahead of the A-to-D 
converter has a different set of requirements, Slewing when 
going from hold to sample modes is not harmful but a fast, 
uniform transition from sample to hold is important since 
the input signal is changing. The same Hl201HS switches 
proved adequate in that application as well, The stereo 
sample-and-hold arrangement illustrated in figure 2 is not 
very sophisticated from a data acquisition point of view 
(the droop rate is fairly poor, there is a noticable 
ho Id-step, and no attempt is made to cancel amplifier 
offsets) but it does hold the signal long enough to be 
digitized and introduces very little excess distortion over 
that of the ADC itself, 

Sample Rate Clock 

Normally, the sample rate clock would be a simple, 
straightforward crystal oscillator and programmable divider. 
However, the desire to provide both the commercial standard 
(44,056KHz) and professional standard (48.000KHz) sample 
rates without error proved to be somewhat troublesome. 

First it was necessary to determine how the 44.056KHz 
number was arrived at. This was initially done empirically 
and later confirmed by consulting audio industry trade 
journals, It seems that 44,056KHz is equal to 4/325 of the 
NTSC color subcarrier frequency of 3,579,545Hz, How's that 
for an arbitrary choice, at least from an audio point of 
view! To actually generate this frequency, o~uld divide 
the output of a 14,31818MHz crystal oscillator by 325. 

Next, some common factor analysis was performed to find 
a crystal frequency that when divided by integer values 
could generate a whole host of •round" sampling frequencies 
without error, In particular, accurate rates of 8, 10, 12, 
12,5, 15, 20, 24, 25, 30, 40, 48, and 50KHz were desired, 
The lowest reasonable frequency that satisfied all of these 
was determined to be 14AMHz. 

Since the least common multiple of 14,31818MHz and 
14AMHz is somewhere up in the light frequency range, the 
final sample rate clock uses two crystal oscillators to 
generate two basis frequencies, When selecting a sample 
rate, the desired basis frequency must also be selected, 
With a 12 bit programmable divider, the lowest sample rate 
that may be selected is about 3,5KHz. For additional 
flexibility, an external sample rate clock can also be 
selected. 

Sample Buffer 

As mentioned earlier, having a very large 
first-in-first-out buffer can vastly simpllfy programming of 
the host system for continuous transfer of data between 
disks (both floppy and rigid) and the conversion peripheral, 
With a large enough buffer it should even be possible to do 
this on a sys tern that uses a program med 1/0 disk controller 
(as opposed to a DMA disk controller), 

Since currently available FIFO buffer chips are far too 
small to consider (at most 128 locations by 8 bits), the 
buffer had to be implemented as a dual-port random-access 



memory with two address pointers (counters), one to steer 
data going into the memory and one to select data coming 
out. There were essentially three choices for the actual 
RAM chips themselves: 16K static (2Kx8 6116 type), 16K 
dynamic (16Kx1 4116 type), and 64K dynamic (64Kx1 4164 
type). Since a truly large buffer was desired and the cost 
of 64K dynamic RAMs is down around $5, they were chosen. 
Using 16 of them would have created a 64Kx16 sample buffer, 
enough for a second or more of sound at all but the highest 
rates. This was scaled back to 64Kx8 in the final unit and 
"page mode" cycles used to access the high and low byte of 
each sample in quick succession. 

When actually programming data flow to or from a device 
through a FIFO buffer, one needs to know when the buffer is 
empty and when it is full. To avoid having to check its 
status after every sample is read or written, you would also 
like to know just how full or empty it is at the moment. 
With such a "fullness register•, buffer status need be 
checked only every block of perhaps 1024 samples. One could 
also determine whether the buffer status is such that a 
retry could be attempted in the event of a disk error. 

During the circuit design, however, it turned out that 
detecting the exact I y full and exact I y empty conditions was 
very costly in terms of real-estate on the board. Thus 
while status register bit positions and connector pins have 
been reserved for these functions, the final buffer design 
has a "fullness resolution" of only 1/8 of its capacity. 
What this means is that at the very end of a record or 
playback session, the last 0-4095 samples may be lost. 
Since th is may represent as little as 50 m ii liseconds of 
sound and it is normal to pad the end of segments with 
silence, this is not seen as a major drawback. 

Computer Interface 

Of all of the subsystems, implementation of the computer 
interface had the widest variety of choice within the 
constraint that it be reasonably easy to interface to most 
computers. It is pretty clear that the interface should be 
parallel al though somebody could probably make a case for 1 M 
baud serial instead. Given that it is indeed parallel, it 
is al so clear that it should be 8 bi ts wide for use with 8 
bit systems even though data transfer efficiency is 
sacrificed when used with a true 16 bit host. 

Some standard parallel interface structures were then 
examined to see if any were suitable for this rather unusual 
application. Centronics parallel was rejected because it is 
unidirectional (output only). An IEEE-488 interface would 
have worked, but for most computers an IEEE adapter board is 
quite expensive. Also many adapters are too slow to be used 
at the higher sample rates (up to 200K bytes per second 
needed) even though the IEEE-488 bus is rated for operation 
at up to 1 M byte per second. The SCSI interface often used 
for remote rigid disk controllers was also a possibility but 
it seemed needlessly complex for the task at hand. 

The approach finally taken was to imagine the entire 
conversion peripheral as an LSI integrated circuit chip and 
equip it with the sort of interface signals and philosophy 
that a chip designer might use. In many ways the interface 
resembles that presented by the NEC uPD765 floppy disk 
controller chip used in several computers including the 
MTU-130/140 and the IBM PC. These interface signals are 
summarized below (a leading - denotes inversion): 

77 

1. 8 data lines, bidirectional, positive true. 

2. address line, input, 0 selects the control/status 
register and 1 selects the data register. 

3. -READ/WRITE, input, selects whether the strobe will read 
fr om the selected register or write into the selected 

register. 

4. -STROBE, input, enables read data from the selected 
register onto the data lines or strobes write data into 
the selected register on its trailing edge. 

5. -RESET, input, instantly stops operation, clears the 
buffer, and initializes the unit to an idle state. 

6. -NEAR FULL, output, asserted when the buffer becomes 3/4 
or more full. 

7. -NEAR EMPTY, output, asserted when the buffer becomes 
less than 1 /4 full. 

8. -DATA REGISTER READY, output, negated following a strote 
directed to the Data Register for the time required to 

dispose of written data or retrieve the next byte of read 
data. The not ready time averages approximately 1 us. 

9. -DEVICE SELECT, input, all inputs are ignored and the 
data lines float when negated. 

A jumper is provided to force read data onto the data 
lines whenever -READ/WRITE selects read regardless of the 
state of -STROBE. The strobe is still necessary however to 
•tell" the device that data has been read. For simplified 
interfacing to some systems, jumpers are also provided to 
redefine -READ/WRITE and -STROBE as follows: 

3. -READ ENABLE, enables read data fr om the selected 
register onto the data lines. 

4. -WRITE ENABLE, strobes write data into the selected 
register on its trailing edge. 

This interface can be easily driven by a dual 8 bit 
parallel port such as that provided by a 6820 PIA or 6522 
VIA or 8255 PPI parallel interface chip. One of the 8 bit 
ports is connected to the data lines and must be easily 
switch ab le between output and input functions. The other 
port connects to the 8 control and status lines and should 
be capable of mixed (although constant) directionality with 
5 outputs and 3 inputs. By suitable program manipulation of 
these two ports, all device functions can be controlled. It 
is also possible to utilize the various strobe outputs and 
edge sense inputs of these chips for some of the interface 
functions to simplify programming. Note that the data 
transfer rate through such a hookup may be limited by host 
CPU speed to a value less than the 200K bytes per second 
necessary to run stereo at a 50KHz sample rate. 

Since the interface is •ch ip-1 ike•, it can in most cases 
also be connected to the host as a direct bus addressed 
peripheral. All thai is needed for such a connection is an 
8 bit transceiver (such as a 74LS245) between the host data 
bus and the converter data lines, a buffer between the 
host's least significant address line and the converter's 
address line, additional buffers for the -READ/WRITE and 
-STROBE signals ( or -READ ENABLE and -WRITE ENABLE) and 
-RESET, and an address decoder. The remaining signals can 
be ignored. The interface can also be connected to a OMA 



port for fast, automatic data transfer. The -NEAR EMPTY, 
-NEAR FULL, and -DAT A REGISTER READY signals would be used 
to "throttle" the DMA rate and thus pr event overruns or 
under runs from occurring. 

Operation of the converter is through a number of 8 bit 
registers. Each register is selected by a unique 
combination of the -READ/WRITE interface signal, the 
interface address line, and bits O and 1 of the control 
register. Note that some registers are either read-only or 
write-only. 

The converter is placed into various operating modes by 
writing different bit patterns into the Control Register. 
The Control Register is a write-only register and is 
selected when the interface address line is low and a write 
operation of performed. Reset forces the Control Register 
to all zeroes. The bit assignments of the control register 
are shown below: 

CONTROL REGISTER 

Bit 7 0 = Pause, stop data flow between the converter and 
the buffer but retain buffer contents. 1 = Run, 

start data flow between the buffer and the converter. 

Bit 6 0 = clear the buffer to empty status and zero the 
DAC outputs. 1 =permit normal buffer and ADC/DAC 

operation. 

Bit 5 0 = monophonic mode ( channel A), 1 = stereo mode 
( channels A and B alternate with channel A first). 

Bit 4 0 = DAC mode, samples are withdrawn fr om the buffer 
and converted to audio output. 1 = ADC mode, 

the audio input is digitized and the samples are 
written into the buffer. 

Bits 3,2 00 
01 
10 
11 

Bits 1,0 00 
01 

10 

11 

Reset the format converter. 
Select 8 bit companded format. 
Select 12 bit companded format. 
Select 16 bit linear format. 

The Data Register is connected to the buffer. 
The Data Register is connected to the Scale 

Factor Reg is ter. 
= The Data Register is connected to Sample Rate 

Register 1. 
The Data Register is connected to Sample Rate 
Register 2. 

The Status Register indicates the status of the buffer 
and the two external user digital inputs. The Status 
Register is read-only and is selected when the interface 
address line is low and a read operation is performed. The 
Stat us Register may be read at any time with no effect on 
operation. Bit assignments of the Status Register are shown 
below: 

ST A TUS REGISTER 

Bit 7 Not used, always zero. Reserved to indicate that a 
buffer overrun or under run error has occur red. 

Bit 6 Not used, always zero. Reserved to indicate that the 
buffer is exactly empty. 

78 

Bit 5 Reflects the state of external user digital input B. 

Bit 4 Reflects the state of external user digital input A. 

Bits 0-3 Indicate the degree of buffer fullness as follows: 
0000 less than 1/16 full 
0001 less than 1/8 full but at least 1 sample 
0010 less than 3/16 full but at least 1/16 full 

1110 less than 15/16 full but at least 13/16 full 
1111 = at least 7/8 full 

Note that although the resolution of the buffer fullness 
measure is 1/16, there is an added uncertainty of 1/16 which 
gives a useful resolution of 1/8. Addition of the exactly 
empty and exactly full detection logic would also eliminate 
this uncertainty. Depending on the interface method and 
programming preferences, either that Status Register or the 
1/4 and 3/4 interface signals may be used to monitor the 
buffer status. 

According to bits O and 1 of the Control Register, the 
Data Register may actually be connected to one of four 
internal registers: the FIFO buffer, the Scale Factor 
Register, and one of two Sample Rate Registers. 

Data in the buffer always consists of 16 bit 
twos-complement values. Data is exchanged between the 
buffer and the Data Register through a format translator. 
Depending on the data format selected, 1, 1.5, or 2 bytes 
may be required to represent a sample. The format 
translator is • incremented" after each read or write to the 
buffer through the Data Register. The format translator may 
be reset to its initial state at any time to insure 
synchronization with the byte oriented data stream to or 
from the host. It must be reset first when changing to a 
different format. The buffer is read-only when in ADC mode 
and is writ&-only when in DAC mode. 

The Scale Factor Reg is ter is used with the com panded 
data formats to scale the reduced resolution sample values 
to take advantage of the 16 bit dynamic range of the A-to-D 
and D-to-A converters. During output to the D-to-A 
converter the lower 4 bits of this register determine the 
number of sign-extended right shifts that samples from the 
host should undergo when transferred into the buffer. 
During input from the A-to-D converter, they determine the 
number of left shifts that samples from the buffer should 
undergo when transferred to the host. In stereo mode the 
same scale factor applies to both channels. The high 4 bits 
are used to control 4 externally available user digital 
outputs. 

Two registers are used to specify the sampling 
frequency. Sample Rate Register 1 holds the lower 8 bits of 
a 12 bit divisor while Register 2 holds the upper 4 divisor 
bits in its lower half. The actual divisor used is the 
twos complement of the value writ ten into these 12 bi ts. 
The remaining 4 bits of Sample Rate Register 2 are as 
follows: 

Bit 7 Not used. 

Bit 6 ADC speed control, 0 17uS (full specs), 1 lOuS 
( reduced specs) 

Bit 5 Sample clock source, 0 internal clock, 1 external 
clock. 



Bit 4 Basis frequency for internal clock, 0 
= 14,31818MHz 

14,400MHz, 1 

The host is responsible for setting the ADC speed to a 
value compatible with the sample rate and mono/stereo 
selection. These are writ~only registers. 

Programming Examples 

Programming details are highly dependent on the host 
computer, actual interface technique, and the type of mass 
storage device used. Figures 3 and 4 however show general 
flowcharts for recording and playback respectively, The 
blocks with dotted outlines in figure 4 are needed only if 
the 8 or 12 bit mode is used and the sound file format 
supports the block gain control feature for increased 
dynamic range, 

It should go without saying that these core data 
transfer routines must be written in the assembly language 
of the chosen host. However it is entirely possible that 
these would be the only assembly language routines in an 
overall synthesis or analysis software sys tern, 

Filter Modules 

Description of the filter modules has been deferred 
because they are independent of the main unit and in many 
cases may need to be optimized for the specific application. 
Each plug-in module consists of a front panel which measures 
1 11 by 3 11 and a printed circuit board that measures 2" by 311 • 

Connection to the user's audio equipment is made through a 
jack mounted to the module's panel. The modules are easily 
changed although power must be turned off first, 

The standard A-to-D filter is a 7th order elliptical 
design that uses active negative impedance converters to 
replace inductors (5, 6). The general circuit topology for 
this type of f ilter is shown in figure 5. For the component 
values shown, the cutoff frequency is 9.76KHz, the pass-band 
ripple is .28dB, and the minimum stop-band attenuation is 
79.7dB. The attenuation reaches maximum at 1,556 times the 
cutoff frequency. For A-to-D use in analysis, this point 
should be put at 1/2 the sample rate, therefore the cutoff 
frequency should be 32% of the sample rate. For A-to-D use 
in record-playback applications, the Nyquist frequency can 
be put midway in the transition band instead thus the cutoff 
can be raised to 39% of the sample rate. 

The standard D-to-A filter is also a 7th order 
elliptical design with the same characteristics as the 
D-to-A filter. However, since the very high frequency 
content of synthesized material can be controlled and it 
does not even exist when playing back material recorded 
through the A-to-D filter, the cutoff frequency can be set 
at 39% of the sample rate. To be assured of less than -80dB 
alias distortion with this setting, there should be no 
attempt to synthesize a frequency higher than this, The 
D-to-A filter also has an additional 2-pole Chebyshev 
section to correct for the normal SinX/X rolloff of the 
deglitching sample-and-hold circuit. 

Both filters. are built using type TL072 dual low noise, 
low distortion, FET op-amps. Precision {1%) capacitors and 
resistors are used to avoid the need for tuning. Using 
negative impedance converters in the design allows all of 
the capacitors in the filter to be the same value although 

79 

the resistor values then become all scrambled up. This is 
preferable however since 1% resistors are much easier to 
purchase that 1% capacitors are. Modifying the filter 
design for a different cutoff frequency then is a simple 
matter of changing all of the capacitors by the ratio of the 
old frequency to the new frequency. 

Conclusion 

While the A-to-D and D-to-A peripheral is really a minor 
part of a computer music sys tern when software is considered, 
it is the part that causes the most trouble for a smal I 
organization or individual programmer/artist. It is 
believed that the conversion peripheral design outlined here 
will prove to have sufficient capab ii ity to satisfy 
virtually any dig ital audio conversion task at a cost that, 
while not trivial, is a significant improvement over earlier 
minicomputer oriented designs or in-house engineering. 

References 

1. H. Chamberlin, "A Sampling of Techniques for Computer 
Performance of Music", BYTE, Sept. 1977. 

2. H, Chamberlin, "Delayed Playback Music Synthesis Using 
Small Computers", p. 27 Proceedings of the IEEE Symposium 
on Small Computers in the Arts, Nov. 20-22, 1981. 

3. F. H. Covitz and A. C. Ashcraft, "Analysis and Generation 
of Complex Sounds Using Small Computers", p. 33, 
Proceedings of the IEEE Symposium on Small Computers in 
the Arts, Nov. 20-22, 1981. 

4. A. C. Ashcraft et. al., "Noise in Real Time Digital Sound 
Generation" p. 5, Proceedings 2nd Symposium on Small 
Computers in the Arts, Oct, 15-17, 1981. 

5. A. D. Delagrange, "Design Active Elliptic Filters with a 
4-function Calculator", p, 135, EDN, March 3, 1982, 

6. Anatol I. Zverev, Handbook of Filter Synthesis, p. 284, 
John Wiley and Sons, New York, 1967, 

31( 31( 

OVT 

V0LTJIG-E 
CH A 

OVTPVT 
our 

PIie 
AUDIO 

G-NP 
Cliln 

(ff. 

OVT 

3K 3K 

*H1'RRl5 HI201HS 
A B 

DE6Lll'CH CMITROL 

Figure 1. Stereo Deglitcher 



ADC 
J\IJDI O .-!------~l-----t------....--76-NO 
co,. 

A B 

SMPtr- -ANO- ttOU 
CCWTl'OL 

Figure 2 . Stereo Sample-and-Hold 

run: 00110010 TO CONTROL REGISTER 
( 1-K>NO/ STERm) 

ruTE LCM 8 BITS OF SAMPLE RATE 
TO DATA REX::IfflR 

WRITE 00110011 TO CONTllOL lt!CIST'ER 

WRITE 00110001 TO CONTROL REGISTER 

VJIITE SCll.E FACTOR TO DATl U.CISTER 
(NOT NECF.SSlRl FOR 16 BIT PORKAT) 

WRITE 0111noo TO CONTROL REGISTER 
(TT1:Dl.Tl PORKAT) 

TES 

MOVE A !!TE PROH DATA R!OISTER 
TO MDIORJ BOfTER 

~---(IDr.tR!KEHT 
~ COUNTER 

.. 

VIIITE 0111noo TO CONTROL REGISTER 

.. 

Figure 3. Record Program Flowchart 

80 

VJUTE 00100010 TO CONTROL R!OISTER 
(Is:HONO/STEREO) 

VJUTE 00100011 TO CONTROL RECISTEII 

WJUTE HIGH 8 BITS OF SAMPLE !UTE 
TO DATA REOISTER 

WRITE 011onoo TO CONTROL RECIS11:R 
(nzDl.Tl POJIMAT) 

nrinALIZE Sf'ORAGE DEVICE 

1 run: 0110n01 TO COKTROL RECISTER I 

r _ _ __ J ______ I 
1 WRITE SCALE FACTOR 

~--L.~_IJ.JE,P_r!_H_B!,,Cg~ ---, 

LVlUT! O110noo TO cotn'ROL REGisrtR J 

SET coutfTER POft STORAGE BLOCK 3IZE 

)l)VE A fflE P1tOH HDtORT BOWER 
TO DATA RFX:ISTER 

~----<DECR!MENT 
~ COONTtR 

--------- --------~ 1 WRITE 11 10no1 TO COWTJIOL UCISTE!.J 

1 VlltTE sclE FACTOR - 1 
1 ASOCIATED VlTII BI..OClt I 

Cvim :11::r: c: •m:sn, I 

,0 

Figure 4. Playback Program Flowchart 

JNPVT 21.00 IOS1B 15017 

7,._K 

LOW - :!: 
50VRCE 
2V RAIS MIi):' 

2 66& 
22 00 

5000 5000 

,1Ll RESISTORS IN <>tM'IS l"lo 

ltLL CAP..,CITOR.5 IN ,.F 1 °l• 

IILL Op-1\,¥.PS TYPE TL~72. 

Figure 5. Anti-alias Low-pass Filter 



A Computer Controlled Installation in a Gallery Space 

George K. Shortess 

Department of Psychology CU #17 
Lehigh University 

Bethlehem, Pa. 18015 

Abstract 

This paper describes a recent in
stallation using a microcomputer as an 
interactive device for changing sound 
and video images as a function of the 
viewer's position in the gallery space. 

Introduction 

My involvement with microcomputers 
as an artistic medium has developed 
along with my attempts to express scien
tific ideas about the functioning 1 nervous syste~ in artistic form. 
By using microcomputers, I have been 
able to create works which change inter
actively with the vi ewe~ whose parti
cipation can contribute to the work of 
art at any moment in time. The state 
of the art piece is a function of the 
interaction between the environment 
(including the viewers) and the internal 
structure of the piece itself (including 

SP 

Pl 
SP 
P2 

the computer program and the hardware con
figuration). In many ways the art piece 
is like a human nervous system, changing 
over time, but constrained by 60th its 
environment and its internal structure. 

In this paper I will describe a 
recent installation in which the art 
pieces responded to the positions of 
viewers in a gallery space by changing 
the sounds they emitted as well as the 
graphics displayed on video monitors. 
I will discuss the ways in which the 
microcomputer was used as part of the 
work, as well as some general ideas about 
aesthetics and contemporary cognitive 
psychology. 

The Installation 

Figure 1 shows a floor plan of the 
installation at the Kemerer Museum, 
Bethlehem, Pa. The larger squares and 
rectangles (labelled SC, Mand B) were 
cloth covered wooden bases. On the 

SP 

4 FEET 

Figure 1. Floor plan of the gallery space 

81 
CH1930-7/83/0000/0081$01.00©1983 IEEE 



SOFTWARE SCHEMATIC 
MICROCOMPUTER 
WITH INTERFACES I/O DEVICES 

Resting 
Loop 

~ I 

P3-P5 
Active E---? 
Loops 

-

Graphics 
Sub-
routines 

Apple 
I I Pl us" 

Disc 
Drive 

I Audio Amplifiers I DI09 I and Speakers 

--· 
I Photocells P3-P4-P5 I 

Video 
1 Mani tors 1 and 2 I - -- I 

Game 
I I I/O 1 Photocells Pl-P2 

Figure 2. Schematic of software and hardware 

M bases were video monitors (one each). 
On the SC bases was a sculptural piece 
made from aluminum tubing and containing 
four audio speakers. The Mand SC bases 
were connected, by way of 1-1/2" square 
aluminum tubing (represented by double 
lines in Figure 1) to an Apple II Plus* 
rni crocompu ter1 which was 1 oca ted out 
of sight of tne gallery. Within the 
bases were five photocells (indicated by 
Pl-5 on Figure 1) and four speakers 
(indicated by SP),in addition to the 
four speakers on the sculptural piece. 
All speakers and photocells in the bases 
were under the cloth covering and thus 
not visible. The four speakers in the 
sculpture were enclosed in small aluminum 
boxes with cloth covers. All of these 
were attached to the microcomputer by 
wires running through the tubing and 
within the boxes, out of sight of the 
viewers. 

Each of the photocells was illumin
ated by a gallery spotlight which reduced 
its resistances to a low value. When a 
shadow was cast by a viewer, the resist
ance increased and was read by the com
puter as either a switch opening, or as 
the actual resistance value, depending on 
the input interfacing (see Figure 2). 
Photocells P3, P4 and P5 served as 
switches and controlled sound patterns 
generated for the speakers of the sculp
tures and the bases. The I/O card used 
for the 8 speakers and photocells P3-5, 
was a DIO9 by Interactive Structures, Inc. 
Pl and P2 were attached to the game I/O 
connector on the microcomputer. The re
sistances were converted to numbers be
tween O and 255 and were used by the pro
gram as the. x-y coordinate points for the 
changing video that was displayed on the 
two monitors. 
*Trademark of Apple Computer, Inc. 

82 

The output to the speakers consisted 
of brief clicks which simulate one kind of 
electrical activity of the human nervous 
system.1 Low level activity was char-
acterized by an overall low frequency of 
click occurrences. Higher levels of 
activity corresponded to a high overall 
frequency of click occurrences. In both 
cases the frequencies were not regular, 
but varied over a considerable range, with 
bursts and beat patterns being generated. 

The video output was one of six 
digitized images taken from the Kemerer 
Museum. They were made from slide photo
graphs by projecting them on a rear pro
jection screen which was scanned by a 
video camera connected through an appro
priate digitizing card (Digisector by 
The Micro Works) to the microcomputer, 
They were stored on disc and edited using 
a graphics tablet. These versions were 
then available on the main program disc 
and could be called up by a viewer by 
pressing a switch on the monitor base Ml. 
Overlaying this digitized "realistic" 
image of the Museum was a moving network 
of black lines whose coordinates were 
determined by the resistances in photo
cells Pl and P2 (Figures 3 and 4). 

The program was done in Basic with 
several machine language subroutines for 
the graphics (Figure 2). There was a 
resting loop through which the system 
continually passed as long as there were 
no disturbances in the photocell resist
ances. It performed three functions: 
1) evaluated the five photocells; 
2) plotted line patterns on the monitors, 
clearing the monitors when they became too 
cluttered; and 3) generated a low level of 
sound in the speakers. 



As soon as a change in a photocell 
was detected the program switched out of 
this loop. When one of the photocells P3, 
P4 or P5 was activated, the program 
switched to one of three loops which gen
erated new higher levels of sound in the 
speakers closest to the particular photo
cell activated. When Pl or P2 changed, it 
switched to a subroutine which changed 
the line pattern on the video display, 
using the new coordinates determined by 
the resistances of these photocells. This 
subroutine also generated a brief sound 
burst in the speakers in the monitor bases. 
As long as there was activity at one of 
the photocells P3, P4 or P5, the program 
stayed in that respective loop. If other 
photocells were activated, it would then 
switch back and forth between the loops 
involved. When Pl or P2 was activated, 
it would redraw the lines and then switch 
back to the loop from which it came. 

Two different pictures were stored 
in the computer at one time, one at 
addresses $2000-$3999 and the other at 
$6000-$7999 ("Page 3"). High resolution 
Page 2 was always in view and loaded from 
Page 1 or "Page 3" with a machine language 
subroutine whenever it became cluttered 
with black lines. The image also changed 
when the resistance of Pl got large 
enough, so that rapid alternation 
between two views of the Kemerer could be 
achieved by appropriate movements of the 
viewer. 

In addition to the computer driven 
displays just described, there was a 
separate unit called Bullrushes (labelled 
Bin Figure 1). This unit consisted of a 
cloth covered base unit with 3 finished 
pieces of aluminum tubing extending per
pendicularly from the base (total height 
about 6 feet). In the base was a small 
hard-wired unit that emitted deep clicking 
sounds when a photocell switch was activ
ated. To the imaginative viewer the sounds 
could be from bullfrogs and the aluminum 
tubing could be the rushes. 

To complete the exhibition 20 water
colors of landscape scenes and 3 silk
sreen prints of the digitized Kemerer 
Museum, were arranged on the gallery walls. 

Evaluation 

The overall attempt was to create an 
interesting space which had a kind of 
quiet humor. When a viewer entered the 
gallery, Bullrushes served to set the ex
pectation that something different from a 
standard pictures-on-the-wall show was in 
place. Further movement into the gallery 
space past·P4 or P3 further reinforced 
these ideas. In addition, the digitized 
images were designed to suggest a different 

83 

way of looking at the Museum itself, which 
is a Victorian mansion filled with the 
decorative art collection of Anne Kemerer. 
The Victorian images seemed just right to 
present in digitized form. 

The reaction to the show was mixed. 
Some did not know what to do; others be
came more active. One problem arose when 
three or four people tried to interact 
with the computerized work at the same 
time. The feedback, either in sound or 
video,was noticeably slow and the viewers 
were no longer sure that they were con
trolling anything. But then, if one of us 
tries to interact meaningfully with four 
people at once, we become a little con
fused too. This problem could, ofcourse, 
be corrected with several computers or 
more reliance on machine language pro
gramming. 

Some Relationships to Cognitive Psychology 

While this work has been based on 
ideas about neural function at the level 
of nerve cells and nerve nets, there is 
implicit in it, certain models of cog
nitive functioning that are behaviorally 
based. Cognitive psychologists, such as 
Neisser2 or Wickelgren3 for example, 
have developed models of the way percep
tual and cognitive processes may take 
place. Without going into the specific 
details, it can be recognized that these 
models are essentially networks with 
activities or functions taking place at 
various nodes, with the transmission of 
information between nodes. In this way 
the formal features of these cognitive 
models are also reflected in my network 
art forms. In addition, all major con
temporary theories of perception and 
cognition recognize and emphasize the 
active, interactive nature of perception. 
It is not a process of passive reception, 
but involves active seeking and inter
action. I also emphasize this character
istic in my work. Taken together then, 
my work can be interpreted as an artistic 
statement about cognitive function as well 
as neural function. And at· some level, 
the cognitive-perceptive and the neural 
functions may be the same. 

References 
1. Shortess, G. K. An Application of a 

Microcomputer as an Interactive Art 
Medium. Proc. Symposium on Small Com
puters in the Arts. Phila., Pa. 
Oct. 15-17, 1982. pp 75-77. 

2. Neisser, U. Cognition and Reality. 
San Francisco: W. H. Freeman, 1976. 

3. Wickelgren, W.A. Cognitive Psychology. 
Englewood Cliffs, NJ: Prentice-Hall, 
Inc. 1979. 



Figure 3 - Video images of the Kemerer Museum 



Figure 4 - Video images with and without grid lines 

85 



COMPUTERS, MUSIC, AND THE ARTS: a liberal arts college course 

William Matthews 

Music Department, Bates College 
Lewiston, Maine 04240 

ABSTRACT 

For the past two years, a small computer 
system for music and graphics synthesis has been 
in use at Bates College, a private liberal arts 
campus in Lewiston, Maine. A course for stu
dents with no previous computer experience is 
offered; it has been extremely popular. The 
course introduces students to principles of 
computing, introduces several programs for 
music synthesis and graphics, introduces the 
PASCAL programming language, and allows students 
to create works of music and art, all in a single 
14-week semester. The paper describes the 
pedagogy employed, discusses some of the artis
tic issues involved, and ends with examples of 
some of the student projects. 

INTRODUCTION 

It has been nearly twenty years since 
Susan Sontag identified an emergent response 
to what had been called the crisis of the "two 
cultures", the gulf separating humanists and 
scientists. 'tn Against Interpretation (1966) 
Sontag described a new breed of artists whose 
work often employs advanced technologies in 
untraditional and sometimes esoteric aesthetic 
contexts. Central to her formulation was the 
idea that these artists are stimulated rather 
than intimidated by the complexity of contempo
rary society and science, and that their work 
was rapidly making irrelevant previous distinc-
1:;ions between the "high" culture of unique 
masterpiece.artifacts and the "low" culture of 
popular mass-productions. 

Sontag referred to such artists as pioneers 
of a "one culture" that might bridge any separa
tion between humanists and scientists. In the 
two intervening decades, this culture has been 
represented not by any aesthetic or stylistic 
uniformity, but rather an artistic Brownian 
motion, in which a multitude of individual 
artists vibrate within small spheres of in
fluence. This situation is enjoyably demo
cratic, but has made critical or theoretical 
overview of the art itself difficult. 

CH1930-7 /83/0000/0086$01. 00 © 1983 IEEE 
86 

It is not difficult at all, however, to 
point to a single new technological tool which 
has emerged since 1966, more powerful and in
fluential than any other and rapidly becoming 
more common than any other. In the context of 
this paper, neither apology nor explication need 
proceed a discussion of the role of microcomputers 
in the arts. With devices and programs for graph
ics, sound synthesis, and text processing now 
available in every community of a size in the 
country, one accepts their instrumental role at 
the foundation of a burgeoning "one culture". 

Art using microcomputers demonstrates sever
al attributes: it is often participatory in some 
way; it is often ephemeral, leaving no artifacts; 
it usually involves small audiences, often single 
viewers or listeners. The machines themselves are 
flexible tools, but make stringent demands on 
users who would employ them flexibly. Users must 
"think like computers", unlike the thinking tra
ditionally done by artists, and the art most 
"organic" to the new technology extends sensation 
in abstract and often dynamic ways unlike previ
ous art. These attributes require new education
al strategies to introduce the techniques of 
computer-assisted art to potential members of a 
"one culture". 

THE COURSE 

At Bates College in Maine, a course bas been 
instituted to help students explore some possible 
artistic applications of microcomputers. Offered 
under the aegis of the Music Department, and 
taught by a composer with previous computer music 
experience, Computer, Music, and the Arts allows 
students to work with various operating systems, 
programs, programming languages, and hardware 
devices to generate sounds, images, and tests. 
The equipment for the course consists of a Z-80 
based general purpose microcomputer with two 
double-side, double-density floppy disk drives, 
a Micro-Angele refreshed raster scan graphics sys
tem, and a Casheab 32-voice digital sound synthe
sizer. The system is called the Bates MusicBox. 



The course begins with a general overview and 
history of computers and their artistic uses, with 
audio and visual illustrations. Following this 
introduction students begin immediately with per
sonal experience of computer art at the local video 
game parlor. Besides being fun, experience with 
commercial games is pedagogically useful. Obser
vations can be made about the dazzling images and 
sounds now possible, the meaning of "user friend
liness", how users can interact with programs and 
vice-versa, how information is transmitted from 
users to programs and vice-versa, the meaning of 
real-time, how randomness can be useful, how 
animation is achieved, the usefulness and draw
backs of "blatk boxes", and how programs maintain 
or lose their interest for the user. In addition, 
social, psychological, and aesthetic issues are 
revealed, setting discussion firmly with a human
istic as well as technical contest. In fact, a 
structure for the rest of the course evolves 
naturally from the discussion which follows 
esperience with games. 

Because no previous computing (or for that 
matter, artistic) experience is prerequisite for 
the course, care is taken to introduce concepts 
and procedures gradually. The system is treated 
as a series of black boxes each of which is open
ed only when necessary to permit the user addi
tional flexibility and control. Assigned tasks 
initially produce immediate gratification, and 
only gradually require deferral of gratification. 
Following bouts with video games, students are 
next asked to play a single pre-programmed piece 
of music on the College's system; this assign
ment requires turning on the computer, leading 
CP/M from a disk, calling up David Rayna's 
Casheab softwear package, and specifying a single 
instruction and file name. These five discrete 
tasks take less than a minute. The next assign
ment requires use of a different operating sys
tem (the UCSD PASCAL p-system) and a few more 
tasks, including some data entry; it results in 
a snappy graphic image that takes two or three 
minutes to generate, but which can be changed if 
new data is entered on restarting the program. 
Such a simple sequence of assignments is used to 
demonstrate levels of user-friendliness, increas
ing flexibility of possible outputs, and the ad
vantages of deferred gratification. It also 
allows the introduction of relevant concepts such 
as operating systems, programs, data, devices, 
input, output, and so on; word by word, the vast 
vocabulary that sprouts up around computers can 
thus be introduced. 

In the second week, students are asked to 
become proficient as users of an interactive pro
gram for turtle gtaphics, modeled after that de
scribed by Seymour Papert in his book Mindstorms: 
Children, Computers, and Powerful Ideas (1980). 
The Bates version of this program was written in 
FORTH by Andrew Wilcox, and is based on a kernel 
of instructions such as FORWARD, BACK, LEFT and 
RIGHT that, when combined with constants or user
defined variables for angles and distances, cause 
a little stylized turtle to move about the video 
screen, leavitlg graphic traces in its wake. Al
though based on a small handful of instructions, 

87 

the program is powerful in that users can define 
their own new procedures using any sequences of 
already-defined instructions. Before they know 
it, students are thus programming, grappling with 
quantification, hierarchical procedures and -
importantly -- the use of algorithms. 

Because turtle graphics are completely inter
active in real-time (FORTH is an interpretive 
language), no compilation, editing, or file trans
actions are necessary. The latter two are next 
introduced as students return to the Rayna soft
ware for music synthesis. One component of this 
software allows users to address the digital 
oscillators directly, and requires o~e to specify 
frequencies, amplitudes, and waveforms; the 
temporal domain must also now be controlled. At 
first, the output from the synthesizer is heard 
through loudspeakers and seen on an oscilloscope; 
when students become more adept, lissajous figures 
are produced by phase-shifting the monophonic syn
thesizer output to provide different x and y axis 
inputs for the oscilloscope. Anuone with experi
ence of lissajous figures knows how dynamic and 
unstable they can be, and what complex and beauti
ful images can be made rather easily. 

The second half of the semester-long course 
takes students into the less user-friendly domain 
of general purpose programming languages; PASCAL 
is chosen for its highly-structured character and 
its resulting educational usefulness. Although 
the frustrations of learning and using a compli
cated operating system, a full-feature editor, a 
compiler and a language with fairly complex syntax 
are many, students understand by this point why 
the resulting power and flexibility are worth the 
effort. Programming thus comes to seem a natural 
extension of the artist's work towards gaining 
more control over a new tool already experienced 
as useful, enjoyable, and potentially powerful. 
From PASCAL, external machine-language procedures 
can be called, allowing students to control the 
graphics and synthesizer as they work out indi
vidual projects in the time remaining for the 
course. The final black box of machine architec
ture remains closed, but a surprising number of 
others have been opened, proving to initiates 



that the seemingly arcane world of computing is 
not so esoteric after all. 

The final class projects have included musi
cal compositions, random poetry, the game of hang
man, a spelling game that shows a picture of an 
object when correctly spelled by the user, an ex
tended piece for sounds producing lissajous figures, 
a program to produce images like Kandinsky drawings, 
a program to produce designs for Easter eggs, and 
a piece for sounds, lissajous figures and narra
tive text presented on the video screen as cap
tions for the other events. This final piece is 
called, affectionately, the~ Opera. Several 
students continued work after the course ended, in 
formal and informal independent studies including 
the production of speech-like sounds with the 
synthesizer, musical compositions, and an elabo
rate work involving the construction of a device 
for visual display of computer-generated audio 
using reflective vibrating membranes and focused 
light sources. 

CONCLUSION 

Computers, Music, and the Arts attracted 
three times as many students as could be accommo
dated the first time it was offered. The stu
dents who did complete the course were sur-
prised and pleased at how much they learned about 
computing in general as well as about specific 
artistic applications; they were also quite 
proud of their artistic products. Because con
cepts and techniques are explained in as general
ized a way as possible, participants are prepared, 
after only a few weeks of work, to continue 
making art with microcomputers in other settings 
and with other devices. Having explored the 
mysteries one by one, future contributers to a 
"one culture" are well-equipped to start working. 

88 



Q ... 
ID 
w 
0 
I 

-.I 

~ 
w 

' 0 
0 
0 
0 

' 0 
0 
00 
ID 
-Cl> 
0 ... 
0 
0 

@ ... 
ID 
00 
w 
1-1 

a 

~ 

PATTlR-IUSIIIN
1

-7>AlffA )J[Sf!V!J 
1J@ga~@}£a~ ]lliffi 

THE 
~ILIL~ 

OF A 
d,,~~NT! 

~TElf 
d --------------- ~ 

J 
.; 
1 
r1 
·~ 

, 
,\J -~-;\~ r} 
t· 

~ 
~~ ,!j 
I'• ,.,Y, 
,-.11,:,. 

~~ 
~~ 

·'>!~'. 

,\RM fl¾M■ld l:~~~ 
··'· ..... ,:,,:,,.·rr···,:,;(f1~ 



8 

Excuse ma, sir, Dut I couldn't help but 
that you look like a parson who likaa to compose 
two-dimanaional images of your vary own creation 
in ruLL-COLORI 

, •• who perhaps has a longing need to display 256 
distinct colors AT THE SAHE TIME in a 512 x 512 
raster configuration! How's THAT for raaolution?I 
Could I perhaps interest you in a new electronic 
paint system? 

y, boy, you bother me. Can't you 
looking for the aaamy aid, of life to 
utiful spontaneous line and fantastic 
l its wretched glory? You just don 
enough! 

' ~ i~ .. ,, 



~ 

But you don't understand, airl There' ■ a dynamic 
tablet interface and a dedicated processor that 
allows the cur■or to respond to the natural move
ment of your hand. 

••. , and the COLORS -- beautiful radiant colors 
that emerge from the tube into the room with ef
fect■ that Rembrandt attempted but never achieved! 
And the color■ are NEVER muddyl 

I do the same thing. 
colors emerge -- beauti 

s -- but you're RIGHTI 
DO become muddyl 

.•.: ~--: ·,-~""--~~· .... :·..;.a?1:';J··.-;·::./: .~r~:--.~ .. .-~ ·.: ,-: .. .r•.• .,, ..• .,, .-, -~, __ ~ ,··~-- •. , 

;-~·t:~., 
i:~ 
. };!p1 
f,r)-,:~ 

it tt.:-~ 
,'.•~},t, 
~J.J 

ii~f~ 
·.:l~"5:_ 

I 
M 

-"~'·,~: i·~t(, "II~ M 1/ ;,,,ii 
·,•·;;;, . 

I 
I f;0~t 

/
/ / i1J•;ti 
: /! f~~ 

I ,/,1 ,.;;,-1\i 
•l•i,t• 



"' N 

You see the tube is a high quality 
e paint is mixed electronically by 

numbers INSTANTEOUSLY. You can forget about all 
the c lumsy med i um concerns with mixing paint -
whi c h c o lor goes o n top of which, color permanence 
~nd transparency, and all that crud. You can 
create paintings faster and easier than you've 
EVER done in your ENTIRE LIFEI You will NEVER 
have to get your fingers messy againl 

<••- --~"!'.lf.J~·-f:'~-""" ,, 
-r.'J,EJ:..,.~, ,_ _, , .. :L.,}fl 

What are you talking abo ut -- ELECTRONICI This i s 
the 19th century, b o yl I haven't even h eard o f 
CRT's yeti And I LIKE the smell o f turpenti n e and 
the feel of the canvas! Yo u ha v e t o und erstand 
that the act of making art, like the art of making 
love, is not ne c essa r ily som e thing t o get o v er 
with as soon as possible. Ea c h physi c al brush 
stroke contributes to a textured surface that o n e 
can touch and feel, in c o ntrast t o the surfac e o f 
your 11 CRT". How do you di s play these things? As 
photographs? I'm not creating in the photographi c 
medium-- I'm creating in th e painting medium! 
... and besides, I'm t oo sho rt t o rea c h the t a 

blet and telepho ne books ha ven't been invented yet 
for me to sit on . 

:i 
F-~ 
~ 

i 
" -~ 
~ 
~ 
J 

,_~;_tf} 

lf#~ 
f~ '..;;,l!i 

j 
~.i 
\i 

('it-;l, 
q.'.<:'•·1 

;fJE. 
~:::r-1 
f~~~ 

~~ 
,?§4 
i-r:J;} 
·.:ltJj 
~~m 
.t1f.'.] l("J;p, 
~--<J}l 
!,,'~•,j 
'.:~\\~t~ ,,,,:,,, 
,• r,'>.~ 

;~~~ 
,;l~kl 
: .-'I;,"(; 
-,,!. ,"-f 
:i;;~ 

-~~-~-,-~-~~~-~-~-~-~-~-~-~-~-~-n-T-~-~-~-~-~-~-~-~!!!f'l'!l~~mJi::~~~ 

. ____ ........ -.. __ __ ...... J;Ji~y{~t1f:it:tli~i.t*-tt~:{i ~r~ii~!P,i:jj; 



'° "' 

~ -~ 
f, 
:! 
~ 
t . 
t 
~ 
(-!i, 
! }~ 
}'~ 
rtt 
~,F~~\'.f ;f~,_~ . .(.~Ji.T.ti'.!. 

-------

But, but, airl There are brushes and 
available with this medium that 
dreamed of yeti 
•.. air brush, filter paint, smear paint, z 

paint, slide paintl You can mirror images, re
flect images, tint paint, cycle paint EVEN 
NORMAL Pl\lNTI 11 
•.. and we'll even invent the telephone so you 

as many telephone books as you want to 

----

•1;t:S-:J;ff~f~~ 
~~f~_fi;4: ~~'i·b-~ r .. 

~t 
i ti! 
r,{:i •4':~t 
~-!~~ 

~.:P.,1 
;.:.c 
t ·'ft,,. 
>Ir;~ '• 

~ 
ij 
't-3! 
\ .~ 
f,1,! 

~'~ 
r'iQ 
~ (; 
tlj ''. 
;,c: -? 

ff: 
~i ,_.,~ 
V, 
,:r;,~ 

~' 

,f~ -.~ 
,J..~ 
':;J, 
•/ ft: 

-~ 

~ ... ~ 
)!~~ 
i.?,,: 

~w 
~~i~ 
1-~, 

.. ·.::'-Ji",~~·-- ··;;?,\, ~p;;-: ...;,~.-: :,ll ., • ·- "'"'''""'·"''"''": "'"·' ,,:,,,•·ii:c',10.>?'.lf,>f~Jttr:,:r-w.:,r,:J 



'g 

(~) 
) 0\ 

the Manhattan 
I take th i s 

That • • where 

~~ 

" s 
~ 

f 
( 
~ 

{ 
Ii 

~ ,7J 

'\ 
~ 
~ 

~ 
·., :,-c·.i•·,.,,.;.•;.c; .,::;1•·:,•::;_-,!".• ~;•.~>'·{•;• ' ;·,. ?,:;: ·_,,,',·;;' ·:·:'!l:(1< ' "c'·:·:-::·, : .' ,·• ;-'. [:;:; , > )1-~:t"t) 



95 



~ 

You betl A palnting on this system can be 
at any stage of development, a copy made, 
work, now divided in two can be developed 
ENTIRELY DIFFERENT DIRECTIONS. 

You can even scan in his paintings 
kin ways that he couldn't 

I~~ 
~ ~-
~ 
:i;.j 
') \t 
~ 
'~ 
~ 
)I :; 

t 
i 
') 
ii 
"i 

~ ; ,, 
~) 
1; 



'° -..J 

ff,1, \ 

•H~ «<S?J l ~ 

I know all about your new electronic thing. 
one demonstrated by some slocko commercial 

on TV at the bull fights! Having investi
this matter further, I figure that whenever 

someone puts a program on a computer they estab
lish an ATTITUDE towards making artl and it's 
THEIR attitude, not minel I'm PABLUHI I don't do 
things like everyone else does itl I PUSH the 
medium to its limits! If I'm really gonna 
something creative with this medium, I'm gonna 
have to learn programming! And to make program
ming as comfortable to use as a pencil or a paint 
brush! 

••• this may take MANY YEAijS. I really don't 
have the tim~ nowl I'm just finishing my pink 
period and am about to invent CUBISHI That's 
about planes in apace and all that sort of thing! 
Nah, show me a 3D system and I'd be interested! 

f?fE 
.(Ii,:~ 
li\~ 
,t)~ 
t:q?.( 
,'.(f~ 
:+.~i·~.~ 
f:/tl'r.i 
~.J'•1,'J"i· 
;~12$~ 

ti ,:;t.,'ir, .. ~M ,,;, . ,-, 
~<rt 

ll 



~ 

Planes in apacel But we don't do Defense Depart
fl But, but really, Pablum, sirl Very 

are making full-color computer art 
nowl Making ANYl'HING with your name on it 

system can make you FAMOUSI Even your 
alonel And you can rack out 4 TIMES the 
paintings that you normally dol 

/" 
/' 

r 

,/ 
r 

/ 

NOW you're talking! 
could fit in so well 

style? You Betl I'll take 
diol 

Why didn't you tell me 
with my Bohemian life-
61 One for each stu-

Hmmml Maybe I could even write programs 
Pablum's own esthetic incorporated in them, and 
pass them out to my admirers! That way I could 
have THEM make paintings like mine -- just think, 
an art factory just like Rubensl Hmmmml <J) 

J 
1\ 
t 
~ 
:i! 
,,J 

,~~ 

;l 
I•~ 
'·'.-t;.. 

t~ 
1~ 
-~ 
:,~~ 

I -~I'! 

.f 
1,1 
If,' 
·'of 
~l'.lt 

~~ 
ll\ 



JIJaracaaputer Trpagraply 

Michael Keith 
D46 Abbington Drive 

Hightstown, NJ 08520 

Thi• paper will de•cribe and 
illu•trate a program called EROFF 
(Enhanced Run-OFF), a typesetting 
program for the Apple II computer. Thi• 
program, when u•ed with an Inexpensive 
printer •uch as the Ep•on MX-80 and a 
commercially-available word-proce••ing 
program, can format and print very high 
quality text and graphics. Features of 
EROFF include the ability to use 
different fonts of arbitrary slz:es, 
proportional and fixed •pacing, text 
Ju•tiflcatlon, table construction and 
simple line drawing, algorlthmlcally 
generated Italics and boldface, and 
mixing of graphics with text. As an 
illustration of Its use, this entire 
paper (including figures) was printed 
using EROFF. 

One of the basic features of EROFF 
is Its lnd"fHJll(kmc11 • That Is, all lb 
features are Isolated from the editor, 
word proces•or, and printer hardware 
that may be used with It. To use a 
different printer, for example, only a 
relatlvely simple driver program needs 
to be written. All other aspects · of 
program use remain the same. 1 am 
currently using an Epson MX-8O printer 
and the Screenwriter II word processor. 

The way thl• Independence Is 
achieved is depicted In Figure 1, which 
shows a simple hardware/•oftware block 
diagram of the operation of EROFF. The 
two key characteristics of EROFF which 
allow this flexlbillty are, 

CH1930-7/83/0000/0099$01,00 © 1983 IEEE 
99 

1. EROFF works with standard 
Apple text files for input. 
This text file may either be one 
created with an editor or one 
which has been run through a 
text-formatting program to be 
justified, formatted, etc. All 
EROFF commands are sequences of 
one or more control characters 
embedded in the text f i le. 
These characters are ignored by 
the formatting program and 
passed through to EROFF. 

z. The interface to the 
pr inter, as shown in the f igure, 
is simply a screen dump of Apple 
hi-res pages 1, Z, and 3, 
concatenated horizontally. All 
pr int ins is done to the Apple 
screen, then the screen images 
are dumped to the printer. This 
has the additional advantage of 
making many of the features of 
EROFF easier to implement ( it is 
easier to plot to the Apple 
screen than directly to a 
pr inter l. 

The control character command• are 
assigned in a simple mnemonic way. For 
example, Ap turns proportional spacing 
on or off, "I does ltallcs, AE doe• 
emboldening, AF does font changes, etc. 
Not all of the 26 letters are aHlgned 
to commands, leaving room for future 
expansion. 

The screen-dump Interface for the Epson 
(which produced this paper) uses the 
highest resolution dot-graphics mode of 
the printer for an effective resolution 
of about 100 dots per Inch. 

I will now briefly describe some of the 
features of EROFF In more detail. 



Features 

Text Editor 

Word 
Processor 

Formatted 
Text File 

One of the major features of any 
typesetting program Is the ability to 
use different typefaces (or font.). A 
unique feature of EROFF is the fact that 
fonts can be completely arbitrary In 
size. Many font packages for the Apple 
are restricted to 7 x 8 fonts (the 
standard Apple size font) or multiples 
thereof such as 14 x 16. In EROFF 
special character-plotting routines are 
used which circumvent these restrictions 
by, for example, allowing a character to 
be drawn at the extreme right edge of 
hires page 1 which Is automatically 
split correctly between pages 1 and 2 
(see figure 2). 

Here are some sample EROFF fonts of 
various sizes: 

@lh ~n9lts~ ~ont 
Harraw P11t C1313U 
~lillilWl!IOO Ul!IW'ii' 
Yery s•all font (7:d2), which will be 
even ioaa11er after thh paper is 
reduced! 

28.x:l2 

This paper w 
Illustrate a progri 
(Enhanced Run-OFF 
program for the , 
program, when use 
printer such as ti 
commerclally-avallal 
program, can form 

Plgore 2: 

Apple 
hi-res 

Printer Output 

F 19ure 1: Ei T operation 

Another feature of EROFF Is ability 
to embolden and/or italicize any 
available font. This is done by 
slightly offset overstriking (for bold) 
or changing the character slope (for 
italics). This is much more efficient 
than storing separate fonts for Italics 
and bold, and also allows Interesting 
effects such as italicized Old English 
print! For example, here are the four 
fonts obtained by combinations of 
emboldening and italics applied to a 
sans-serif font: 

Here is the standard font. 
Hara is tha bold varsion of the font. 
Here is the italics version. 
&d here is bold /1111) italics. 

Another desirable feature of any 
typesetting system Is the ability to do 
proportional spacing; that is, to allow 
the spacing between letters to depend on 
the width of the letters themselves. 
For example, here is a sample sentence 
printed in both fixed and proportional 
spacing. 

Fixed: 
Lillian locates 1 ilacs on Illampu. 
Proportion a 1: 
Lillian locates 1 ilacs on Illampu. 

·ill describe and 
1m called EROFF 
), a typesetting 
l\pple II computer. This 
,d with an Inexpensive 
1e Epson MX-80 and a 
>le word-processing 
at and print 

Snapshot of the images in 
hi-res pages 1 8. 2 dur ins 
run-off of this paper, 
showing how letters actually 
can span page boundaies. 
This allows easy use of 
arbitrary character sizes. 

100 



Because it is handled by EROFF, 
proportional spacing Is available 
regardless of whether the printer being 
used supports this feature. 

Of course, there is no reason that 
a font has to contain the familiar ASCII 
character set. A font can contain up to 
96 text or graphic symbols of any sort. 
For example, Figure 3 uses a chess font 
to Illustrate a chess position. There 
are 24 primary characters in this font 
( each of the 6 different chess pieces x 
2 colors x 2 colors of background) plus 
some other miscellaneous characters 
(such as blank squares). These graphic 
fonts can be combined with regular fonts 
to allow some simple mixing of text and 
graphic.s. 

Another feature of EROFF is its 
line-drawing capability. At present, 
only horizontal and vertical 
line-drawing is available, but this is 
quite sufficient for drawing boxes 
around text, making tables, etc. This 
works a.s follow.s1 the three control 
characters "V (Vertical), "L (horizontal 
Line), and "B (Box) are used to mark 
endpoints of lines. For example, the 
following Input 

Words in a box 
AB AB 

will produce the output 

I Words in a box 

A more complicated example ( a 
mu It I-column table) Is shown In Figure 
4. 

EROFF also has a "preview mode" 
which runs off the document to the 
monitor screen rather than to the 
printer. This allows checking for 
formatting or other error.s without 
having to wait for an actual hardcopy 
printout. 

An Interactive mode of EROFF Is 
also available. In this mode, the user 
types on the Apple keyboard and the text 
appears on hi-res page 1. Most of the 
features of EROFF are available In this 
mode such a.s different fonts, italics, 
emboldening, and even proportional 
spacing, providing the unique experience 
of a proportional spacing typewriter! 
In conjunction with a graphics editor or 
paint program, this mode can be used to 
produce labelled drawings or figures. 
Figures 1 and 2 in this paper were 
produced in this way. 

IOI 

Chess Proble■ Nl: 

/,/hite to move: 

1. What was Black's last move? 
Prove it. 

Z. White to mate on the move. 

figure 3: 
Illustration of the use of a 
graphic font. Each square of the 
chessboard is one character in a 
special chess font. 

Group Ib Elements 

Sy■bol Na■e No. Weight 

Cu Copper 29 63.S+ 

Ag Silver +7 107.87 

Au Gold 79 196.97 

F1oure 4: Sample table created 
w I th EROFF. 



Limitations 

The major limitation of EROFF at 
this time is speed. This is not due to 
slow execution speed of the program but 
rather to slow printing speed of the 
Epson MX-80 printer. A faster printer 
would slgnlflcantly reduce the time It 
takes to run off a document. Even so, 
it is not unacceptably slow1 presumably, 
If you want hlgh-quallty print you wlll 
be willing to wait longer for It to be 
produced. The advantages of owning a 
personal computer (e.g., the ablllty to 
print out' a final draft while you're 
eating dinner or doing some other 
activity during which the computer Is 
usually Idle) help make this delay 
tolerable. 

Vital Statistics 

The EROFF program Is quite small, 
being composed of about 6K of Applesoft 
BASIC and about 2K of machine code. It 
hlls to be small since 24K Is required 
for the three hi-res pages and a 5K area 
is reserved for font storage. It runs 
on an Apple II with no addltlonal 
hardware or software ( other than the 
printer), and has proven to be a useful 
addition to available Apple software 
tools. 

102 



KEYFRAME ANIMATION FOR THE MICROCOMPUTER 

by William J. Kolomyjec, Ph.D., M.F.A. 

Department of Engineering Graphics 
The Ohio State University, Columbus, Ohio 

Abstract 

Keyframe animation is the process where one 
given figure or scene is changed into another. 
Important aspects of keyframe animation are: 
translation, iteration interval and transforma
tion. A microcomputer can be used to generate 
transitional or in-between frames. An animated 
story can be produced with a series of keyframe 
sequences. This paper will present a cursory dis
cussion of important aspects of keyframe anima
tion. Programs will be given for the Apple (TM} 
microcomputer that will perform image transforma
tion and animation. Image transformation will be 
accomplished by two kinds of interpolation, linear 
and quadratic. These algorithms will be given in 
programs that will allow prospective animation 
sequences to be previewed. Animation programs 
utilizing graphics page flipping will also be 
given which will provide a means of displaying 
image transformation for either observation or 
single frame recording. 

Introduction 

To begin, this article will present a cursory 
discussion of several aspects of keyframe animation. 
Next, two demonstrations of image transformation 
using linear and quadratic interpolation will be 
given. Linear interpolation requires two digitized 
images and the transformation between figures 
takes place along a straight line. Quadratic 
interpolation involves three digitized images and 
the transformation takes place along a curve of the 
second order through all three images. These two 
demonstrations not only illustrate interpolation 
transformations but they also provide a method of 
previewing potential animation sequences. 

The remainder of this article will present 
application software that animates both types of 
interpolation transformations utilizing the page 
flipping capabilities of the Apple (TM) microcom
puter. This technique enables complete frames to 
appear on the screen at once. Thus, the viewer 
does not have to watch each frame as it is being 
generated. Moreover, this technique should pro
vide a decrease in overall animation time since, 
while an image is being recorded on film, the next 
frame is being processed. 

CH1930-7/83/0000/0103$01.00 © 1983 IEEE 
103 

Aspects of Keyframe Animation 

Keyframe animation is an animation ~rocedure 
where a number of critical or key frames 1n a 
sequence are designed. The concept is analogous 
to drawing the frames of a comic strip or story
board. A computer with graphics capabilities 
is then used to generate a specified number of 
in-between or transitional frames. Keyframe 
imagery can be whole frames or parts of frames. 
In other words, complete scenes may be transformed, 
or parts of a scene may be allowed to change while 
the remainder of the scene remains unchanged. 

Important aspects to be considered in key
frame animation are: 1) image location, 2) itera
tion interval, and 3) transformation. Control 
over these aspects will be of primary concern in 
the software to follow. 

Translation involves moving images to de
sired screen locations in preparation for an ani
mation sequence. Translation is also used in 
sizing a subject image. Translation is actually 
a three step process: 1) Initial translation. 
To center the image on its coordinate system 
origin. 2) Scale. To multiply the centered 
image coordinates by a scale factor to enlarge or 
reduce the figure. And, 3) Counter translation. 
To move the image to the desired screen location 
and adding in X and Y offset, known as the counter 
translation coordinates. 

Iteration interval is the distance any one 
transitional image moves between frames. Interval 
size determines image speed in the animation. 
When planning for an animated film the film speed 
conventions for projection equipment must be con
sidered. For 8 and 16 mm these are 18 frames per 
second for a silent film, and 24 frames per 
second for a film with a sound track. At constant 
film speed uniform intervals between images will 
produce uniform movement. Varying interval size 
will cause nonuniform movement. Clearly, at a 
constant film speed, image acceleration or decel
eration cannot be achieved by employing uniform 
interval. However, there is one trick worth men
tioning: One way of producing nonuniform movement 
with uniform intervals is to record more than one 
frame of an iterative image. 

Image transformation is a very dynamic visual 
event. Transformation usually involves one figure 
changing completely into another, i.e., 



metamorphosis. Figures may have the same or dif
ferent counter translation coordinates. Movement 
alone may be created by changing an image into a 
copy of itself somewhere else on the screen. The 
illusion of depth may be created by changing an 
image into a scaled version of itself at the same 
or different screen location. Movement between 
images can also be in a linear or nonlinear fashion 
which is determined by the type of transformation 
algorithm and the number of digitized images em
ployed. 

There are several techniques available for 
metamorphosizing imagery but this discussion will 
focus on two variations of interpolation. The 
first type is linear interpolation. Linear inter
polation allows the coordinate pairs of two digi
tized images having the same number of points to 
map into each other in a linear fashion. Figure 
1 graphically illustrates the concept. If the 
line segments joining coordinate pairs of two 
figures are bisected and joined in order then an 
intermediate or interpolated figure is formed. 
Since the lines were bisected (divided into two 
equal parts) the interpolation fraction (later 
to be associated with a variable named PCT) is 
said to be 0.5. Further bisection of line seg
ments between the interpolated figure and the 
figures to its left and right will yield inter
polated figures corresponding to the interpola
tion fractions 0.25 and 0.75 respectively. 

Figure 1. Graphical Interpolation 
of Two Figures 

B1 

With the interpolation algorithm image trans
formation will not appear if both figures are 
specified to be the same, i.e., one figure is 
either an exact or scaled copy of the first. This 
may seem dubious, however, it is efficient from a 
programming point of view. It is important to 
realize that in the programs that follow, the user 
has the power to change subject images by substi
tuting array names in the assignment statements 
where the manipulation arrays are defined. These 

104 

locations will be clearly indicated in the code 
in the MANIPULATED DATA subroutine (starting at 
line 6000 in all programs to follow). 

A second type of interpolation transfor
mation technique is quadratic interpolation. 
Quadratic interpolation involves three figures 
each with the same number of coordinate pairs. 
Imagine a corresponding point of each figure to 
be somewhere on the screen. Next, imagine a 
second order curve, for example a parabola, pass
ing through these three corresponding points in 
consecutive order, i.e., starting with the point 
from figure one, passing gracefully through the 
point from figure two and terminating at the 
point from figure three. This will be accom
plished by way of a special subroutine. 

Geometric Figure Database 

Figure 2. Geometric Figures 

Four geometric designs, Figure 2, have been 
constructed and digitized. Each figure consists 
of sixteen line segments and they have been digi
tized in the same general direction, i.e., counter 
clockwise, from a similar starting point on a 
horizontal line to the right of the figure's cen
ter. This is a good rule of thumb to follow when 
digitizing imagery for interpolation. If direc
tion and starting location criteria are not con
sistent, imagery will cross over itself (forming 
a knotted blob) during the transformation. In 
this event, transformation sequences will be of 
poor visual quality. 

In the illustration, Figure 2, as well as in 
the program code of the subroutine, the figures 
are labeled A, B, C, and D corresponding to the 



two dimension arrays that will hold their respec
tive data. It will be the purpose of a separate 
subroutine entitled FOUR GEOMETRIC FIGURE DATA SUB
ROUTINE (starting at line 5000) to read in these 
data into their respective arrays. This subrou
tine will be a necessary part of each of the pro
grams that follow. 

Program Linear Interpolation 

Program linear interpolation, Listing l, will 
allow variable placement of two geometric figures 
anywhere within the screen boundaries. The scale 
of each figure is variable and the number of frames 
is arbitrary. In the example output from this pro
gram, Figure 3, figure "B" has been located in the 
upper left of the screen and figure "D" in the 
lower right. Each figure has been scaled with a 
different scale factor. Figure "B" has been 
scaled by a factor of three, figure "D" has been 
scaled by a factor of four. The transformation 
has been specified to take place in twelve itera
tions by assigning the value 12 to the variable 
NFRAMES (line 220). NFRAMES will control the 
total number of images (original images plus 
transitional images) in all programs given in this 
article. Moreover, temporal duration of a trans
formation in any animation sequence is controlled 
by the value of NFRAMES. 

Figure 3. Linear Interpolation, 
Uniform Intervals 

Notice two things in Figure 3: One, the com
pleted drawing provides a preview of the animation 
sequence. This program can be used to create and 
develop prospective animation segments. Two, a 
border has been included for camera positioning. 
The border effectively outlines the workable screen 
area. A brief discussion of this program follows. 

The main program (lines 100 - 999 in Listing 
l) controls the operation of several subroutines 
as do most good graphics programs. First, the 
figure data are input into a series of four two 
dimensional arrays by a call to the GEOMETRIC 
FIGURE DATA SUBROUTINE. Note that in Applesoft 
(TM) arrays begin with a zero element. Thus, array 

105 

declaration may seem to be "off by one." Next, 
manipulation arrays are dimensioned, and the data 
manipulation subroutine is called. Manipulation 
arrays are a convenient way to provide versatility 
to a program. In the MANIPULATE DATA subroutine, 
array assignment can be quickly changed. Notice 
that this subroutine takes care of translation, 
scaling and counter translation, achieving the 
first aspect of keyframe animation. The initial 
and terminal images (original figures) can be 
adjusted in terms of location and size within 
this routine. 

The remainder of the main program does the 
interpolation and drawing. Once the desired num
ber of transitional images are specified, the 
graphics mode is entered and the border routine 
is called. A loop is opened to generate the 
individual images. A one line sizing algorithm 
is used to calculate the interpolatton fraction 
(PCT) based on the loop index (K) and the total 
number of desired iterations (NFRAMES). When K 
equals l then PCT equals O, when K equals NFRAMES, 
then PCT equals 1. Thus, the interpolation frac
tion (given as a percentage) ranges between O and 
1. The interpolation fraction provides for the 
second aspect of keyframe animation, i.e., itera
tion interval. It is used by the interpolation 
equations to generate the transitional image. 
The X and Y coordinate components of each corres
ponding image are calculated using this fraction. 

These data, along with the appropriate 
"beam" control, are sent to a plotting subroutine 
(PLOTSUBB starting at line 1000). A point is 
either moved-to or drawn-to under the direction of 
this routine. The plotting subroutine also adjusts 
the screen origin to the lower left corner (as it 
should be) and corrects the aspect ratio. This 
technique increases the effective drawing area to 
279 x 217 pixels. 

When the transformation sequence is complete 
the last aspect of keyframe animation is achieved. 
The image is held on the screen by a du11111y input 
statement. The user may go back and redefine 
variables and work a scene until it meets his/her 
creative requirements. A whole story can be put 
together with keyframe animation sequences. The 
procedure is to simply have the last frame of one 
sequence correspond to the first frame of the next 
sequence. 

Linear Interpolation with 
Nonuniform Intervals 

By adding one line of code and changing 
another, the iteration interval between transi
tional imagery can be altered. After making two 
changes to Listing 1, Figure 4 was produced. 
These changes are as follows: 

ADD: 
225 HALFPI = 3.14159/2 

CHANGE: 
280 IPCT = (K-l)/(NFRAMES-1): 
PCT= SIN (IPCT* HALFPI) 



Figure 4. Linear Interpolation, 
Sinusoidal Intervals 

This little algorithm uniformly samples the inter
val between O and PI/2 radians and takes the sine 
of that value. Since the sine function ranges 
between O and l in this interval, the value of 
PCT lies in.the correct range, however, the inter
val spacing is now sinusoidal rather than uniform. 

Program Quadratic Interpolation 

The main differences between quadratic 
interpolation and linear interpolation are the 
number of figures involved and the path of the 
interpolation. Program Quadratic Interpolation 
is presented as Listing 2. Careful comparison 
will reveal similarities and differences. First 
of all, the plotting subroutine and the geometric 
data input subroutine contain no changes. The 
MANIPULATE DATA subroutine has been modified to 
translate, scale and counter translate three geo
metric figures and store the results in one three 
dimensional manipulation array, called M. Mis 
dimensioned in the main program prior to calling 
to the subroutine. A three dimensional array best 
facilitates the programming of multiple figures. 

In light of these similarities and relatively 
minor differences, both programs operate in iden
tical fashion prior to the interpolating and draw
ing loop. The first major difference comes with 
the calculation of PCT. Since three figures are 
involved PCT must be defined to be in the range 
-1 to +l. The second major difference explains 
why. Notice the addition of a subroutine called 
FUNCTION QNTRP (starting at line 3000). Note that 
this subroutine is really a function subprogram. 
The function requires four parameters: an inter
polation fraction and three corresponding coor
dinate elements. It returns the quadratic inter
polation quantity relative to these values. FUNC
TION QNTRP must be called for both the X and Y 
coordinate component. The curious may examine the 
code to gain an understanding of the mathematics 
involved in the algorithm. 

The interpolation and drawing loop contains 
both major changes. When PCT equals -1 then the 
first figure is drawn. When PCT equals O then the 

106 

second figure is drawn. And when PCT equals +l 
then the third figure is drawn. Examination of 
Figure 5 reveals the path of the transformation 
is indeed nonlinear. 

Figure 5. Quadratic Interpolation, 
Uniform Intervals 

Animating Linear and Quadratic 
Interpolation 

It is unfortunate that this software will 
only work on an Apple (TM). However, before a 
discussion of the specific program is given, the 
logic in general will be outlined. Perhaps read
ers with other computational equipment can adapt 
this concept to their particular systems. 

Assuming that there are two graphics pages 
available and it is possible to display them on 
command, the following sequence will produce a 
slow but smooth animation. 

Step 1: CLEAR graphics PAGE land PAGE 2 

Step 2: DISPLAY PAGE 1 (blank) 

Step 3: START LOOP 

Step 4: IF first time here THEN skip to 
next step ELSE, UNDRAW PAGE 2 

Step 5: DRAW and SAVE PAGE 2 

Step 6: DISPLAY PAGE 2 

Step 7: IF first time here THEN skip to 
next step ELSE, UNDRAW PAGE 1 

Step 8: DRAW and SAVE PAGE l 

Step 9: DISPLAY PAGE 1 

Step 10: END LOOP 

Both versions of Program Keyframe Animation (List
ings 3 and 4) use the animation algorithm out
lined above. Both listings are liberally 



conmented and the narrative that follows will ad
dress only the programming specifically related to 
the operation of the animation algorithm. Inter
polation procedures are identical to those used in 
the previous programs. 

First, two critical addresses must be identi
fied to the program. SWITCH (decimal 230) controls 
the graphics page indexing value. The subscripted 
two value array PAGE(O) = 32 and PAGE(l) = 64 con
tains the required index values. If drawing is to 
take place on graphics page 1 then POKE SWITCH, 
PAGE(O) is necessary. If drawing is to take place 
on graphics page 2 then POKE SWITCH, PAGE(l) is 
necessary. The variable DISPLAY (decimal 49236) 
contains the address of an Apple (TM) "soft switch." 
POKEing DISPLAY with O displays graphics page 1. 
POKEing DISPLAY+ 1 (another soft switch address) 
with O displays graphics page 2. Thus, the graph
ics pages can be drawn on and displayed with POKEs 
to SWITCH and DISPLAY. 

The trick, as it were, is to keep track of 
what to do when. For this purpose a Boolean · 
(logical) variable called FLIP is used. Boolean 
variables are seldom used as such in BASIC, how
ever, the mechanism for their use is inherent to 
the language. For example, FLIP= NOT FLIP will 
change FLIP to a 1 if it is a O, and to a O if it 
is a 1. FLIP serves a number of purposes: It 
allows toggling between the graphics pages. It 
represents the graphics page index when used as a 
subscript in the manner: POKE SWITCH, PAGE(FLIP). 
And it is used as a subscript to keep track of the 
page index in the drawn image storage array (i.e., 
T(coordinate, number, FLIP)) to undraw the appro
priate image on the appropriate page at the 
appropriate time. 

After the critical addresses and variables 
are defined and initialized the data is read in 
and manipulated. (Again, these subroutines, start
ing at lines 5000 and 6000 respectively, are iden
tical to those used in Listings 1 and 2.) Next 
NFRAMES is defined. Remember every multiple of 
twenty-four frames represents one second of anima
tion. Then, the animation algorithm begins as 
outlined above. 

The graphics pages are cleared by executing 
HGR2 and HGR in this order. By executing HGR 
second, the graphics page inde* is set to page 1. 
Displaying Page 1 after it is cleared results in a 
blank screen. Before the interpolation and draw
ing loop begins, the graphics page index is set to 
page 2. Notice the loop index ranges from 1 to 
NFRAMES in steps or increments of two. This is 
because one pass through the loop draws and dis
plays two frames. 

The first thing that is done inside the loop 
is to POKE two more graphics soft switches which 
close the text window at the bottom of graphics 
page 1. If this is not done then page 1 will not 
be full page graphics. Apparently each time page 
1 is displayed, 1t opens this text window, there
fore, it must be continuously re-closed. A first
time-through-the-loop test is performed. Since it 

!07 

is true, no undrawing needs to be done. Control 
is transferred to the calculation of the inter
polation fraction. PCT is defined based on the 
type of interpolation being used. If program 
keyframe animation is doing linear interpolation, 
then PCT will be defined in the range Oto 1. If 
the program is doing quadratic interpolation, then 
PCT is defined in the range -1 to +1. In either 
case the DRAW/SAVE subroutine is called. 

The DRAW/SAVE subroutine takes the value of 
the interpolation fraction and draws the appro
priate transitional image on the graphics page 
currently in. background, designated by the graph
ics page index. While this image is being gener
ated, its coordinates are being saved in a tem
porary storage array called T. Tis a three di
mensional array which holds the X, Y and P values 
(first subscript) for each coordinate group 
(second subscript) of the figure, as well as the 
page it is drawn upon (third subscript). This 
last parameter is the current value of FLIP. 
Return then transfers control back to the main 
program. 

Back in the main program the completed image 
(on page 2) is displayed. Note that this is 
accomplished with a POKE to the appropriate ad
dress: DISPLAY+ 1. FLIP is toggled from 1 to 0 
and the graphics page index is changed to page 1. 
Again, since this is still the first time through 
the interpolation and drawing loop, there is 
nothing to undraw on page 1. PCT is calculated 
for the second frame: note the slight variation 
in the algorithm. The DRAW/SAVE subroutine is 
called for a second time but this time·FLIP has 
changed. The DRAW/SAVE subroutine now draws the 
next (in this case, second) transitional image in 
background simultaneously storing these coor
dinates in the array T. Remember the third sub
script is determined by the value of FLIP. Con
trol is then returned to the main program. 

Back in the main program the completed image 
(on page 1) is displayed. Note: this is accom
plished with a POKE to the appropriate address: 
DISPLAY. However, the bottom of the loop has been 
reached and control is transferred to the top of 
the loop. The text window at the bottom of page 
one is re-closed, This time the first-time
through-the-loop test is false and the instruc
tions that were passed over before are executed. 
These instructions are: FLIP is changed back to 
1, and the graphics page index is reset to page 
2. HCOLOR is set to 4 or black. Thus, undrawing 
is accomplished by drawing over the previous 
image using the values stored in the array T with 
a black line, effectively erasing the image. Once 
undrawn, a new interpolation fraction is calculated 
and the next transitional image is generated on 
the just cleared page 2 by calling the DRAW/SAVE 
subroutine. Notice that HCOLOR is set back to 3, 
or white, early on in this routine. 

Needless to say, this process continues un
til the interpolation sequence is complete. The 
end of the sequence is signalled by a beep. The 
last image is held on the screen until the return 
key is depressed. 



Conclusion 

All aspects of keyframe animation have been 
included in the animation software presented 
above. This software will perform animation if 
the data is correctly formulated. It is up to 
the animator to establish the subject of the ani
mation and design the imagery. It is strongly 
suggested that any sequence be previewed using 
one of the first two programs prior to filming. 
Ideally, the animation program(s) should have a 
built in mechanism to trigger the animation 
camera. A subroutine that uses the annunciator 
outputs, which themselves are controlled by soft 
switches, is the clue. (See the Apple II Refer
ence Manual, Apple Product No. A2L0001A, p. 23.) 

Keyframe animation is a simple way to begin 
using the power of the microcomputer to generate 
animated films. Animation provides a working know
ledge of the time dimension. This software is not 
intended to generate real-time moving imagery. It 
may take hours of filming to produce seconds or 
minutes of film. However, the effort is its own 
reward when the imagery comes to life on the sil
ver screen. 

Listings 

Listing 1 

100 REM <<<<< LINEAR INTERPOLATION)))}) 
110 REM «< TRANSLATE AND TRANSFORM BETWE 
EN TWO FIGURES})) 
120 REM 
130 REM COPYRIGHT 1983 W,J.KOLOMYJEC 
140 REM 
150 REM GET GE0'1ETRIC FIGURES DATA 
160 GOSUB 5000 
170 REM DEFINE MANIPULATION ARRAYS 
180 DIM Q( 1,N> ,Z( 1,N> 
190 REM ASSIGN DATA TO MANIPULATION ARRAY 
s 
200 REM TRANSLATE, SCALE~ COUNTER TRANSL 
ATE IN SUBROUTINE 
210 GOSUB 6000 
220 NFRAMES = 12 
230 HGR2: HCOLOR= 3: REM INITIALIZE GRAP 
HICS 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
999 

GOSUB 1250: REM OUTLINE SCREEN 
FORK= 1 TO NFRAMES 
REM UNIFORM INTERVALS 
REM PCT RANGE: 0 TO 1 

PCT= (K - 1) / (NFRAMES - 1) 
FOR J = 0 TO N 
REM INTERPOLATION EQUATIONS 

X = <Z<0,J) - Q(0,J)) lE PCT+ Q(0,J) 
Y = (2(1,J) - Q(l,J)) lE PCT+ Q(l,J) 

IF J = 0 THEN 350 
P '"' 1: GOTO 360 
p = 2 

GOSUB 1000 
NEXT J 
NEXT K 
INPUT A$: TEXT 
END 

REM TERMINATE 

108 

1000 REM 
1010 REM 
1020 REM 
2=MOVE 

<<<<< PLOTSUBB ))))) 
PARAMETERS: X,Y AND P 
P VALUE IS BEAM CONTROL: 1=DRAW, 

1030 REM FLIP Y COORD, AND CORRECT ASPECT 
RATIO (0 .881> 

1040 REM PLOT AREA: 0<=X<•279,0(=Y<=217 
1050 Y9 = 192 - <Y lE 0,881 + 0,5) 
1860 IF P = 1 THEN GOTO 1100 
1070 IF P < ) 2 THEN PRINT "PEN ERROR": 
STOP 
1080 HPLOT X,Y9 
1090 RETURN 
1100 HPLOT TO X,Y9 
1110 RETURN 
1250 REM <<<<< OUTLINE SCREEN))))> 
1260 HPLOT 0,0 TO 279,0 TO 279,191 TO 0,19 
1 TO 0,0 
1270 RETURN 
5000 REM <<<<< FOUR GEOMETRIC FIGURE DATA 

SUBROUTINE)}})} 
5010 Hct'IE: VTAB 10: PRINT "FILLING DATA A 
RRAYS .• ," 
5020 REM 
5030 NUM = 17 
5040 N = NUM - l 
5050 DIM A( 1,N) ,B< 1,N> ,C< 1,N> ,D< 1,N> 
5060 REM READ DATA INTO ARRAYS 
5070 FOR J = 0 TON 
5080 READ A( 0, J) ,A< 1, J) , B< 0, J) , B( 1, J) , C< 0, 
J) ,C< 1,J) ,D<0,J) ,D< 1,J> 
5090 NEXT J 
5100 REM GEOMETRIC FIGURE DATABASE 
5110 DATA 7,5,7,5,10,5,9,5 
5120 DATA 10,9,6 1 8,8,6,7,10 
5130 DATA 6,6,10 1 10,10,10,5,5 
5140 DATA 9,10,8,6 1 6 1 8,10,7 
5150 DATA 5,7,5,7,5,10,5,9 
5160 DATA 1,10,2,6,4,8,0,7 
5170 DATA 4 1 6,0,10,0,10,5 1 5 
5180 DATA 0,9,4,8,2,6,3,10 
5190 DATA 3,5,3,5 1 0,5,1,5 
5200 DATA 0,1,4,2,2,4,3 1 0 
5210 DATA 4,4,0,0,0,0,5,5 
5220 DATA 1,0,2,4,4,2 1 0 1 3 
5230 DATA 5,3,5,3,5,0,5,1 
5240 DATA 9,0,8 1 4 1 6,2,10 1 3 
5250 DATA 6,4,10,0,10,0,5,5 
5260 DATA 10,1,6 1 2,8,4,7,0 
5270 DATA 7,5,7,5,10,5,9,5 
5280 RETURN 
6000 REM <<<<< MANIPULATE DATA)}))) 
6010 Hct'IE : VTAB 10: PRINT "MANIPULATING D 
ATA •• ,• 
6020 REM FIGURES TO BE TRANSLATED ABOUT 0 
RIGIN AND SCALED 
6030 REM THEN COUNTER TRANSLATED TO SCREE 
N LOCATIONS 
6040 REM OFFSETS TO CENTER IMAGES 
6050 XOFF = - 5:YOFF = - 5 
6060 REM DEFINE IMAGE SCALE FACTORS <VARI 
ABLE> 
6070 Sl = 3:S2 = 4 
6080 REM DEFINE COUNTER TRANSLATION COORD 
INATES 
6090 X1 = 
6100 X2 = 
6110 REM 
D HERE 

HhYl = 200 
254:Y2 = 25 

FIGURE ASSIGNMENTS CAN BE ALTERE 



6120 FOR J = 0 TON 
6130 Q(0 'J) = (B(0,J) + XOFF> lE S1 + X1 
6140 Q( 1, J) = ( B ( 1 , J) + YOFF> lE S1 + y 1 
6150 2(0 ,J) = <D<0,J> + XOFF> lE S2 + X2 
6160 2 ( 1, J) = <D<1,J> + YOFF> lE S2 + Y2 
6170 NEXT J 
6180 RETURN 

Li sting 2 

100 REM <<<<< QUADRATIC INTERPOLATION)}) 
» 
110 REM <<< TRANSLATE AND TRANSFORM BETWE 
EN THREE FIGURES>>> 
120 REM 
130 REM COPYRIGHT 1983 W.J,KOLOMYJEC 
140 REM 
150 REM GET GEOMETRIC FIGURES DATA 
160 GOSUB 5000 
170 REM DEFINE MANIPULATION ARRAYS 
180 REM M<FIGURE,COORD,NUMPTS) 
190 DIM M<2, 1,N> 
200 REM ASSIGN DATA TO MANIPULATION ARRAY 
s 
210 REM TRANSLATE, SCALE at COl.NTER TRANSL 
ATE IN SUBROUTINE 
220 GOSUB 6000 
230 REM TO GET ALL THREE FIGURES NFRAMES 
MUST BE ODD 
240 NFRAMES = 15 
250 HGR2: HCOLOR= 3: REM INITIALIZE GRAP 
HICS 
260 
270 
280 
290 
300 
310 
320 
J) 

GOSUB 1250: REM OUTLINE SCREEN 
FORK= 1 TO NFRAMES 
REM UNIFORM INTERVALS 
REM PCT RANGE: -1 TO +1 

PCT= (K - 1) lE 2 / (NFRAMES - 1) - 1 
FOR J = 0 TON 

F1 = M<0,0,J):F2 = M<1,0,J):F3 = M(2,0, 

330 GOSUB 3000:X = QNTRP 
340 Fl= M(0,1,J):F2 = M(1,1,J):F3 = M(2,1, 
J) 

350 
360 
370 
380 
390 
400 
410 
420 
999 
1000 
10 10 
1020 
1030 
1110 
1258 
1260 
1 TO 
1270 

GOSUB 3000:Y = QNTRP 
IF J • 0 THEN 380 

P = 1: GOTO 390 
p = 2 

GOSUB 1000 
NEXT J 
NEXT K 
INPUT A$: TEXT : REM TERMINATE 
END 

REM <<<<< PLOTSUBB >>>>> 
REM 
REM lElElElElE SAME AS LISTING 1 lElElElElE 
REM 
RETURN 
REM <<<<< OUTLINE SCREEN>>>>> 
HPLOT 0,0 TO 279,0 TO 279,191 TO 0,19 

0,0 
RETURN 

109 

3000 REM <<<<< FUNCTION QNTRP ))))) 
3010 REM SIMULATES FUNCTION QNTRP (PCT,Fl 
,F2,F3) 
3020 REM QUADRATIC INTERPOLATION 
3030 REM QNTRP IS A FUNCTION WHICH DETERM 
INES THE PLOT COORDINATE 
3040 REM FOR {:,t,4Y PCT VALUE (-1 TO +1> FOR 

A QUADRATIC FUNCTION, THUS 
3050 REM QNTRP(-1)=FIGURE 1, QNTRP(0)=FIG 
URE 2, QNTRP(+1>=FIGURE 3 
3060 A= (F1 + F3 - 2 lE F2) / 2 
3070 B = (F3 - F1) / 2 
3080 C = F2 
3090 QNTRP = A lE PCT lE PCT+ B lE PCT+ C 
3100 RETURN 
5000 REM <<<<< FOUR GEOMETRIC FIGURE DATA 

SUBROUTINE>>))) 
5010 REM 
5120 REM lElElElElE SAME AS LISTING 1 lElElElElE 
5130 REM 
5280 RETURN 
6000 REM <<<<< MANIPULATE DATA))))) 
6010 HOME: VTAB 10: PRINT "MANIPULATING D 
ATA, •• • 
6020 REM FIGURES TO BE TR{:,t,4SLATED ABOUT 0 
RIGIN AND SCALED 
6030 REM OFFSETS TO CENTER IMAGES 
6840 XOFF = - 5:YOFF = - 5 
6058 REM IMAGE SCALE FACTORS 
6060 SFTR = 3 
6070 REM DEFINE IMAGE TRANSLATION COORDIN 
ATES (SCREEN LOCATIONS> 
6080 X1 = 20:Yl = 20 
6090 X2 = 140:Y2 = 200 
6100 X3 = 259:Y3 = 20 
6110 REM FIGURE ASSIGNMENTS CAN BE ALTERE 
D HERE 
6120 FOR J = 0 TON 
6130 M<0,0,J) = (A(0,J) + XOFF> lE SFTR + Xl 

6140 M<0,1,J) = (A( 1 ,J> + YOFF> lE SFTR + y 1 

6150 M<l,0,J> = (B(0,J) + XOFF) lE SFTR + 

6160 M<1,1,J) = (B(1,J) + YOFF) lE SFTR + 

6170 M<2,0,J> = <C<0,J> + XOFF> lE SFTR + 

6180 M<2,1,J) = (C( 1,J> + YOFF> lE SFTR + 

6190 NEXT J 
6200 RETURN 

Listing 3 

100 REM <<<<< KEY FRAME {:,t,4IMATION >>>>> 
110 REM <<< BASED ON PAGE FLIPPING ))) 
115 REM 

X2 

Y2 

X3 

Y3 

120 REM <<< LINEAR INTERPOLATION SEQUENCE 
>» 

125 REM 
130 REM COPYRIGHT 1983 W. J, KOLOMYJEC 
140 REM 
150 REM DEFINE CRITICAL ADDRESSES AND VAL 
UES 
160 SWITCH= 230:DISPLAY = 49236 
170 PAGE(0> = 32:PAGE(1) = 64 



180 
190 
200 
210 
220 
230 
240 
s 

REM INITIALIZE BOOLEAN VARIABLE FLIP 
FLIP = 1 

REM GET GEOMETRIC FIGURES DATA 
GOSUB 5000 
REM DEFINE MANIPULATION ARRAYS 
DIM Q( 1,N> ,Z< 1,N> ,T<2,N, 1) 

REM ASSIGN DATA TO MANIPULATION ARRAY 

250 GOSUB 6000 
260 REM DEFINE DURATION OF IMAGE TRANSFOR 
MATION 
270 REM 24 FRAMES EQUALS 1 SECOND OF ANIM 
ATION 
280 NFRAMES = 24 
290 REM ***** BEGIN ANIMATION CODE***** 
300 REM CLEAR BOTH GRAPHICS PAGES 
310 HGR2: HGR 
320 REM DISPLAY PAGE 1 
330 POKE DISPLAY,0 
340 REM SWITCH PAGE INDEX TO PAGE 1 
350 POKE SWITCH,PAGE(FLIP> 
360 FORK= 1 TO NFRAMES STEP 2 
370 REM CLOSE TEXT WINDOW FOR FULL SCREEN 

GRAPHICS 
380 POKE 49232,0: POKE 49234,0 
390 REM UNDRAW <SKIP FIRST TIME> 
400 IF K = 1 THEN 510 
410 FLIP= NOT FLIP: REM 0 --> 1 
420 REM SWITCH PAGE INDEX TO PAGE 2 
430 POKE SWITCH,PAGE(FLIP> 
440 HCOLOR= 4 
450 REM UNDRAW PAGE 2 
460 FOR L = 0 TON 
470 X = T<0,L,FLIP) :Y = T<l,L,FLIP>:P = T(2 
,L ,FLIP) 
480 GOSUB 1000 
490 NEXT L 
500 REM PCT IS THE INTERPOLATION FRACTION 

510 PCT= <K - 1> / (NFRAMES - 1> 
520 GOSUB 2000: REM DRAW/SAVE 
530 REM DISPLAY PAGE 2 
548 POKE DISPLAY+ FLIP,0 
550 FLIP• NOT FLIP1 REM 1 --> 0 
560 REM SWITCH PAGE INDEX TO PAGE 1 
570 POKE SWITCH,PAGE(FLIP> 
580 REM UNDRAW (SKIP FIRST TIME> 
590 IF K = 1 THEN 660 
600 HCOLOR= 4 
610 REM UNDRAW PAGE 1 
620 FOR L = 0 TON 
630 X = T<0,L,FLIP>:Y = T<l,L,FLIP>:P = T(2 
,L,FLIP> 
640 GOSUB 1000 
650 NEXT L 
660 PCT• K / (NFRAMES - 1) 
670 GOSUB 2000: REM DRAW/SAVE 
680 REM DISPLAY PAGE 1 
698 POKE DJSPLAY,8 
780 NEXT K 
718 REM ***** END ANIMATION CODE***** 
720 REM BEEP WHEN DONE 
730 PRINT CHRS (7) 
748 REM HOLD IMAGE ON SCREEN UNTIL RETURN 

JS PRESSED 
750 INPUT A$: TEXT I REM TERMINATE GRAPHI 
cs 
999 END 

110 

1080 REM <<<<< PLOTSUBB >>>>> 
1810 REM 
1820 REM ***** SAME AS LISTING 1 ***** 
1030 REM 
1110 RETURN 
2000 REM <<<<< DRAW/SAVE ONE IMAGE>>>>> 
2010 HCOLOR= 3 
2020 FOR J = 0 TON 
2030 REM INTERPOLATION EQUATIONS 
2040 X = <2<0,J) - Q(0,J>> l PCT+ Q(0,J> 
2050 Y = <Z<l,J> - Q(l,J>> *PCT+ Q(1,J> 
2060 IF J = 0 THEN 2080 
2070 P = 1: GOTO 2090 
2080 P = 2 
2090 GOSUB 1000 
2108 REM STORE IMAGE COORDINATES FOR UNDR 
AWING LATER 
2110 REM USE FLIP TO KEEP TRACK 
2120 T(0,J,FLIP> = X1T(l,J,FLIP> = Y:T(2,J, 
FLIP> = P 
2130 NEXT J 
2140 RETURN 
5000 REM <<<<< FOUR GEOMETRIC FIGURE DATA 

SUBROUTINE » > » 
5010 REM 
5128 REM ***** SAME AS LISTING 1 ***** 
5130 REM 
5280 RETURN 
6000 REM <<<<< MANIPULATE DATA>>>>> 
6010 REM 
6020 REM ***** SAME AS LISTING 1 ***** 
6030 REM 
6180 RETURN 

Listing 4 

100 REM ««< KEY FRAME ANIMATION »»> 
118 REM <<< BASED ON PAGE FLIPPING >>> 
115 REM 
120 REM <<< QUADRATIC INTERPOLATION SEQUE 
NCE »> 
125 REM 
138 REH COPYRIGHT 1983 W. J. KOLOMYJEC 
140 REH 
150 REM DEFINE CRITICAL ADDRESSES AND VAL 
UES 
160 SWITCH• 238:DISPLAY = 49236 
170 PAGE<8> = 32:PAGE(1) • 64 
180 REM INITIALIZE BOOLEAN VARIABLE FLIP 
198 FLIP = 1 
280 REM GET GEOMETRIC FIGURES DATA 
210 GOSUB 5080 
220 REM DEFINE MANIPULATION ARRAYS 
225 REM NOTE1 M<FIGURE,COORD,NUM>, T(COOR 
D ,NUM, PAGE> 
230 DIM M<2, 1,N> ,T<2,N, 1> 
248 REM ASSIGN DATA TO MANIPULATION ARRAY 
s 
258 GOSUB 600 8 
260 REM DEFINE DURATION OF IMAGE TRANSFOR 
MATION 
270 REM 24 FRAMES EQUALS 1 SECCl-4D OF ANIM 
ATICl-4 
280 NFRAMES = 24 



290 REM ***** BEGIN ANIMATION CODE***** 
380 REM CLEAR BOTH GRAPHICS PAGES 
310 HGR2: HGR 
320 REM DISPLAY PAGE l 
330 POKE DISPLAY,0 
340 REM SWITCH PAGE INDEX TO PAGE l 
350 POKE SWITCH,PAGE(FLIP> 
360 FORK= l TO NFRAMES STEP 2 
370 REM CLOSE TEXT WINDOW FOR FULL SCREEN 

GRAPHICS 
380 POKE 49232,0: POKE 49234,0 
390 REM UNDRAW <SKIP FIRST TIME> 
400 IF K = l THEN 510 
410 FLIP= NOT FLIP: REM 0 --> l 
420 REM SWITCH PAGE INDEX TO PAGE 2 
430 POKE SWITCH,PAGE<FLIP) 
440 HCOLOR= 4 
450 REM UNDRAW PAGE 2 
460 FOR L = 0 TON 
470 X = T(0,L,FLIP> :Y = T(l,L,FLIP) :P = T(2 
,L ,FLIP) 
480 GOSUB 1000 
490 NEXT L 
500 REM PCT IS THE INTERPOLATION FRACTION 

510 PCT= <K - l) l 2 / (NFRAMES - 1) - 1 
520 GOSUB 2000: REM DRAW/SAVE 
530 REM DJSPLAY PAGE 2 
540 POKE DISPLAY+ FLIP,0 
550 FLIP= NOT FLIP: REM l --> 0 
560 REM SWITCH PAGE INDEX TO PAGE 1 
570 POKE SWITCH,PAGE<FLIP) 
580 REM UNDRAW (SKIP FIRST TIME> 
590 IF K = 1 THEN 660 
600 HCOLOR= 4 
610 REM UNDRAW PAGE l 
620 FOR L = 0 TON 
630 X = T(0,L,FLIP) :Y = T(l,L,FLIP>:P = T(2 
,L,FLIP> 
640 GOSUB 1800 
658 NEXT L 
660 PCT• K * 2 / <NFRAMES - 1) - 1 
670 GOSUB 2000: REM DRAW/SAVE 
680 REM DISPLAY PAGE 1 
690 POKE DISPLAY,0 
700 NEXT K 
710 REM lllll END ANIMATION CODE***** 
720 REM BEEP WHEN DONE 
730 PRINT CHRS (7) 
740 REM HOLD IMAGE ON SCREEN LNTIL RETURN 

IS PRESSED 
750 INPUT A$: TEXT : REM TERMINATE GRAPH! 
cs 
999 END 

111 

1000 REM <<<<< PLOTSUBB >>>>> 
1810 REM 
1020 REM ***** SAME AS LISTING l ***** 
1030 REM 
1110 RETURN 
2000 REM <<<<< DRAW/SAVE ONE IMAGE>>>>> 
2010 HCOLOR= 3 
2020 FOR J = 0 TON 
2030 REM USE QNTRP FUNCTION 
2035 Fl= M<0,0,J) :F2 = M(l,0,J) :F3 = M(2,0 
,J) 
2040 GOSUB 3000:X = GNTRP 
2045 Fl= M<0,l,J) :F2 = M<l,1,J) :F3 = M(2,l 
, J) 
2050 GOSUB 3000:Y = QNTRP 
2060 IF J = 0 THEN 2080 
2070 P = l: GOTO 2090 
2080 P = 2 
2090 GOSUB 1000 
2100 REM STORE IMAGE COORDINATES FOR UNDR 
AWING LATER 
2110 REM USE FLIP TO KEEP TRACK 
2120 T<0,J,FLIP) = X:T<1,J,FLIP) = Y:T<2,J, 
FLIP) = P 
2130 NEXT J 
2140 RETURN 
3000 REM <<<<< FUNCTION GNTRP >>>>> 
3010 REM 
3020 REM ***** SAME AS LISTING 2 ***** 
3030 REM 
3100 RETURN 
5000 REM <<<<< FOUR GEOMETRIC FIGURE DATA 

SUBROUTINE > » » 
5818 REM 
5120 REM ***** SAME AS LISTING 1 ***** 
5130 REM 
5288 RETURN 
6008 REM <<<<< MANIPULATE DATA.>>>>> 
6010 REM 
6828 REM lllll SAME AS LISTING 2 ***** 
6038 REM 
6180 RETURN 



PIPEDREAHS, A COMPLETE CAD CAM SYSTEl\I FOR TUBULAR SCULPTURES 

Frank M. Smullin 

Art Department, Duke University, Durham, H. C. 

ABSTRACT 
The rapidly increasing pov,er of microcomputers has 

made it possible for artists working with small budgets, 
outside of high tech installations to have the benefit of 
computer-aided design and manufacturing technology. 
This paper presents the application of CAD CAM solid 
modeling to sculpture made of cylinders. The database 
and the computer-aided operations are based on a 
simple vector raodel of cylinders. The methodology is 
sufficiently general to suggest many other applications. 

BACKGROUND 
For the past eight years I have been developing a 

computer-aided design and fabrication system for 
sculptures raade of r,1itered cylinders. I call this 
echnique Analytic Constructivisr.1, Its latest 
mainfestation,named PIPEDREALJS, is run on a 
Tektronix 4052 desktop computer (16 bit, 64K), The 
evolution of my techniques parallels the ongoing 
revolution in microelectronics and the resulting 
accesibility of computers. 

Sculptors working with raodular materials have 
been constrained in their plastic manipulations by the 
difficulties of accomodating one elernment to another, 
Joining them is difficult and modifying the structure, 
once made, is harder, Ideas once materialized are hard 
to change. My particular experience in this area is 
creating structures with cylinders, all of the same 
diameter, mitered into complex intersections. The 
problems are similar for prismatic, planar or polyhedral 
modules; they are all hard to prepare for joining by 
purely visual inspection and manual practice, However, 
the uniformity of shape in the chosen element makes it 
possible to devise general, precise and quantitative 
means for manipulating, cutting, and joining the 3-d 
arrangements, using mathematical functions to determine 
or alter the arrangements. Many of the functions that 
one would use are independent of the particular form 
and have more to do with the nature of 3-d space 
itself, While the functions are relatively few, the 
sequence in which they are applied can become quite 
complex. Prior to the advent of electronic computing, 
the tedious computational chore ruled out a 
computational approach to complex designs, making 
many conceptual projects physically impossible. Other 
sculptors who are making new things possible include 
Ruth Leavitt3, Robert Mallory and Ron Resch2,5,6, 

It was in order to construct DAEDALUS (fig, 1), 
a commissioned 2 7 foot high sculpture, in 197 4, that I 
worked out and demonstrated the feasibility of a 

CH1930-7/83/0000/0112$01,00©1983 IEEE 
112 

fig. 1: DAEDALUS, 1974, iron pipe, 27' high. 

quantitative approach to analyzing and constructing 
tubular structures. The calculations for that first 
sculpture, done with a slide rule, a trig table and 
-occassionaly- a desktop calculator took 300 hours, 
Despite this discouraging chore, the success of the 
sculpture was sufficient to impell me to find a better 
way to do the quantitative analysis that had made it 
possible, Working with a student programmer, I 
discovered that the methods I had developed to 
organize reams of computations constituted &1: least 
half of the task of writing a computer program, When 
encoded as a BASIC program running on a PDP-11, the 
same analysis instead of taking 300 hours (with many 
errors!) was accomplished and printed in a neat format 



in about 3 minutes. Such computational nonders are 
now entirely commonplace and the sculptures that I am 
now making are only one of a multitude of things that 
were quite impossible a few years ago, 

From that first program, CONPIPES, my method 
has evolved as I began to use it, becoming more 
familiar with this quantitative approach to design and 
as I came to articulate more precisely the kind of 
information and the kinds of forms I wanted. Especially 
since beginning to write my own programs, in 1978, the 
complexity of my system and of the resulting plastic 
freedom in the design of sculptures has continued to 
grow, 

Underlying Analytic Constructivism is the 
conceptual model of the component cylider, This 
geometric form is abstracted as what I call a fat 
vector, an axial vector with a perpendicular radius 
locating its surface. A network of cylinders, then can 
be described by listing the end-points or intersection 
points of the cylinders, and listing the interconnections 
among these points, Thus, the structure of cylinders is 
just a "wire-frame" model made with fat wires. Thus, 
the description does not explicitly involve any surface 
or edge informations, Rather, by using a solid 
modeling approach, these features are calculated as 
implications of the relationships of the solid component 
cylinders and, in the case of perspective drawing, as 
the relative implication of the viewpoint. This method 
with its efficient database lets the designer work with 
very complex structures on a small computer, . 

This abstraction came about quite naturally from 
my desire to enlarge the small welding rod model of 
DAEDALUS. The form of these space-frames was, 
itself, nearly a vector object, the diameter of the rods 
being so small as to be visually, and practically, 
inconsequential. The transparency of the object also 
facilitated· the projection of the points onto graph 
paper in a manual digitizing technique that sculptors 
know as "pointing" or "plumbing," 

I ~~ .• U-~ ' . t·· . ' -~~-t •~ l . ., ... 
. 1A·• 

;t·· 

.r 

fig. 2: Illustration of phunb-line poinWl{ techniqre for 
digi~ a wire model. 

113 

y 

z 

!AB( = (ABx 2 +ABy 
2 

+ABz 
2 

)
112 

'( 

z 

AB• CB 
cos(ABC) =I I I I 

AB* CB 
y 

length 

X 

eq.(1) 

planar angle 

• 

)( 

eq.(2) 

rotational angle 

z 

X 

(R) cos(CBD) - cos(ABC) * cos(ABD) 
cos = 

sin(ABC) * sin(ABD) 
eq.(3) 

Fig. 3: The geometric relationships between 
connected cori1ponents of a tubular network. 



While a list of coordinates, connections and radius 
uniquely defines the object, it is not sufficient 
information from which to build the structure when 
enlarged to any significant diameter (greater than 1/ 4 
inch). However, using analytic geometry and vector 
algebra, it is possible to obtain, from this simple 
description, all the information necessary to build the 
structure at any scale. Actually, the first sculpture 
for which I used any digitizing analysis was ONE 
FORM, 1968. To build that 15 ft. high pipe 
sculpture,from the wire model, I realized that I could 
"point" the intersection~ and use these coordinates to 
calculate the lengths using the Pythagorian Theorem,fig. 
3, eq. (1). However, in the course of building this 
piece, I discovered that it was necessary to know more 
information about the geometry of the intersections to 
properly shape the pipes for their complex meetings. It 
was only when I returned to this problem in 1974 that 
I worked out the other two fundamental relationships as 
functions of the point coordinates. These are: the 
angle between a pair of pipes, eq. ( 2); and the 
rotational angle around one pipe between two others 
joined to it, eq. (3). These geometric relationship and 
equations are shown in fig. 3. 

The spatial relations described by these functions 
manifest themselves in the elegant, comp~x traceries 
of the mitered intersections of pipes. The translation 
from abstra"ct numbers to this concrete form is made 
possible by an efficient reiterative, recursive algorithm 
using the above functions to generate parameters for 
each pipe and by the use of this pata in plotting 
procedures that create templates for cutting the pipes. 

My early work, 1974-1978, utilized only this 
limited analysis, simply translating a digitized model 
into a tubular rendering. However,, since 1979, I have 
made more extensive use of analytic geometry to devise 
ways of precisely modifying and rendering views of the 
model. 

THE METHOD 
Following is an outline of the design and 

fabrication process followed in making an Analytic 
Constructivist sculpture using PIPEDREAMS. In its 
current form it is written in TEKTRONIX 4050 BASIC. 
Much of it was previously written in PL/I and in 
BASIC+ for other installations. I am in the process of 
rewriting it in P ASCAL/Z to run on the Vector 4 using 
raster graphics. 

L DESIGN QF THE INITIAL MQDHL 
The sculpture can start as a wire-frame or 

toothpick model, a drawing, or a set of coordinates 
derived , for instance, from topological considerations, 
or rudimentary drawings. Recently, my models have 
been of the digital type as a result the improved 
interactive modes that I have developed for inputting 
and modifying the coordinate descriptions and as I have 
become more comfortable thinking my way, 
quantitatively, around 3-d space and because of the 
relative difficulty of actually building and digitizing a 
preliminary physical model of my designs. 
II.TRANSLATION OF THE MODEL INTO DATA 

STRUCTURE 
The model is translated into the 

coordinate-connection-radius description. PIPEDREAMS 
lets the sculptor enter the coordinates in a flexible 
manner. They can be specified numerically as cartesian 
coordinates, eitber absolute, or relative to some other 

114 

specified points. They can also be input graphically 
from a tablet or plotter, making it easy to digitize 
directly off a freehand drawing. In my curre~t 
installation, the third dimension must be specified 
numerically by the sculptor. Obviously, a 3-d digitizing 
device could be incorporated as a useful peripheral. 
The sculptor can intermix coordinate and connection 
specifications according to a flexible format that can 
be shaped with the user-defined function calls to 
subroutines. 

The arrays holding coordinate and connection data 
are dynamically dimensioned, stretched or compressed 
according to act.ual need to maximize memory needed 
for large temporary arrays needed, particularly during 
the drawing routine. With a chosen radius, the 
description is complete. The data base used for all the 
segments of PIPEDREAMS consiststs of: 

1. title 
• number of points 

3. greatest number of connections at any point 
4. coordinates of all intersection or terminal 
points 
5. connections between the points 
6. coordinates of viewpoint, center of view and 
vertical orientation last used 
7. the radius of the cylinders. 

This data is stored in a sequential file and can be read 
or written from the program. 

POINT COORDINATES CONNECTIONS 
I 1.00 1.00 1.00 2 4 5 
2 1.00 1.00 -1.00 I 3 4 5 6 7 
3 1.00 -1.00 -1.00 2 4 7 
4 1.00 -1.00 1.00 1 2 3 5 7 8 
5 -1.00 1.00 I ,00 I 2 4 6 7 8 
6 -1.00 1,00 -1.00 2 5 7 
7 -1.00 -1.00 -1.00 2 3 4 5 6 8 
8 -I .OO -1.00 1.00 4 5 7 
9 o.oo o.oo o.oo 2 4 5 7 

CENT£R OF NASS 1 0 0 0 
VPT1 0.6 1 -4 
DOUN1 0.6 0 -4 
CDV 1 0 0 0 
RADIUS1 0,05 

Pig. 4: Database description of and perspective 
renderiJw of TBTRACUBB. 

9 

9 
9 

9 



fig. 5: The evolution of PIPEDREAM graphics: a) Jan. 1980, hllnd-potted perspectives from oomeric ouqm, free-hand 
ellipses at interseetiam; b) Sept. 1980, PLOT 10, Ca1comp plot, ellipe; calculated, each intersectim ~ <rawn ~ 
pliete; c) Oct. 1982, TektnxJix Pl.OT 50 stereo plot (cross~yed}, only the front surfaces of composite remnant of 
intersectian ellipe; <rawn and ~ are hidden where they enter the chEters. 

115 



********* LABYRINTH OF DATALIST tttt•-•--

********* LABYRINTH OF DATALIST ********* 

••••••••• STANDJ:NG OVERHAND ••••••••• 

9 8 

THE CROSS-EYED ART WYERS 
STEREO SCULPTURE GALLERY 

116 

-•••- LABYRINTH OF DATALXST •-•••••• 

********* LABYRINTH OF OATALIST ********* 

9 8 

THE CROSS-EYED ART LOVERS 
STEREO SCULPTURE GALLERY 



14 

I ◄ 

THE CROSS-EYED ART LOVERS 
STEREO SCULPTURE GALLERY 

•••••••• TETRA8RANNY ••••••••• 

117 

14 

I ◄ 

THE CROSS-EYED ART LOVERS 
STEREO SCULPTURE GALLERY 



At this stage, the physical model, if any, can 
be put aside and all work done on the data model, If 
the sculptor is satisfied with this initial description, he 
skips to step V, ready to construct. 

DL EXAMINATION OF THE DATA MODEL 
The computer can be used to examine the data 

model in a variety of ways. l\lost obvious, it can 
project drawings of the physical model displayed on the 
graphic screen or plotter, By specifying a viewpoint 
and a center of view, a perspective image or a series 
of rotated views can be created, allowing the sculptor 
to experience the work as it would actually appear. 
These drawing routines are base on standard coordinate 
transformation techniques, 

Since the database description of the cylinders 
includes only the endpoint coordinates and the radius it 
ii a trivial problem to draw a backbone or axial 
rendering of the design, but much more complex to 
render the contours of the cylinders and their surface 
intersections. The algorithm for drawing the 
intersections is based on the fact that these junctions 
are elliptical conic sections of the cylinders, The 
minor axis is equal to the diameter and the major axis 
is inversely proportional to the angle of intersection, 
To draw the projection of one of these elliptical 
intersections, 2-d coordinates are calculated for the 
points on the perimeter and then these are projected 
into the 3-d viewing coordinate system and then into 
the 2-d screen coordinates, The point of tangency of 
the straight edges of the cylinder with ellipse is 
calculated as an angular function with respect to the 
circumference of the cylinder and the major axis of the 
ellipse, In the case of an intersection of more than 
two cylinders, the end of each cylinder is characterized 
by a cutting pattern that is a composite of all the 
elliptical patterns, typically of differing eccentricity 
and rotational orientation with respect to the pipe axis, 
The program, therefore, collects parameters for every 
intersection at the point in question then calculates 
and projects only the relevant points along the 
composite shape, This is discussed further in step V 
where preparing the cutting templates deals with 
essentially the same problem. 

The current graphic program does not deal with 
hidden line removal where one pipe crosses another; 
this was judged to be too complex to include in the 
32k or 64k memory and too slow for microcomputer 
interactive CAD, Hidden lines are removed within 
each set of intersecting pipes, Excellent depth effects 
can be obtained by plotting pairs of stereoscopic 
images, a method that I have found to be a very 
powerful design aid and which is illustrated for the 
cross-eyed reader in figure 15, 

Computer art is usually thought of in terms of 
graphic art with the end product created directly on a 
digital image maker of some type. However, until 
1981, I worked without any graphic 1/0 devices. For a 
sculptor this is more reasonable than for a graphic 
artist since the final art object is likely to be 
physically made, some steps distant from the digital 
operation. Having only a teletype terminal 
communicating with a mainframe, I was forced to 
develop more indirect ways of examining my data 
model. Analogous to the techniques of 
crystallographers and biochemists seeking the structure 
of crystals and molecules, I developed analytic routines 
that inspect the spatial relations between the parts of 
a sculpture, using vector algebra to substitute for 

118 

visual examination, 
ALLDIST, based on the algorith, NEAR, is a 

routine that looks at the distance between each 
cylinder and all others not connected to it and reports 
any pair that is less than a specified minimum 
separation. This way, the Sculptor can identify any 
pairs that have been placed such that they would 
collide (separation less than the diameter) and can take 
action to relieve that interference, Other parameters 
can also be checked, including the center of gravity, 
the angles between joined or unjoined cylinders, and 
the length of a cylinder. 

) 

l 

) 

) 

) 

j 

) 

} 

J 

) 

THE INPUT POINTS 
All 4 4.3 
A2: 13 11,61 

Bl: 10 
B21 11 

6.45 
10.32 

PROPOSEB SEPARATION, 1.72 

CLOSEST PAIR OF POINTS1 

13.76 
9.245 

3.44 
12.9 

LINE-Al 9,2286 10.7159 
-UNE-11 ,;2833 -i1J;lo58 

TIE DISTANCE IETUEEN THEN1 O. 5348 
4-13 IS TO CLOSE TO 10-11 Bl 1,11~2 

THE INPUT POINTS 
All 6 0 
A21 7 11,18 

Bh 8 12.47 
B21 11 10,32 

PIOPOSED SEPARATION I I • 72 

CLOSEST PAIR OF POINTS1 

1.72 
10.32 

6.88 
12., 

LINE-Al 10,8587 10,0729 
LINE-11 11.4321 9.7862 
THE DISTANCE IETUEEN THEN1 1.3137 

6-7 IS TO CLOSE TO 8-11 IT 9.,!!H 

THE INPUT POINTS 
Ah 6 0 
A21 13 11.61 

Bh 10 6.45 
B2: 11 10.32 

1.72 
9.245 

3.44 
12,9 

-22,36 
-17.415 

-13.76 
-21.5 

-20,64 
-24,08 

-24.08 
-21.5 

-23.9811 
-22.8345 

-20.64 
-17.415 

-13.76 
-21.5 

) PIOPOSEB SEPARATION, 1,72 

j 

CLOSEST PAIR OF POINTS 1 
LINE-Al 8.9554 7 ,5244 -18.1524 
LINE-81 8.3884 B.1783 -17.6368 
THE DISTANCE BETUEEN THEN: 1,0074 

6-13 IS TO CLOSE TO 10-11 Bl i,2126 

fig. 8: ALLDIST, a segment of the OU4Ut anal~ 
the distance between all pipes in a network. See 
notes by Dave Tolle, Pnlgrammer, AR>eldx, 

Even after developing the methods for visual 
examination, I find that such quantitative analysis 
provides important information about the configuration, 
giving a clearer sense of the nature of the structure 
and suggesting the most appropriate ways to modify it 
to achieve the desired work of art, 

IY, MODJFICATION OP THE MODEL 
Having inspected the model, the artist has a 

choice of a variety of means and sequences of altering 
it to achieve a more satisfactory configuration, 
PIPEDREAMS includes a library of subroutines that give 



fig. 9: LABYRINTH OP DATALIST, 1979, 
corten, 10' h. The first sculpture designed 
with Vector modification techniques. 

a wide choice of ways to push things around in the 
mathematical model. Much of my effort has been 
directed toward achieving maximal density in my 
sculptures by combining inspection and manipulation to 
move cylinders together until they are separated by a 
specified distance. The first sculpture done in this 
manner was Labyrinth of Datalist. My primary concern 
was to be able to shift pipes out of what I considered 
impossible situations, i.e., where they were found to be 
colliding with each other, but to keep them touching. 
The reiterative routine, BOUNCE, which bounces a 
specified pipe back and forth between two others until 
it is a specified distance from both was useful in 
achieving the internal weaving that characterizes this 
sculpture. 

In .reshaping this piece from its roughly defined 
wire model, I came to realize the importance of 
optimizing flexible control of a specified part of the 
structure while holding everything else constant. Since 
1979, I have continued to add to my library of 
manipulative operations based o-n mathematical 
formulations by Richard A. Scoville. One such routine, 
TWIST, lets the sculptor move one pipe closer orfurther 
from another by sliding its endpoints along the axes of 
some other pipes to which it is joined. Another, SLIP, 
brings a pipe to a specified distance from another by 
holding one end steady and moving the other toward 
some designated point or along a designated vector. 
Several of these operations a diagramed in fig. 10. 

119 

SHifT 2-5 along .ulual per-pedlcular 

TWIST 2-5 along 2-4 & 5-7 loward 4-7 

fig 10. several vector manipulations. 



Dy increasing this type of specificity, I have been able to 
desi(,11 and construct a series of sculptures in the form of 
tight !<nots , Also helpful in this pursuit isTRUNCATE, which 
truncates an acute intersection of two pipe by adding a third 
l_.)ipe in place of the intersection and "twisting" it up against 
another (see fig. 11). 

t-...t__l ,,.,..r 'h' 

'l·••~•7 -I' -3•1-4 •··• 
_.._.,_..;_,...,_"\•~•../I 

~IL-.. , 

-----.i----- ...... -·-·
J.,11, ~""")'\ ... 

fig. 11: UTICA OVERHAND, 1980, and illustratim of use 
of TRUNCATE to tighten the knot. 

120 

After having spent much time developing means for 
correcting impossible situations (where pipes would be 
colliding), I came to realize that these situations were, in 
fact, not impossible, just difficult, when I worked out a 
method to make the necessary interpenetration patterns 
descriptively, Richard A. Scoville then provided a function, 
eq. (4), to describe the situation quantitatively and I wrote it 
into a subroutine, This has allowed superdense structures 
such as in the series, FIVE STOPS ON THE WAY TO A 
BLACK HOLE,1983, 

Y = r * sin(6)*cos(x)±sqr(l-(cos(e) -D) 
sin(X) 

eq,(4) 

where 
y = distance along the axis of pipe A from the point 
closest to pipe B, projected onto the surface; 
r = the radius; 
e = rotation around the axis from AxB; 
X = the angle between A and B; 

D = distance between axes , 
radius 

fig. 12: FIVE STOPS ON THE WAY TO A BLACK 
HOLE, 1983. ~ interpenetrating networks. 



fig 13: The . unwrapping of a ~ of cylinder to 
show the relationship between the elliptical cut plane 
and the simsoidal teqiate. 

Y. CALCULATION OF THE CONSTRUCTION DATA 
Relatively few parameters need to be calculated 

to construct a tubular network. However, the number 
of instances for which the calculations are done in a 
complex structure are many and then that information 
must be used with great precision. 

The application of these functions can be outlined 
as follows: 

At each point 
calculate 

1. its length 
2. its angle of intersection with every 
other pipe joining there 
3. the rotational angle of that plane of 
intersection with respect to some 
reference plane at that point 
4. the rotational angle of that reference 
plane with respect to the reference plane 
at the opposite end of the pipe. 

This data is used to create the appropriate cuts in 
the pipes to allow them to join as contiuous surfaces. 
Actually, the angle and the rotational functions are 
only intermediate parameters that are used to calculate 
the sinusoidal function that describes the intersection 
of any pair of intersecting pipes. In fig. (12) one sees 
demonstration of the relationship between the 
elliptically shaped planar section of the pipe and the 
sinusoidal pattern that is wrapped around the pipe. 
Trigonometry shows that the amplitude of this curve is 
a function of the radius and the angle of intersection, 
or ; 

amp = R/tan(A/2). 
eq. (5) 

Then, the complete expression for each pipe joining in 
a complex cluster of several pipes is: 

y = R / tan(A/2) * sin(x+xo +x1) 
eq. (6) 

where 

121 

r = radius; 
A = angle of intersection; 
x= distance (or rotation) along 
circumferential axis; 
xo= rotation of the plane of intersection 
from a reference pair at the same point; 
x1 = rotation of the plane of intersection 
from a reference plane at the other end 
of the pipe. 

As in drawing the perspectives, in the case of an 
intersection of more than two pipes,the pattern consists 
of the minimum values of the superimposed sinusoids, 
i.e. what is left of the pipe after all cuts have been 
made. One can see that xo must take into account the 
rotational relationship with other pairs of pipes joining 
at the. same point as well as with the plane of some 
pair at the opposite end of the pipe being prepared. 

YL PREPARATION OF THE MrrER PATIERNS 
With this data, the component cylinders for any 

structure can be prepared. Until this past year, the 
data was used to manually or mechanically draft 
templates and to cut the pipes into the proper lengths 
and mitering shapes. As demonstrated by my sculpture 
from 1974-1981, quite complex and large structures can 
be made done in this manner. Most of my sculptures 
from 1976 through 1981 were done with a mechanical 
analog pattern maker (fig. 14) which draws the pattern 
directly onto a pipe or onto a wrap-around template. 
Patterns for large diameter pipes (over 3.5 in. 
diameter) were prepared by variations on standard 
pipefitting projection techniques. However, in the 
current version of PIPEDREAMS, the construction data 
program has been written to drive a Tektronix 4662 
flatbed digital plotter to make a single, complete 
pattern for each length of pipe. That pattern is made 
in the following sequence: 

1. All intersections at one end of the pipe are 
calculated and the composite pattern plotted 
along a vertical circumference. Numerical and 
graphic alignment aids are plotted. 
2. A global search is done for interference 
between this pipe and any others not connected 
to it, collecting parameters for all collisions 
found. 
3. An interpentetration pattern is plotted for 
each collision at the proper distance and rotation 
along the pipe. 
4. Any collisions beyond the limit of the length 
of the bed are saved for another plot for which 
the user is asked to mount a new paper and the 
plotting carries on. 
5. If the total pattern length is greater than the 
plotter bed, one has the option of making a 
truncated pattern, or mounting a new paper to 
complete the full length. . 
6. For the opposite end of the pipe, step one is 
repeated, properly referenced to the first end in 
terms of distance and rotation. 



fig. 14a: Mechanical Pipe Mitering Device, 1976, draws patterns directly on pipe of diameter (48
• Scotch 

yoke cam adjusts for sine amplitude, rotor for dihedral rotation. fig. 14b: A section of 28 diameter pipe 
being scribed • 

fig. 14 c: Vertex-centered Cube, 1977, electrical metallic tubing 
and compression couplers. An example of sculptures constructed 
with the device. Fig.14b shows one of the center pieces. 

122 



• 
• 

• 
• 
• 
• 

• 

• 
• 
• 
• 
• 
• 

• 
• 
• 

• 
• 

• 

• 

= 

. . . 
• 
• . . 
• 

. . 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • 

fig. 15: Pattern Making. a) Complete templates made 
by PIPEDREAMS on the 4662 plotter for the 3 pipes 
joining at point 1 of LABYRlliTII OF DATALIST. Para
meters are printed and patterns labled. Note each 
pattern end consists of two sine curves of different 
amplitude properly rotated from each other. Also, the 
two ends are rotated. 

123 

b} Steel model of LABYRI.ITH with patterns wrapped 
on tubes coming from point 1 (this model was actually 
created with patterns made on the mechanical analog 
pipe miter, see fig. 14) • 

c) Patterns for the full-scale Labyrinth, descriptively 
made by hand with data from CONPIPES, are traced 
onto corten plates, then band-sawed and rolled into 
pre-mitered cylinders • 

d} The finished sculpture at Boston University. 



VD, CUTI]NG AND JOINING THE CYLINDERS 
Execution of this and the previous step with 

sufficient precision to make the quantitative analytic 
process meaningful has been as challenging as the 
programming and has resulted in as many innovative 
method, The sculptor doing CAD-CAM has .major 
problems not encountered by the graphic artist. CAM 
strategies such as mine leave the artist with 2-d 
computer generated items which must be turned into 
3-d objects and arranged in 3-d space, The final 
peripheral devices are manual, and the final object is 
hand-made, During the past decade, I have 
experimented with several different techniques for 
fabricating my sculptures, The appropriate method is a 
consideration of what devices and materials are 
available, Note (fig. 15) that the cylinders for 
LABYRINTH OF. DAT ALIST were made from plates that 
were rolled into cylinders after the patterns were cut 
on the ends, whereas TETRAGRANNY was made from 
stock aluminum pipe (fig. 16), 

Since completion of the current system which plots 
the complete pattern, many of the previously 
encountered problems have vanished as the integral 
pattern manifests all the critical spatial relationships 
when glued onto a pipe of the proper radius~ It is 
then possible to cut and glue the the segments together 
in a linear or branching fashion with the certainty that 
everything will project properly and that networks will 
return upon themselves. 

As one is limited by the .dimensions of the 
plotter, I am currently working on two approaches to 
achieving comparable direct methods for large diameter 
pipes. I am developing a microprocessor-controlled 
scribe to draw directly on pipes of any dimension, 
More likely to be in use before this article is Pl!blished 
is a 10 :1 pantograph, These devices will make it 
possible to work on a very large scale with the same 
kind of certainty that now characterizes my work with 
small cardboard tubes. 

fig. 16a: The pieces for TETRAGRANNY are 
cut from 9" diam. aluminum tube with a Stihl 
cut-off saw. The planar blade facilitates a 
straight cut. 

124 

CONCLUSION 
The current version of PIPEDREAMS is written to 

run on the TEKTRONIX 4052, While it is possible to 
operate within a 32K RAM, I have increased the 
memory to 64K which allows handling of more complex 
structures, and having more of the program options in 
memory at one time, Memory allocation is the major 
problem in such a micro workstation, PIPEDREAMS is 
written in four major programs: GENERAL(14K), with 
all the common subroutines; MAIN(12K), which handles 
the inputting of descriptions, simple modifications and 
tape 1/0; DRAW(24k), which does all the viewing 
drawing; and MOD(23K), which does the complex vector 
modifications. Since I can not have all these in 
memory simultaneously, GENERAL allows me to have 
any two plus GENERAL at once, Typically, this means 
having DRAW available while doing the original input 
or while doing MODifications. The vector drawing of 
the Tektronix CRT display is a perfect match for the 
conceptual model I have chosen to use, Also, its fine 
resolution permits undistorted ellipse drawing, In the 
near future I will write a version to run on a raster 
display in .order to utilize surface modeling and color. 

In the course of the past nine years, this 
technique has undergone much modification and 
elaboration. As I have become more aware of what I 
want to do with the system, I have been able to make 
it perform more efficientli in those manners, Aside 
from the considerable assistance I have received from 
several people, this project has been mostly a one 
person operation. I have been artist, programmer, 
machine designer and fabricator, sequentially and 
simultaneously. While this singlehandedness has often 
been ·a handicap, I have found that my intimate 
knowledge of all phases of the process has been very 
important in relating the problems and potentials of 
each phase of the operation to the final goal of making 
sculptures that otherwise would be impossible. I am 
finding satisfaction in seeing my pipedreams become 
realitv, 

fig. 16b: A detail of TETRAGRANHY showing 
the accuracy of the mitering, allowing complete 
on-site assembly in three hours using iron wire 
to tie it together. 



ACKNOWLEDGEMENT 
Throughout this extended endeavor I have had 

the assistance of knowledgeable, creative and generous 
people. From the outset, whenever my math has failed 
me, I have been able to turn to Richard A. Scoville of 
the Department of Mathematics, Duke University to 
derive a function. Eric Barn, now with IBM, while an 
undergraduate at Duke wrote the first programmed 
version of my system. I learned to program by reading 
his program and much of his style has remained in the 
basic structure of PIPEDREAMS. Dave Tolle, while a 
graduate student at University of North Carolina wrote 
the first graphic 1/0 version of my system in 1976. He 
also wrote the routine NEAR that is the heart of all 
my quantitative inspection operations. Gary Grady and 
Shiang Ti Tuan of the Duke university Computation 
Center were very important in carrying me to more 
complex levels of PL/I. Joseph Francis, a Duke 
Undergraduate, working as my assistant, helped me 
rewrite the system into BASIC and contributed many 
useful modifications, making it more user-friendly. 

Important financial support for this project has 
come from Duke University, The Mary Duke · Biddle 
Foundation, The Alcoa Foundation and Boston 
University. 

Finally, I acknowledge the special support I have 
received from my wife, Ruth Ann, and my children, 
Sylvia and Rebecca, who have helped me keep some 
human perspective as my work has got more amd more 
tied to a machine that is most unforgiving. 

BIBIJOGRAPHY 
1. Chasen, Sylvan Geometric Prjncir;,les and 

Procedures for conrnuter Grar;,hjcs Ar;,r;,Hcations, 
Prentice-Hall, 1978. 

2. Del Zoppo, Annette, The Vefi:revjlle Pysanka. pub. 
Ron D. llesch,Salt Lake City, 1976, 

3, Leavitt, Ruth Hartman "Computer-aided 
Sculpture," Proceedine:s of NCGA'83,National 
Computer Graphics Association, Chicago, 1983, 

4. Newman, W.M. and Sproull, R.F. Prjncjgles of 
Interactjve Conmuter Graghjcs. McGraw-Hill Book 
Co,, N.Y., 1973, 

5. Resch, Ron D. "The Topological Design of 
Sculptural and Architectural Systems," 
Proceedings of the National Computer 
Conference,1973, pp,643-650, 

6. ____ "Computer Works", Proceedjni:§ of the 
7th International Sculr;,ture Conference, 
University of Kansas, 1972, pp. 121-129. 

7. Smullin, Frank M. "Description of 3-D Structures 
with Analytic Geometry,"..SCLPTR,Southern 
Association of Sculptors, spring-summer 
1977 ,pp.2-6. 

8. ______ "The Computer as a Sculptor's Tool," 
Sculr;,tors Internatjonal, International Sculpture 
Center, vol.I, no,3. 

9,Thomas, George B., Jr. Calculus and Analytic 
Geometry. Addison-Wesley, 1960. 

fig. 17: TETRAGRANNY, 1981, aluminum and iron wirey 140"' x 140" x 99". 
Installation: Soutbeastem Center for Contemporary Art, January 1981. 

125 



~ 

fig. 18: PIPEDREAM GRAPHICS. Using PLOT 50 on the 
Tektronix 4052 computer and 4662 plotter (upper left) a 
perspective view of a developing design; optionally, points 
are labled and intersections opaque; Uower left) complete 
patterns for sculpture are plotted with intersection and 
interpenetrating curves; (right) the finished sculpture, 
FIGURE EIGHT FIGURE, 1983, cardboard tubes with 
paper patterns, 14"x8"x28", note the free ends have been 
cut to patterns making them horizontally planar. 



fig. 19a: FIGURE EIGHT-I, 1983, cmd:xJerd tubes 
with CODJpJter plotted peper templates,15"x8"x211". 

fig. 19c: UTC!A OVERHAND, 1980, 
steel, 142" h.. Falxicated by the artist 6mwn) at 
Sculpture fplce, Utica, NY. 

127 

fig. 19b: FIGURE EIGHT-5, 1983, canlxlerd tubes 
with comprter plotted peper templates, 5"x31/2"x9". 

fig. 19d FIGURE EIGHT-3, 1983, cmd:xJerd tubes 
with computer plotted paper templates,61/2"x?"xl.9". 



USING AN ARTISTS' WORKSTATION 

by Walter Wright 

Digital l•1g1 Corporation 
Grand Rapids, Michigan 

ABSTRACT 

In this paper 1 I will discuss various 1pplic1ti0n1 
of the arti1ts workstation developed by Digital 
I•age C0rp0r1ti0n, Although designed for 1 
■ icro-co■puter this syste■ equals, if not betters, 
•ore expensive ■ain-fr1•e syste••• 

INTRODUCTION 

Digital Iaage C0rp0r1ti0n ■1ke1 co■puter gen1r1ted 
35•• slides for audio visual & television producers 
and graphic artists, We aspire to be better and 
less expensive than the co•petition. Therefore we 
u1e relatively inexpensive hardware and we write 
our own s0ftw1re. I will list briefly the hardwire 
and then describe in ■ore detail our graphics 
10ftware. 

Our hardware includes I Cro■e■ co Z2D ■ icr0pr0ce110r 
with video ter•inal, dual 5 1/4" floppy disks, 64K 
bytes of rando• access •••ory the SDI graphics 
~ontroller, and two 4BK i•age buffers or pages. As 
inputs we use a Houston Instru ■ents bitpad and a 
Via Video digitizer, Thia latter device c0n1i1ts 
of a b&w video ca■era and an interface to digitize 
~nd 1t0re the ca■era i•age in either of the two 
1aage buffers. As outputs we have an Aydin 
Controls RGB ■onitor and a Matrix In1tru ■ent1 
caaera 1y1te■• The ca ■era t1kes the separated red, 
green and blue video i ■ages fro■ the co■puter, 
d11plays thea in turn on its own high re10luti0n 
b&w •onitor and exp0se1 each i ■age through the 
appropriate color filter onto a single fr••• of 
35111 ■ fil ■, 

Worth approxiaately $11 1111 (not including the co ■ t 
of the aatrix caaer1), this systea isn't for the 
average hobbiest, but it ii within the grasp of 
enterprising individu1ls like 0ur1elv11. 

Our software is designed to make c0■aerci1l slides. 
This •e1n1 word copy slides including, slides for 
speaker support, to augaent training aanu1l1, title 
1lides, t1ble1 of nuabers and 10 on. Also popular 
are ch1rt11 graphs, and various special effect, 
slides, ~01teriz1tion (digitizing I video i ■ age 
and adding color electronically) i ■ a hot itea, 

Beginning at the beginning, our software includes 
iaage 11king progr1a1 such 11 FONT which produces 
word copy or text in a variety of typefaces or 
fonts. Kore about designing fonts later, Our 
software includes iaage ••nipulating or 'cut & 
paste' progr1a1 such 11 MENU. Bitpad driveni thi ■ 
11 our ■ost powerful prograa, the heart at the 
1y1tea, In this article I will ctenribe MENU and 
ih ~pplicpans. ln • rllll.ated article David Coak, 
MENU s detugner, describH ih operation. Finally, 
SHOOT retrieves coapleted iaages and outputs the• 
to the caaera. 

FONT - CREATING A TYPEFACE 

Our ■ is • aediua resolution 1y1tH, tro•Hc0'1 SDI 
graphics operates in two aodes1 378 x 141 pixels 
lhorizontal by ver~ical) in 16 of a ~0•1ible 4196 

CH1930-7/83/0000/0128$01 ,00 © 1983 IEEE 
IZ8 

colors and 755 x 482 pixels in 2 colors only, 
Atte1pting to render 1100th curves at these 
re10lutions can produce "the jaggies•. To avoid 
this distracting •special effect• in designing a 
typeface or font, we avoid curves. All our fonts 
art de1iQned with 1traight lints, Further, we u11 
only horizontal, vertical, 45 degree and, rarely, 
22 112 degree lines. Our early fonts such 11 
Digital are rather si•ple renditions of coa■on 
typefaces. Then we discovered Machine, a typeface 
which uses only horitontal, vertical and 45 degree 
lin~•• Our later designs such as Teletype are ■ are 
refined. 

FIGURE I - FONTS 

F
1

aenttte'r are designed an graph paper. Noraally each 
occupies• II x 12 grid, however, the width 

varies with the letter. Fonts are coded using 
si ■ple coaa1nd1 such 111 

K(ove>, x, y 
l(ine>, x, y 
V(ectorl, x, y ... (, x, yl 
B(axl w, h 
X (end definition) 

Where, x • horizontal offset 
y • vertical offset 
w • width 
h • height 

Th'e result i1 a ta.ble definin9 each letter in the 
f~nt, A coaaand (X) to deliait each letter and to 
lint the data to the appropriate alphanuaeric A-z, 
l;-9 etc, ~• included in the data file, The 
f1lenaae 11 the font naae for exaaple 
DIBITAL,FNT, KACHINE,FNT, TELETYPl.FNT and 10 on. 1 

We hava two tvt•• of font,. Firati those that are 
single lines only ·111c-h II Digita -and "•chine 
Si1ple line fonts are 1uihblt for the aain body of 



word copy slides, They are legible even in small 
sizes. They include both upper and lower case. 
Second, the outline fonts such as Teletype are 
suitable for titles. Some of these fonts don't 
have lower case letters. As titles they can be 
outlines or they can be filled. At present we use 
a separate FILL program; soon we will include a 
fill comaand in the font data file, We have 
experimented with numerous fill algorithms, a 
subject for another future article, · 

FONT, the program, asks the user to select a font, 
The _user types in the font name using the video 
terminal keyboard, The appropriate data file is 
loaded into memory, From here the user has various 
options, FONT includes these commands: 

F(ont> - Select a new font 
E(rase) - Clear the current page (page 0) 
H(ap) - Set default color map (white on blue) 
X n - Set horizontal scale ton 
Y n - Set vertical scale ton 
Sn - Set spacing between letters ton 
V n - Set spacing between lines ton 
P n - Set pen type and size 
C n - Set pen color (0-blue, I-white) 
B(itpad) - Get X and V location from bitpad 
K(eyboard>- Get X and V from the keyboard 
'text - Enter single line mode 
* - Redraw single line 
U(p) - Back up one line 
N(ext) Skip to next line 
? - Display commands and their values 
H(elp) Get help 
" Enter/Exit multiple line mode 

A - Define a tab 
@ - Go to a tab 

- Begin/end underline 
I - Enter commands 

I'm not going to explain the complete command 
structure, Multiple line mode is extremely useful 
for creating tables and charts. I am going to 
discuss a simple example. 

Presume the user is creating a title slide, he/she 
has loaded Teletype and is ready to enter the 
title. Type-

E M X 40 V 40 B ' Shazu! (return> 

~ON! erues the ~urrenl page, ut. the foregr011nd 
color white and the background blue and sets the 
horizontal and vertical scales to 4 (40 / 10), A 
number of defaults are set, for example, the pen 
defaults to draw lines one pixel wide. FONT wait1 
for the user to enter a starting point on the 
bitpad, a cursor on the RGB monitor screen 
1nd1c~tes the position of the b~tpad stylus, 
pressing down on the stylus enters 1t1 location. 
FONT draws the line of text, We will return to 
this slide later. 

FIGURE 2 - Shazam! 

129 

HENU_-_ONE FROM_ COLUMN ~ ONE _FROM COLUMN __ B_ 

At the creat\ve center of our system is MENU, 
user communicates with MENU using the bitpad 
occass10nally the keyboard! MENU communicates 
the user on the video terminal screen. 

FIGURE 3 - VIDEO TERMINAL SCREEN 

The 
and, 
with 

As you can see, the screen contains a wealth of 
data, Miscellaneous control para•eters such as 
current file name, scanner settings, Jump 
i~crements and 10 forth appear on _the top three 
lines. Below and moving left to right we find the 
KEV PAD vector, a column of numbers 0-15,FF. Next 
are several columns of figures under the heading 
PAGE 0, The user can define as many as sixteen 
boxes per page; under subheadings X LL V and X UR V 
we find box coordinate information and under Xx V 
the length and width for each user defined box, 
Now the tricky part. To the immediate right of the 
box cordinates are three columns of box control 
information; the box select vector (a"<" indicate• 
a selected box), the force vector (a number 
0-15,FF> and the alternate paqe vector (a ">" 
points a box directly to the alternate page), Box 
control is enormously powerful , a complete 
description would bog us down for pages, so we'll 
deal _with these vectors later in some examples of 
practical and not so practical applications. 
Movinq t9 center screen we find the heading COLOR 
MAP and directly under 1t three subheadings: RR 1 66, and BB (red,_ green, and blue). A maximull'I ot 
sixteen colors (~-15) are p01sible in low 
resolution, These sixteen color ■ are chosen from a 
palette. of 4096 colors formed by combininq 
differing intensities of red, green · and blue. 
Each primary color can vary in intensity from black 
(level 0) to full color (level 15) as indicated in 
the color map table, Next, on the far right, we 
find PAGE I box control and box coordinate 
information, similar to PAGE 0, 

A_final _note concerning the screen; headings appear 
dim while filename, scanner settings and jump 
increments appear bright, Numbers in the key pad 
vector and RGB intensity levels in the color map 
are either dim (OFF) or bright (ON), The box 
select indicator1 "<", force values and alternate 
page indicators">" are either not visible (OFF) or 
vi1ible <ON), 

Now we have an exhausting list of MENU commands, 
Those who get bored or confused easily can skip to 
A~PLICATIONS. MENU commands appear a1 keys on the 
b1tpad, Th user enters commands by hitting the 
appropriite key while the bitpad is IN POINT MODE, 
The user enters coordinate information while the 
bitpad is IN STREAM MODE, 1ee CBOX GRABl, 



FIGURE 4 - THE BITPAD 

CZAP] 

BASIC PROGRAM COl'll'IANDS 

Toggles the display on/off, 

Clear, the current page and ■ust 
confiraed by hitting twice, 

be 

CZAP ALT] Clears the alternate page as above. 

CHI RES] 

[LO kESl 

CSAVEJ 

CLOADJ 

CINCJ 

[DEC] 

Sets high resolution: 755 x 482 in 2 
col ors, 

Sets low resolution1 378 x 24i i11 lb 
colors, 

The user enters a filena■e on the 
keyboard; l'IENU compresses and 1av1s the 
current page on disk. The file appears 
in the disk directory as filename.PIX. 

Loads to the current pag1 from disk as 
above, A disk 1 cad can be made in one of 
six modes - add, subtract, and, or, xor, 
replace, !'lore later, 

lncreaents the last character of the 
current fi 1 enaffll 0-9 A-Z. If the 
current filena■ e is JT0", hitting CINCl 
will change th1 filena ■e to "Tl", 

Decreaent1 the last character of the 
current filename as above. 

[LAST SAVE] 
Saves the iaage fro• the current page to 
disk using the last filena■e entered on 
the keyboard, or the last filenaae 11 
modified by the [INC] [DEC] com■and1, 

[LAST LOAD] 
Loads an image from disk to the current 
page using the last filename as above, 

[ SIU Sr abs a ual 1 square i uge fro■ the blew 
video ca■era, The image can have 11 many 
as lb levels of grey, It is loaded in 
low resolution directly to the current 
page, 

CLSl 6rab1 a full fra ■e at half the noraal low 
resolution and loads it to the current 
page, 

CTILTJ 

CEXITl 

Gr1b1 a saall i ■ age vertically and a full 
frame horizontally, 11 if the full fraae 
i ■ age were tilted back 45 degrees, It is 
loaded to the_ currant page, 

Exits l'IENU and return, to the 1y1tea 
aonitor, 

130 

KEY PAD AND VECTOR CONTROL COl'll'IANDS 

The key pad includes color vector, box select 
vector and alternate page vector keys, as well as 
several frequently used control kevs such as the 
paqe key, 

[0] - [15] 

[1-15] 

CEVENJ 

CODD] 

Are used with related keys to set box 
numbers, col or codes, col ors, juap, 3D 
and loop para ■ eters, 

Automatically sets number 
the keypad vector. 

through 15 in 

Sets all the even numbers in the keypad 
vector, 

Sets all the odd numbers in the keypad 
vector, 

CFFJ Sets "full frame" in the keypad vector. 

CCEJ Clears the keypad vector, 

C-l Is the "through" key, for exa ■ple, 

[-] [0] [7] 

will set numb1rs 1,2,3,4,5,b,7, 

CC] CS] CAJ 

The1e keys tran1fer the contents of 
keypad vector (th1 leftmost column of 
nuabers on the video screen> to the color 
vertor, box select vector and alternate 
paqe vector re1pect1vely, 

C<-CJ C<-Sl C<-Al 

These kev1 reverie the function of the 
above keys transferring the contents of 
the color vector, box select vector and 
the alternate page vector to the keypad 
vector, 

C<-C->l C<-S->J C<-A->J 

[0 CJ 

Cl-15 CJ 

[Fl 

CALL Fl 

CZAP Fl 

CPJ 

CPSAJ 

These key, 1wap the content, at the 
keypad vector and the color vector, box 
select vector and alternate page vector 
respectively. 

Sets only color 0 in the color vector. 

Sets only color 0 through 15 in the color 
vector, 

Allows the user to point I selected box 
to another box on the same page, for 
example, 

CCEl C0J [SJ CFJ Cl] 

will point a box 0 to box I. 

Point, all 1elect1d boxes to a single 
duignated box, 

Cancels 111 force value, on the current 
paqe. 

Toggle• between page zero and page one, 

Toggles to the alternate page taking 
along the select box and alternat1 page 
vector,. That is, the contents of the 
select box and alternate page vector, of 
the old page are transfered to the select 
box and alternate page vector, of the new 
page, 

CCOPY S->DJ 

Copies the i ■ age fro• the current page 
(9) to the alternate page (Dl. This !1 a 
high speed copy which ignore, color 
vector and function •ode settings. 



[COPY D->Sl 

tS<>Dl 

tS<-Dl 

tD<-Sl 

Reverses the function of abovi key and 
copies the imaqe from the alternate page 
(Dl to the current page (5), 

Swaps the images on pages zero and one, 

Transfers the coordinate infor ■ation from 
a destination box to a source box, for 
example, 

tCEl [0l tSJ tFJ tFFJ tS<-DJ 

sets box 0 to full fra1111, 

Reverses the function of the abov1 key, 
for example, 

CCEJ [01 [SJ [Al 
tBOX GRABJ (bitpad coord1> tD<-SJ 

set1 box 0 on the alternate p1g1 equal to 
box 0 on the current page, 

[+Cl [+SJ [+Al [+Fl [-Cl [-SJ [-Al [-Fl 

CBOX GRAB] 

Allow the user to move enabled colors, 
selected boxes! alternate page pointers 
and force va ues up <+> l down (-) the 
control vectors, for example, , 

CCEJ [01 tSl tCEl tEVENJ tCJ 
C+Sl t+Cl 

5el~rt1 bnx 0 and enables rolors 
0,2,4,b,8,10,12,14, [ts] 1elecl1 box I 
and [+Cl enables colors 1,3,5,7,9, 
11, 13, 15, 

BOX __ COHHANDS 

HENU takes selected boxes, in turn, and 
sets their lower left & upper right 
corners to coordinates entered bi the 
user from the bitpad, HENU c1lcu ates 
the length & height of the box and 
updates the coordinate information on the 
video terminal, In order to enter 
coordinate,; the user switches the bitpad 
from point to stream mode. On the 
display screen a cursor app1ars, This 
cursor moves with the stylus, 
Coordinates are entered by pressing the 
stylus on the bitpad, Remember to return 
to point mode after all selected boxes 
are set, 

[AUTO GRAB] 

tFlNDl 

As above, HENU automatically selects 
boxes 0 through 15, tSKIPl skips the 
next box and [QUIT] aborts the whole 
operation, 

HENU looks inside the box<e1l selected 
and reduces the box(es) to fit its(theirl 
contents, Used to isolate letters, lines 
or blocks of text for shifting, aligning, 
copying, etc, 

[AUTO FINDJ 

Auto1atically finds the contents of a box 
when it's grabbed. That is, it's the 
1ame as, 

[BOX GRAB] (bitpad coordsl tFINDl 

and when used with [AUTO GRAB] saves 
keystrokes. 

CZAP BOX] Selected boxes are cleared to color code 
0. 

tlNV BOXJ Selected boxes are invert1d, XORed with 
color code 15. This makes a negative of 
an original box. 

131 

t<--tUP/DOWNl-->J 

Centers selected box(e1> and must be 
confirmed by hitting twice. 

[UP/DOWN] Vertically centers as above. 

C<--t-->l Horizontally centers as above. 

tUPJ [DOWN] t<--l t-->l 
tUPl-->J t<--IUPl CDOWNt-->J [(--/DOWN] 

[XJUHPJ 

[YJUHPl 

Direction indicators used in shifting, 
moving, aligning and adjusting boxes. , 

Sets the horizontal increment <number of 
pixels> used by the shift and move 
commands. 

Sets the vertical increment as above, 

CXYJUHPJ Sets the horizontal and vertical 
increments together. 

Cl JUHPJ [5 JUHPJ Cl0 JUHPJ [50 JUHPJ 

Preset Ju ■p factors used regularly to 
move text around the 1creen, 

[SCAN SJ [SCAN DJ 

Allow the u1er to set scanners for source 
and destination boxes. Scanners are 
"irertional, thev determine the order in 
which the contMnt1 of the box are read 
fro• 1nd written to the displiY page, 

tBT-LRl tTB-RLJ tTB-LRJ CBT-RLJ 
[LR-BTJ CRL-TBl tLR-TBJ tRL-BTl 

CSHIFTJ 

[JUSTl 

C HOVE l 

tADJl 

These key1 1et eiqht po11ible scanner 
directions. The first four work column 
by column 1tartinq at one side of the box 
and working towards the opposite side, 
the second four work row by row startinQ 
at the top or bottom of the box and 
workinq towards the opposite aide, 
Source'and destination scanners default 
to tLR-TBl. For an example of scanners 
at their best see HIRROR below. 

Shifts a box (or boxes> AND ITS <THEIR> 
CONTENTS up 1 down, left and/or right by 
the number ot pixels set with the jump 
keys (x and yjump default to I>, for 
example, 

tCEJ tl!ll tSl 
[10 JUHPJ [SHIFT] 2 x [UPl->l 

will shift box 0 with it1 contents up 2111 
pixels and right 2111 pixels. 

Justifies one or 
1elected,for example, 

tCEJ tl!IJ [SJ [Fl tFFJ 
[JUST] t<-IUPJ 

more boxn as 

will shift box 0 with its contents to the 
upper left corner of the 1cr11n, 

Hoves a box (or boxes) WITHOUT TAKING ITS 
(THEIR) CONTENTS, for example, 

tCEl t0J [SJ 
[BOX GRAB] (bitpad coordsl tFINDl 
t5 JUHPl [HOVE] t<-IDOWNl 

will find box Iii containing 1 say, a title 
and then move the box lett 5 pixels and 
down 5 pixels without moving the title, 
Saa STREAKING below, 

Adju1t& the 
definition 
CONTENTS, for 

tCEl [01 [SJ 

size or 
WITHOUT 
ex up 11, 

position of a box 
AFFECTING ITS 

[BOX GRAB] Cbitpad coord) tFINDl 
CADJJ tEXPANDJ 5 x [EXPAND] 



will find box 0 and expand it 5 pixels a 
side. Individual sides can be expanded 
or shrunk using the direction indicators. 

The next group· of keys manipulate images by 
duplicating, combining and transforming the 
contents of a box or boxes. These operations 
include fade, average, copy, key, fuzz and color 
equal color, Each of these operations can be 
carried out in one of six modes - add, subtract, 
and, or, xor, ~,place. These modes apply to the 
color codes contained by the box or boxes operated 
on. Box 0 can be copied over box I in replace mode 
and the contents (color codes) of box 0 will 
replace those of box 1, However, box 0 can be 
copied over box I in or mode and the contents 
<color codes) of box 0 will overlay tho11 of box 1, 
The contents of box I remain and aren't obliterated 
as in a replace copy, Similarly the xor mode can 
invert the copy, add mode sums the color codes in 
boxes 0 and I, and so on. 

CADDl CSUBl CANDl CORl [XORJ CREPl 

fA'JFl 

CFADEl 

[ COPYl 

Are function modes used in disk loads, 
and fading, averaging, copyina, keying, 
fuzzing and color • color. Only o.ne 1s 
enabled at a time (default is replace), 

"Aver~QP" i~ a mean~ of cnmhininq imaae~. 
~or correspo1,di11a locations in the so11rce 
and destination boxes the color codes are 
averaged and the result affects the 
destination box, The six function modes 
create various transformations, Boxes 
can be averaged within a page or from 
page to page. 

"Fade" is a slow average, For 
corresponding pixels in the source and 
destination color codes are compared. If 
source is greater than destination then 
the destination color code is incremented 
by 1. If they're equal the destination 
color code escapes unscathed, If 
destination is greater than source then 
the destination color code is decremented 
by I. The logic above applies in REP 
mode; as for other modes, you're on your 
own. 

Copies one or more boxes over a 
corresponding box or group of boxes, 
Copying uses the color control vector and 
the paqe vectors. Boxes can be copied 
within a single page or from page to 
page. Therefore these control vectors 
must be set BEFORE the copy key is hit, 
Select box 0 and force it to point to box 
1 on the same page. Only the colors 
selected by the color control vector will 
be copied from the source box (es). For 
example, 

CCEJ (0) CSl [Fl Cll 
(1-15 Cl CREPJ [COPY) 

copies box 0 colors 1-15 over box 1 
replacing its contents. But color 0 will 
NOT be copied therefore those areas of 
box I corresponding to the background of 
box 0 remain untouched. And 

[CEJ C-J C0l (71 [SJ CAl 
Cl-15 Cl CREPl [COPY) 

copies boxes 0-7 from page to page, 
Again boxes 0-7 on the first page are 
considered source boxe1 and becau1e the 
box control vector points to the 
alternate page the corre1ponding boxes on 
the second ·page become the destination 
boxes. In copr1ng source and destination 
boxes are usua ly the same size. Boxes 
of unequal size will "smear" the image. 
Copy can be used in a macro to make 
multiple copies, More about this under 
STEP REPEAT, 

132 

C KEYl 

CF IJ Z Z l 

CCEQCJ 

Kevs one or more boxes over a 
corresponding box or group of boxe1. 
Keying uses all the control vectors. As 
in copy, boxe1 can be keyed within a 
single page or from page to page. And 
as in copy, control vectors must be set 
BEFORE key 1s hit, Kevinq can be thought 
of as the reverse of copying, Only the 
colors selected by the color control 
vector will be keyed on, In keying the 
color vector controls destination boxes 
not source boxes as in copying. For 
example, 

CCEl C0l [Sl CFl CFFJ (0 Cl CREPl CKEVl 

will key box 0 into the background (color 
0) of the full frame, ONLY color 0 will 
be replaced and colors 1-15 will remain 
unaffected. And 

tCEJ (01 CSJ CAJ (0 CJ CREPl CKEVJ 

Keys box 0 from page to page as in copy, 
If the destination box is smaller than 
the source only the area defined by the 
destination box will be affected but if 
the destination box is larger than the 
1011rce bow wi 11 be repeated until it 
fill1 the entire destinatio11 box. This 
is very handy for creating background 
patterns. 

"Fuzz" is a powerful means of 
transforming an image. A more complete 
description appeared in an article by 
David Cook in Creative Computing 1 January 
1983, The page control vectors aeter1ine 
source and desination boxes as in copy, 
Fuzz averages each source box color code 
with its immediate neighbours and uses 
the result in transforming the 
destination box, In replace mode fuzz 
smooths the image, It can generate 
patterns and surface texture. Boxes can 
be fuzzed with themselves (a single box 
is both source and destination), or from 
page to page. Same page as opposed to 
page to page fuzzing produces different 
rnults, 

"Color equals color" is copy with 
additional color modification, For 
pixels in the source box enabled by the 
color vector, corresponding pixels in the 
destination box are set equal to the pen 
color. Color equal color is very useful, 
here's an example which converts a high 
resolution image to low resolution-

CLO RESJ 
Cl-15 Cl CPEN CJ C15l CCEQCJ 

As in fade, the logic applies 1n REP 
mode; other function modes produce rather 
exciting results, 

[3Dl [3D Xl [3D Yl 

"Translation by intensity" describe• this 
peculiar transformation. The pixels 
within a selected box (or boxe1l are 
translated or shifted horizontally and 
vertically using this formula- number of 
pixels shifted= color codex [3D XorYJ, 
If the X l V multiplication factors are 
set to I, the brightest areas of the 
imaqe will be shifted 15 pixels 
horizontally and vertically, the 
background will not move. This creates 
the illusion of a three dimensional 
1urface, hence the name 3D, This 
transformation redraws only those pixels 
enabled by the color vector 1nd works 
best if color 0 is NOT enabled. Scanners 
and function modes c1n be invoked to 
produce wierd l wonderful effects, 
Setting the X & Y multiplication factors 
to large values produces instant 
abstractions. 



The ob11rvant reader will note that CFADEJ CAYE] 
CCOPYJ CKEYl CFUZZJ appear in 1ore than one place 
on the bitpad. Directly above the function 1ode 
keys is the STAMP COMMAND AREA, "Sta1ping• allows 
the.user to paint on the current page, Bru1he1 are 
defined 11 boxes selected on the current page, The 
user touches the bitpad 1tylu1 to one of the 1t11p 
keys, 1et1 the bitpad to 1trea1 1ode and touches 1 
bruin. After identifying I brush the user st11p1 
by touching the 1tylu1 to the bitpad, Wherever the 
1tylu1 touches, the brush/box i1 copied c1nt1r1d on 
t~e stylus position. Sta1ping is used to creata 
d1agra11, for exa1ple, adding co1ponents to an 
electrical circuit or arrows to flow chart. 

Above the sta1p keys is the PAINT COMMAND AREA. 
"Painting" u1e1 both pages; one page cont1in1 the 
brushes, the other beco1e1 the canvas, Thi u11r 
defi~e• hi1/her bru1he1 9n the bru1h page, It', 
po111ble to load fro■ disk a selection of 
previously defined bru1he1, Then the user toggle, 
to the canvas page and points to I bru1h (or 
bru1he1l with the alternate page victor, for 
exa1ple, 

(1) CAUTOFINDJ [AUTO 6RAB1 16 x (bitpad coords) 
i2l CPJ CCEJ Cll CA] 

pick, 1ixte1n bru1h11 1 toggle, to the canva, pag1 
and enables brush • As in sta1ping the user 
touche1 the 1tylu1 to one of th, paint k1y1, 1et1 
the bitpad to 1tr111 1od1 and •paint,• by touching 
the 1tylu1 to the bitpad, For 1t11ping & paiting 
tha brushes are treated 11 boxes, therefor ADD, 
SUB, AND, OR 1 XOR, REP funcion 1od11 are 1v1il1bl1, 
And any co1b1nation of scanners can be set. The 
color vctor can be u11d to enable specific color,, 
for eax1ple, 

(1) ca CJ [KEY PAINT] 

will paint only on the background leaving the 
foreground intact. 

CPENl 

CPEN FUZZ] 

Allows lhe user to paint with a 1ingle 
pixel, CPEN Cl 1et1 the color of the 
pixel and CPEN FUNJ enables one of the 
six function 1ode1. 

Allows the u11r to fuzz a 3 x 3 pixel 
neighbourhood centered on the stylus. 
Tha center pix1l is averaged with its 
i11edi1te neighbours. Thus the user can 
1100th or blend specific 1re11 of an 
i1age, like touching up a photograph. 

CPEN FIXJ Allows the user to 1odify specific colors 
with the 1tylu1. Pixels pointed to with 
the 1tylu1 and enabled by the color 
vector ara set equal to the pen color. 
The user can clean up an i11ge with this 
co11and, 11 above, like touching up 1 
photograph, 

A final observation on the power of fade, avarage, 
copy, kay, fuzz, color equal color and load • 
These seven co111nd1 op1rat1 in any of six 1od1s a 
total of forty plus co1bination1. Any tingle color 
or group of colors can be selected. Multiple 
copies, fuzzes and average, can be created wlth 
11cros. These operation, can b1 1ppli1d to single 
boxes or groups of boxes. Various ,canner 
co1binations are available. Th1re 1u1t be hundreds 
of ways to aprly these operations, We'll ex11ine 1 
few after dea ing with color and 1acro1. 

[1/2] 

CSET RGBJ 

COLOR COMNANDS 

"One or two• toggles between I single 
color vector applied to both p1ge1, and 
two color vector,, one per page, 
Indicators left & right of the COLOR NAP 
heading point to the active p1ge(1l. 

"Set red green and blue• allows the user 
to 11l1ct the color<•> for the color 
cod ■ <•> enabl ■d by the color control 
vector, Colors are deter1ined by 
co1bining red, green and blue, These 
pri11ry_color1 vary in_int,nsity fro■_ a 

133 

CHUEJ 

CLITEJ 

<no color> to 15 (full color). For 
u11ple, 

CCEl t-l Cll C7l CCJ 
CSET RGBJ t Bl C Bl t Bl - black 

Cl5l C Bl t Bl - red 
t Bl t15l C Bl - green 
C Bl C Bl [13] - bl~e 
t Bl t15l C15l - cyan 
t13l t Bl t13l - 11gent1 
Cl5l Cl5l t Bl - yellow 
Cl3l t13l [151 - white 

There are 16 x 16 x 16 • 4896 po11ible 
colors. 

Allows the color 11p to be shaded; for 
exa1ple, 

CCEJ tll [131 CCJ 
CSET RGBJ t Bl t Bl [13] 

CHUEJ 
C 131 C Bl t Bl 

create, 1 color 11p evenly shaded fro1 
blue (color code I> to red (color code 
13). 

Blacks out the screen then hilite1 each 
color coda enabled by the color control 
vector, 

CLITE ALLJ 
Blacks out the screen and then hilite, 
one by one all color• 8-13. 

CGREY RSBJ [SREY Rl CSREY GJ [SREY Bl 

"Grey scale" keys shade the color 11p for 
the appropriate pri11ry color<,> fro• C 
Bl through Cl3J or full color. 

t? RGBl t? Rl [? 61 t? Bl 

"Rando• color• 11lect1 the color(sl for 
the color code(1l enabled in the color 
control vector by using the rando1 nu1b1r 
generator. 

C+Rl C+8J C+Bl t-Rl t-8] [-Bl 

Allow the user to fine tune any color<•> 
enabled by the color control vector. •R1 8,. B" 1tand for red, green and blu11 + 1e 
- 1ncr1a1e and decre11e their intensity. 

CROLL DOWN] CROLL UP] t<- ROLL] CROLL ->l 

CRUNJ 

CLOOPJ 

CNEMJ 

CSETl 

CDELJ 

These keys roll or rotate the inten1ity 
l1vel1 for 1n1bl1d color1 in the color 
11p according to direction indicated, 
For exa11pl1, 

CCEJ CODD] [Cl t? RGBJ Bx CROLL DOWN] 

randoaly a11ign1 colors to odd nuabered 
color ■• Th11e color ■ are rolled through 
the 111p such that l->3l 3->3J S->7, 7->9, 
9->ll, 11->13 1 13-> 3, 1:)-)l. Eight 
roll1 re1tore1 the original color 1ap. 

NACRO CONHANDS 

Followed by I nu1ber a - 13 invoke ■ 1 
predefined series of co111nd1. The user 
can define up to 16 11cro1. 

"Loop• 1et1 the counter u11d for repeated 
execution of a 1acro. 

"Me1ory• c1use1 MENU to r11eaber the 
following co1a1nd1, 

Followed by 1nu1ber a - 13 t1r1inat11 a 
1acro definition. Sea RUN. 

"Delete• followed by I nu1ber a - 13 
d ■ let ■ 1 the 1pecifi ■d aacro, The •aero 
can be redefined. 



APPLICATIONS 
Re1e1ber FONT? Ne left FONT with 'Sh1z11!' on the 
screen. Let·• find I box containing the word and 
center it on the screen -

(11 Cll CSJ CBOX &RAB] (bit pad coordsl CFINDJ 
(21 2 x CUP/DONN<--/--)] 
(31 CGREY R&Bl 
(41 CSAVEJ "Tl (return)• 

In line (l) we find "Sh1z11!" using the bit pad 
stylus, Line (2) centers the box in the fr11■, 
Note the c1nt•ring key is hit twice to confir ■ 1 
potentially destructive operation, Line (3) ••t• 
the standard grey 1c1le, in this case white letters 
on a black background, Line (41 saves the centered 
word in disk file "Tl.PIX", 

Althouqh the current version of "ENU doesn't fill 
lett,ring, futur, vtrsion• will -

(ll CFILLJ (bit pad coord1l 
(21 CINCJ CLAST SAVEi 

Hit fill and touch the bitpad stylus to the 
interiors of each letter in turn, line (11, Nh1n 
all the letters are filled, save the i11g1 in disk 
file "T1,PIX", line (21, 

FIBURE 5 - Shaz11! 

Ne have created both outlined and filled 
of 'Shau■ !· and 11v1d th11 on di1k, 
files beco■e the building blocks for 
1p1cill 1fhch, 

versions 
ThH• ho 

various 

In the following applications I have included a 
nu■ber of 1a1pl1 progr111, For clarity, the1e 
progra11 use 1or1 tfian the nece111ry nu1b1r of 
k1y1troke1 ( the liberal use of clear entry for 
ex11pl1 ), Since related keys 1r1 grouped 
together, the extra keys do little to d1cre11e 
speed and probably incr11s1 overall efficiency by 
preventing errors, 

SHADON 

Thi• is 1 1i1ple and widely used effect. "•nu 
creates shadows as follows-

(1) CREPl CLOADJ "Tl (return)" 
(2) Cll CSJ CBOX GRAB] (bitpad coord1) CFINDJ 
(3) C5 JU"Pl [SHIFT] 3 K [(--/DONNl 
(41 C-Sl Cl CJ CPEN CJ C7l CCEQCJ 
(5) C+Sl CCEl C15l CCJ [PEN Cl Cll CCEQCJ 
(6) CORl [LAST LOAD] 

Line (l> lo1d1 the filled version of "Sh1za1!", 
Line (21, 11l1cts and finds box I, Ne ,et I ju■p 
of 5 and shift box I 15 pixell left and 15 pix1l1 
down, line 131, Line (41 selects full fr111 and 
replaces color I with color 7, Line (5) r111lects 
box I and r1plac11 color 15 with color I, Now we 

134 

DR load the original i11g1 over the background, 
line 16>, and we h1v1 a 1h1dow, 

FIBURE 6 - SHADOW 

STEP REPEAT 

This is an effect used in slide 1ni1ation and is 
■ade by repeatedly exposing an i ■age while stepping 
it horizontally and/or vertically on the 1ni11tion 
stand, This i1 how it's done with "ENU-

(11 CREPJ CLOADJ "Tl <return>" 
(2) Cll CS] CA] CBOX BRABJ (bitpad coords) CFINDJ 
(3) CPSAJ CS<-Dl CPJ 
(41 Cl-15 Cl 
151 C"E"l 
(61 CCOPYJ CPJ C"OVEJ 3 x CUP/--)] CPl 
(71 CSETJ Cll 
181 CLOOPJ C2l Cll [RUN] Cll CPl 
(91 CORJ CINCJ [LAST LOAD] 
(111 CXORl CLAST LOAD] 
I 111 CORJ CDECJ CLAST LOAD] 

Line 111 loads the outline replacing the i ■age on 
the screen, Line (21 finds box I and point, it to 
the opposite page. Line (3) tr1n1fer1 box I 
control info and coord1 to the alternate page, 
Line 141 11t1 the colors to be copied. Lines (5-71 
create a ■aero I which copi11 "Shazaa!• to the 
alternate page then 1ov1s the target box on the 
alternate rage up three pixels and to the right 
thr11 pixe •• This ■aero ii run twenty ti ■••t then 
we go to the alternate pag1 1 line (8), Final y, to 
clean up the i ■ age we cut out the original word, 
linH (9-11), 

FIBURE 7 - STEP REPEAT 



NIRROR 

This effect i1 ■1d1 b¥ using two 1c1nn1r1 ■oving in 
oppo1it1 dir1ction1, or 1x11ple, 

II) CREPl CLOADl "Tl (return>" 
(2) tll CSJ CBOX BRABl (bitp1d coord1) tFINDl 
(31 [Fl tll CD<-Sl 
(4) t+Sl [NOYE] (h1ight + 1) x [DOWN] 
(5) t-Sl tl-15 Cl 
(61 [SCAN DJ tLR-BTl CCOPYJ 

Lint (1) lo1d1 th1 outlin1 r1pl1cing th1 i ■ 1g1 on 
the 1cr11n, Line (2) 11l1cts and finds box I. 
Thin w1 fore, box I to point to box 1 ind tr1n1f1r 
coordinate infor ■1tion, line (31, W1 11l1ct box lt 
■ov1 it on, pix1l below box 11 lint (4), R111l1c 
box I ind 11t color, 1 - 15 1 int (5), Finally, 
line (6), the d11tin1tion 1c1nn1r i1 11t to 1ov1 
fro■ botto■ to top ind box I i1 copi1d botto■ up 
into box 1, Wt r.1n 1nh1nc1 th1 ■ irror 1ff1ct with 
fuzzing-

(71 CSCAN DJ tLR-TBl CCEJ CS] CZAP Fl 
(81 tll CS] CA] CD<-Sl 
(9) CCEJ Cl] Cl-15] CC] CFUZZl 
< 111 CPSAJ CCOPYJ 
(111 tPl 

In lint (7) we re11t the destination 1c1nn1r and 
clear th, 1el1ct box ind force v1ctor1, Line (8) 
1elect1 box 11 points it to the 1lt1rn1t1 p1ge ind 
tran1f1r1 coordin1t1 infor■1tion to the 1lt1rn1t1 
p1ge, Then we 11t color I - 15 ind fuzz box 1 to 
th1 1ltern1t1 p1ge, line (91, To coeplete the 
effect toggl1 to t~e 1lternate p1ge taking 1elect 
box and 1lternate p1gel ind the fuzzy box l b1ck 
over th• origin1l, line1 11,111, 

FIBURE 8 - NIRROR 

NEON 

Another co11on effectl neon i1 an intere1ting 
1pplic1tion of 1100th ng, It i1 u1u1lly ■1de by 
co■bining focused and defocu11d ver1ion1 of the 
Sl■e i11ge. NENU doe, it thil WIY -

( 11 CREPJ CLOADl "Tl (return)• 
(2) tll CS] CA] CBOX BRABl (bit p1d coord1) 
(3) CPSAl CS<·Dl 
(41 t1/2J Cl-15 Cl CPJ tCEl ti] tl-15] CCJ 
(5) CNENJ 
(61 CFUZZJ CPJ CCEIICJ CPJ 
(7) CSETJ C ll 
(81 C LOOP J C 6 J CRUNJ [1] 
(91 tNENl 
(111 CFUZZl [Pl 
< l1 I CSETl C2l 
< 121 CLOOPJ t6l CRUNJ t2l 
< 13) CXORJ [LAST LOAD] 

We beginl line, (l-31 1 by lo1ding "Sh1z11!" filled 
ind def ning I box 1round the word, This box i1 
l1r~er thin the word it1elf by 1bout ten pixels 1 

135 

side, Box control into ind coord1 are 11t on both 
pag11, Lina (41 11t1 1eper1t1 color 11p1, colors 1 
- 15 on th1 1lt1rn1t1 p1ge and colors I - 15 on the 
original page. Now we d1fin1 ■aero 1 lin11 (5-7), 
which fuzzes the i ■age to the alternate page u1ing 
111 colors 1-15, then go11 to the alt1rn1t1 p1g1 
ind 11t1 color, l-14 equal to color 15, w, run 
thi1 ■aero 1ix ti111, lint 18) expanding th1 
origi.nal word to the ■axi1u1 size oJ the neon glow. 
Now define 1 1hort ■aero to 1■ooth th1 edg11 of the 
glow and run it 1ix ti111, lin11 (9-12), Finally, 
w1 cut out the origin1l word and voila I neon glow, 

FIGURE 9 - NEON 

We c1n refine the effect by 1dding in the origin1l 
word outline ind coloring the result 11 folow1, 

(141 CCEl t15l CCJ t-PCJ t-Al tCEQCl t+PCJ 
(15) tORl tDECl CLAST LOAD] 
(161 CCEl tll C14l t15l [CJ 
<171 CSET RBBJ t ll C ll t ll 
<18) C ll t ll Cl5l 
(19) t ll C15l C15l 
(21) CHUEl 

Line (141 11t1 color 15 to 14, We r11erv1 color 15 
for the outline which we lo1d in lint <151, Sit 
colqr1 1 1 14 and 15 to black blue and cyan 
r1•11ctiv1ly, lints !l6-19i, 1nd fin1lly ■hadi th, 
i1ag1, line (211, 

STREAKING 

Si ■ ilar to 1t1p r1p1at, the titl1 l11v11 b1hind 1 
tr1il of copi11 11ch d1cr1a1ing in inten1ity, 
NENU'1 ver1ion of 1tre1kin9 i1 11 follow■ -
(1) CREPJ CLOADl 'Tl <return>• 
(2) CIJ CSJ CAJ CBOX 8RABJ (bitpad coord1I CFINDJ 

CPSAJ tS<-DJ 
(31 CPl Cl-15 CJ CPEN Cl Cll 
(41 CNENl 
m CCEIICl 
(61 CPl CNOYEl 6 x CUP/--)] 
171 CPl CPC+l 
181 CSETl C3l 
(9) CLOOPJ tll t3l tRUNl C3J 
( 111 CPJ 

A1 in neon we 1t1rt with "Shaz11!" filled, line 
(1), In line (2) we 11l1ct box 1 1 point it to the 
1lt1rn1t1 page, find it and toggle to the alternate 

rage taking along box control and coordinate 
nfor■ation, Returning to the original p1y1, 11t 

colors 1 - 15 and 11t the pen color to l, 1 n ■ (3), 
Lin•• 14-81 create ■aero 3 which copi11 the 
original i ■ age to th• alternate page using the pen 
color, eove1 th1 box on the 1lternate page up 6 

rixel1 and right 6 pixel ■, and l11t but not le11t 
ncre■ents the pen color, Run ■aero 3 thirteen 

ti111 and toggle to the 1lt1rn1t1 p1g1, line ■ 
(9,111, 



FIGURE 11 - STREAKING 
NET~1=.. 

Netal i1 a popular effect for Jazzing up title,, 
logo,, etc, Si ■ulating a ■etallic 1urf1c• i1 quite 
a challenge, we have 1everal procedure, which 
repre1ent I good ,tart, For ex1 ■pl1 1 

( 1) 
(2) 
(3) 
(41 
(5) 
(b) 
(7) 
(8) 
(9) 
( 11) 
( 11) 
( 12) 
( 13) 
( 14) 
( 15) 

CREPJ CLOADJ "Tl (return>• 
CCEJ [Bl CS] CBOX GRAB] (bit111d coord1) CFINDJ 
CCEl C15l CC] CPEN Cl Cll CCEQCl 
CORl CDECl [LAST LOAD] 
[PEN Cl C9l CCEQCl 
C+Sl CBOX GRABl (bitpad coord1) 
CADJl [SHRINK] (height. / 21 x CUPJ [DOIINJ 
CADDl CCEl CB] Cl-151 CCl CPEN Cl C2l 
CNENl 

CC•Cl 
CADJJ [EXPAND] CUP] CDOIINl 

CSETl [4J 
CLOOPJ [51 CRUNJ C4l 
CF] [Bl CCEl [ll CC] CKEYJ 
CZAP BOXl 

lie load the filled "Shaza■ !" and ■ ake it box B, 
line, (1,2), We change color 15 to color 1, OR in 
the outline "Shaza ■ !" and change color 15 to color 
91 line• (3-5), Below "Shaza■ !" ■ake box I any 
nu■ber of pix1l1 long but only one pixel high, 
lines (6 17), In line (8) we 11t ADD ■ode, enable 
all color, and 11t pen color to 2, Lin11 (9-12) 
are the ■etal bar •aero which 1dd1 2 to the 
content, of the box and exp1nd1 it up & down. Line 
(13) run, the ■aero five tiHI, Lin• (14) pointt 
the ■etal bar at "Sh1z11!" and key1 the bar over 
color 1, Lin• (151 1r11e1 the 11t1l bar, 

FIGURE 11 - NETAL 

136 

LINES, BOXES AND GRIDS 

So ■uch for title, and logo,, how do we create 
di19ra11 1 flow chart,, organizational ch1rt1 and 
their ilk? Ne thought about writing I large and 
obscure 1oftw1re package but realized we already 
had one, NENU, With a few 1i ■ple ■1cro1 lines, 
boxes and grids can be created in any size and at 
any po1ition; then th11e graphic el1■ent1 can be 
■oved, copied, keyed and co■bined in any nu■ber of 
way1, lie have created a 1peci1l font or typeface 
of arrowheads and other graphic 1y ■bol1, Usina 
FONT we co■bine th111 1y ■bol1 and nor ■al word copy 
with line• and boxe1 created with NENU to produce 
fini1hed chart ■, To create I line define a box in 
the aprroxi ■ate position of the desired line, 
adju ■ t t ■ length and width and, finally, fill it 
with an appropriate color code, For exa■ple, 

( 1 l CCEl CBJ [SJ [BOX GRABl (bi tpad coord1> 
(2) CADJJ (a ■ required) 
(3) [1-151 CC] CPEN Cl C7l CCEQCJ 

Creating a filled box is exactly the 
creating a line, Creating an outlined 
slightly •ore co■plex, 11 follow, 

( 1) C+Sl CBOXGRABl (bit.pad coord1) 
(2) CADJl (11 required) 
(3) [INV BOX] 
(4) [ADJ] 2 x [SHRINK] 
(5) C INV BOXl 

ta■e II 
box i1 

Thi1 procedure creates I box with an outline one 
pixel wide, The outline i1 in color 15, A 
variation on this technique creates an outline 
around a title or label, 11 follow, 

(I) [+SJ CBOX GRAB] (bit pad coord1) 
(2) CADJl bx [EXPAND] 
(3) CINV BOXl 
(41 [ADJ] 2 x [SHRINK] 

To hilite I word or nu■ber, find the box containing 
the copyd expand it, and inv•rt, Grid• are created 
by e ■bed ing the line definition in1id1 a ■aero. 
To create I grid of vertical line, u1e the 
following procedure-

( 1 l C+Sl CBOX GRAB] (bit.pad coord1) 
(2) CADJl (11 required I 
(3) CINV BOX] 
(4) CIB JUNPl CNENl 
(5) CNOVEl C-->l 
(bl CINV BOXl 
(7) CSETJ [51 
(8) CLOOPl C2l [Bl CRUNl [5] 

A 9rld of horizontal line• i1 11d1 by altering the 
original line definition, line (11 1 and the ■aero, 
line (5), A grid co1po11a of both horizontal and 
vertical lin11 can be 11de by co■bining the two 
•aero,, 11 above, or 11 follow, -
( 1 l 
(2) 
(3) 
(4) 
(5) 
(b) 
(7) 
(8) 
(9) 

C+Sl CBOX GRAB] (bit.pad coord1l 
CADJl (11 required) 
CFl CFFl CJUSTl C(--/UPl 
CINV BOXl 
CADJJ CSHRINKl CUPl-->l 
C INV BOXl 
CADJl [EXPAND] CUP/--)] 
CC Bl 
[REPl CKEVJ 

We begin by defining a box equal in 1ize to the 
horizontal and vertical ,pacing of the grid, lines 
(1-21, Nov, the box to the upper left of the 
fr11e, line (3), Invert the boxd ■ove the left and 
botto■ edge ■ in one pixell an reinvert the box, 
line• (4-bl, This produce, in•• on the left side 
and bot.to■ of the box. Re1tore box 5 to it1 
original 1ize and key it back over the full fr••• 
on color code 1 1 line ■ (7-111, 



FIGURE 12 - GRIDS 

With these exa ■pla ■ we have 1cr1tched the 1urf1c1 
of NENU. Tht u11r controls 4096 colors and 16 
boxes per page, Ha/she can r1c1ll any nu■ber of 
i ■1ge1 stored on disk, Function ■od11 includ11 
add, subtract, and, or, xor, replace. These 1ode1 
can bt invoked for any disk load, fadei average, 
copy, key, fuzz, and color equal co or. These 
op.er1tion1 apply to box11 individually or in 
group,, they can be filled, inverted, cleared, 
shifted justified, adju1ted, equivalenced, 
1s1ignad and found, Colors are set, ■ haded, r1i1ea 
and lowered in inten ■ ity, serarated into rtd 1 grain 
and blue co■ponents, 1quiva enced and tr1n1tor ■ed, 
Color codes are u1ed by the function ■ode■ to 
produce affect ■ ■uch 11 ■■oothing, edge detection, 
1urface texture, etc. NENU allow, the u ■ er to 
define ■1cr01 which beco ■e higher-level operation ■ 
and can be u11d to define grid ■, 1h1ding, ani ■ation 
effect ■, etc •. Everyday we learn 10■ething new, 

Arti1tic expre11ion i1 difficult to achieve in any 
■ ediu ■, Co■puter art generally e ■pha ■ ize1 
technique over expre■■ ion. Artifice i1 not art, 
Arti1tic expre■1ion i1 akin to per ■ onal expre11ion, 
an arti1t develop• hit/her own 1tyle, Technique i1 
i ■portant 11 1 starting point and 11 a foundation 
to build upon, NENU de■1nd1 thi1 t1chnic1l ■ kill, 
In turn, NENU offer, the potential for developing 
individual 1tyle, To illu1trate the how and why, I 
will de1cribe 10■ 1 of ■ Y own work in ■ ore detail, 

SCISSORS - STILL LIFE IN THE CONPUTER AGE 

An i ■portant co■ponent of our 1y1te■ is the Via 
Video digitizer. It digitize, the i ■age fro ■ 1 blw 
video ca■ara and l01d1 that i ■age onto either page 
a or page 1, In the proce11 of digitizing, the 
original video i ■age it 1eparated into lb grey 
level1, color code• a through 15, With the color 
■ap 1h1ded fro■ black to white, we can take 
1nap1hot1 of any 1ubject, 

An arti1t ha ■ to ,tart 10■ewhere and 1till life 
1ee■ed like a good ,tarting point. There weren't 
any flower, in the 1tudio 10 I u11d 1ci110r1. 
Co■puter graphic ■ like any other art for ■ it 
1tructur1d by it1 ■1diu ■, The ■ediu■ i ■ an 
i ■ portant part of the 1e11age, to a■and NcLuhan. 
The arti ■ t cr11te1 ■eaning in hi ■ work by ralating 
structure (the 1ediu ■ > and contant (th• ■ubject), 
What do 1ci110r1 connote? Sci11or1 cut, Sci11or1 
are 11d1 of ■atal hard and ■ hiny, Sci11or1 are 
■ 111-■1nuf1ctur1d, all confor ■ing to 1 1ingl1 ■old, 
Standing upright, they re■ ind •• of 1oldiers. 
Sci11or1 i ■ply paper, 

How are the1e i ■pre11ion1 tr1n1l1ted into NENU 
co■■1nd1? Dapicting 1ci110r1 cutting r•per i ■ 
111y, A place of paper i ■ 1ad1 by 111tgn ng I box 
and filling it with color 15, One blade of the 
1ci11or1 i ■ ra■oved by assigning a 11cond box and 
than erasing it, The 1ci11or1 are keyed ovar the 

137 

paper. An edge i ■ enhanced using edge datection, 
Load the i ■ age nor ■ally in replace ■ode, then load 
it in xor ■ode and average th1 re1ult back into th1 
original image. A ■etallic surface ii produced by 
shading 111 1 or part, of th, color 1ap fro ■ black 
to white. n the 1ci11or1 serie1, color, 1 through 
13 are shaded and color ■ a, 14 and 15 ar• u1ed to 
add color to the background, Creating a feeling of 
regi ■entation is done with kaying, A box is 
a11igned around the handle, and this box keyad over 
the full fr•••• Sci11ors i ■ply papar and together 
they i ■ply collage, By creating ■atte1 ~eying 
pattern• over thase 1atta1 and recombining the 
r11ulting 'cutouts', I created a series of 
coll1g11, 

FIGURES 13,14 - SCISSORS 

LEAVES, TREES AND CREEPER VINES 

On to greater challenge,, I began playing with 
leav11. Thi• led to tree,, cr11per vines and, 
finally, a fora ■t, Starting with real le1v11 and 
the video digitizer 1 I collacted 1ev1r1l i11g1s, I 
was thinking about graphic design and the 
po1ibilitr of using co■putfr g1n1r1t1d i ■1ge1 II 
1llu1trat on, for adverti1ing, brochur11, po1ter1 1 
etc. And thi ■ ■e1n1 si ■pl1, 1tr1ightforw1rd, 
probably r1pr111nt1tiv1 i ■1g11, 

I dacided on 1 1tructurad approach, for each real 
leaf i ■age, I created I two color ■11k 1etting 
color ■ 3 through 15 egu1l to color 15 and colors 
a,1,2 e~u•l to color a. Then I "edge detect,d" the 
■11i1 to produce outline,. Th1r1 are two ways to 
do this, either a SUI fuzz to th, alternate page or 



an XOR fuzz to th ■ alt1rnat1 pag1, Again the 
outlin1 is saved in t"o color, 8 l lS, Finally, I 
saved XOR 1 SUB and AND fuzzes for each iaage, to be 
used 11 texture and pattern. I produced four 
1a1k1, four outline, and t"1lv1 texture,, No" to 
coabine the• in int1r11ting "ay1. 

I tried four color patt,rns. Taking t"o 1a1k1, one 
on each page1 I 11t 1a1k e to color Sand 1a1k l to 
color 11, Hdding the• tog1ther the background 
re1ain1 color I but the areas of ov1rlap b1co1e 
color 15, I played "ith positive and negative 
1paca, REP load a 111k thin XOR load a 11cond 111k 
over it. The area, of overlap are inverted to 
become background, I exp1ri11nted "ith coabining 
pieces of i1age1 "ith 1a1k1 and outline,. REP load 
real leaf I, OR load the 1a1k of leaf l 
i11ediately follo"ed "ith an XOR load of the 1a1e 
1a1k, No" OR load the outline of leaf l, Thi1 
cut1 leaf lout of leaf 8 leaving onlr the outline 
of leaf l, I triad aore co1pl1x coab nations, 

FIBURES 15,l~ - LEAVES 

No" for the forest, I cut tree shap11 and leaves 
out of graph paper and arranged the• on the copy 
stand, I 1av1d 11v1ral i1a91s of leaves and tr11 
trunks, For an added touch of r1alis1 I added 
1tring to the graph paper tr11 trunk1, et voila, 
creeper vin11. I Ulld XOR, SUB and AND fuzz11 to 
create leaf and bark t1xtur11, I developed a 
11ri11 of for11t 1c1n1s by co1binin9 all or part of 
1asks, outline, and textured ieage1. 

138 



FIGURES 17-21 - FOREST 

ANIKALS - UNICORN• CATS 

A forest is populated by 1nia1l1, Obviously, 
ne1d1d 1nia1l1, Using FONT, rea1ab1r FONT, 
cr11t1d I unicorn and four cats, They r11id1 in 1 
file called ANIHALS,FNT and b ■ ing 1y■bol1 can be 
u11d like t ■xt, that is 1 1c1l1d, rot1t1d 1 drawn 
with I variety of p ■n.1, till ■d, ■tc, 

I began with I unicorn and I cat. I w11 thinking 
about illustrations or p1rh1p1 ia1g11 to b ■ u11d in 
an int1r1ctiv1 fantasy or 1fv1ntur1 g•••• Using 
HENU's box coaa1nd1 I perched the cat on th ■ 
unicorn's back, I saved th ■ outlin ■ l filled it and 
11v1d the a11k, David had been p ayino with 1 
"dither• algoritha for shading I box. I took 1 
dithered fr•••• shaded up and down fro• black to 
whit ■, and XOR■d in th ■ unicorn• cat a11k, Siapl ■ 
but 1ff1ctiv1, I XOR■d in I planet a11k, I 
g1n1r1t1d various fuzz ■• u1ino th ■ 1nia1l1 and th ■ 
planet. And I pi1c1d together a11k1, outlin11 and 
fUZZII, 

139 

FIGURES 21-23 - UNICORN• CAT 

Then it w11 ti•• for lots of c1t1. Starting with 1 
fr••• of 11v1r1l sized cats, I 1rr1no1d rows of 
•••• 1iz1d c1t11 th ■ l1ro11t cats at th ■ bottoa of 
th ■ 1cr11n and th ■ 1a1ll11t at th ■ top, Each row 
w11 horizontally c1nt1r1d and 11v1d 11p1r1t1ly 11 
an outline. I filled the outlined ia1g11 and 11v1d 
1 •••k for 11ch row, B■oinnino with th ■ 1a1ll11t 
c1t1 1 the row at th ■ top of th ■ 1cr11n1 REP load 
th ■ a11k, 11t color 15 to color 6, OR load the 
outline and 11t color 15 to color 14, Then I lay 
in th■ next row1 OR load th ■ a11k, 11t color 15 to 
color 71 OR load th ■ oulin ■ and set color 15 to 
color 14, R•r••t this proc111 for IICh row. Now 
w■ h1v1 1 ot of cats, Color 14 can be r111t to 
color 15, Th ■ rows 1r1 1h1d1d fro• colo~ 6 in th ■ 
background to color 11 in th ■ foreground lth1r1 1r1 
five rowsl, 



FIGURE 24 - LOTS OF CATS 

So far, I've di1cu11ed representative i ■1ge1 but ■y 
personal preference is for abstract i11ge1. 

FEEDBACK - AN ELECTRIC PAINTBRUSH 

Ab1tract EKpre11ioni1• i1 1y favofite 1ch0ol of 
painting, Th• cont ■ nt or 1ubJect i1 1pirJtu1l, th ■ 
10u1· of the artist. It recognizes feelings and 
11oti0n11 defines structure in ter11 of bal1nc1, 
p1tt1rn, rhyth■, har ■ony, c0ntr11t, c0unt1rp0int, 

'
1tc1 and d1fin11 be1uty 11 1ppr0pri1t1ne11 of for ■ 
(content plus structure!, 

Video feedback has interested ■ any artists in 
recent years. It produce, d ■tailed and dyn11ic 
111911 which 1y1b0lize for ■ any cybernetics, the 
co■put1r revolution, and 10 on, Its b11ic 
structure is recursive, an i1p0rtant progra■■ ing 
t ■ chniqu ■ of 10■1 phil010phical tntare1t. A 
feedback i1age is produc ■d through a co1bin1ti0n of 
controlled and rando■ 1l111nt1. Again, for ■ any 
this 1y1b0lize1 the electronic age. 

Ny feedback i ■ age1 are created by pointing the b ~ 
w video ca1era at it ■ own 10n1t0r. Noise and 
10urce1 of illu■ ination reflected on the ■onitor 
screen will b ■ repeat ■ d within the loop, lik ■ a 
hall of ■ irr0r1. This convential feedback loop is 
10difi1d by our colu ■n by colu■n scanning process, 
The i ■ age 11 controlled by varying ca ■era position, 
lens settings, and ■onitor brightne11 and contrast, 
After con1iderabl1 tinkering, acceptable i1ages are 
selected and stored. 

I use a panoply of technique ■ to d ■velop the11 
ba1ic b ~ w i11ge1, Fuzzing with eith ■r the 
1ubtract or xor 1od1, produce ■ an edge detected 
outline, Thi ■ outline can be av■raged back into 
the original i11ge in various 1od11. Fuzzing in 
add ■ode then reloading the original i ■ age in and 
■ode, produc11 cutout,, These can ~e u11d 11 
■attes for collaging, Section, of the i ■ age can be 
11sign1d to boxes and th111 box11 keyed over the 
full fra ■e to produce foreground and/or background 
p1tt1rn1, Color c0d11 can be transliterated. I 
clean up a c01plex illQI br sitting color codes 1 -
3 to a, 5 - 7 to 4, 9 - 1 to Band 13 - 15 to 12, 
Selecting color, can be 1ppro1ched in ■ any ways. 
Often I randa ■ ly select c0l0r1 I and 15 1 shade the 
color ■ ap to produce an ov ■rall tone and, finally, 
r1ndo1ly 1elect only the odd or ev ■n color,. 

140 



FIGURES 25-2B - FEEDBACK 

For ••, using MENU in this a1nner p1r1ll1l1 the 
process of painting, I am directed by •Y 
intuition. I r11pond to the iaage 11 it d1velop1 
on the color eonitor. I can store an iaage I'm 
having trouble with and return to it l1t1r. I can 
make false 1t1rt1, back up, and start again, I can 
develop 1everal imag11 1imultan10u1ly, Thi 
coeputer is my 1tudi0. 

SEOMETRICS - THE ART MACHINE 

In an effort to popularize the artistic potential 
of our 1y1tem, I am craating a 11ri11 of image■ 
called geometrics, Th111 lie 10e1what closer to 
applied or comm1rcial art. Thay can be u1ed 11 
book covers, illu1tration1, Nill panels, silk 
1cr1ens, f1br1c patt1rn1, and 10 on. 

Appropriately! the techniques usad to cr11te the1e 
image1 close y re1embl1 tho11 used in producing 
commercial slides. Basic rectangular 1hap11 ar1 
created by defining bOKIS, Th111 boKel are 
shifted, 1dJu1ted and filltd with color. I make 
1xtensive u1e of MENU's macro capability to dev1lop 
simple repetitiv1 s1ries and progr111ion1. Edg1 
detection, outlining and k1ying are u11d to 1nhance 
the b11ic shape,. Rarely, 1aage1 are 1often1d by 
smoothing, 

Fl6URES 29-32 - BEOM~TRICS 

141 



I feel there i1 great potential in the geo■etric 
i1age, Ne will 1dd new 1h1pe to NENU, Thi1 will 
expand NENU'1 voc1bul1ry ind c1p1bilitie1 in 1rt 
ind co11erci1l gr1phic1, 

~_BRIEF EPIL08UE 

Th• 1or1l i1 co■puter gr1phic1 h11 unli1it1d 
potential tor art11t1. It de1and1 1 great deal 
fro■ th• 1rti1t 1 it returns 1n even greater reward, 

142 



Author Index 

Chamberlin, H. 
Cook, D. 
DeWitt, T. 
Holynski, M. 
Jenkins, S.E. 
Keith, M. 
Kolomyjec, w.J. 
LeWinter, R. 
Lewis, E. 
Mansfield, D. 
Matthews, w. 
Metros, s. 
Palyka, D.M. 
Podietz, E.s. 
Porett, T. 
Sachter, J. 
Schweppe, M. 
Seidel, S.R. 
Shafran, J. 
Shortess, G.K. 
Smullin, F.M. 
Spiegel, L. 
Wiffin, B. 
Wright, w. 

143 

• 74 
• 48 
• 25 
• 21 
• 36 
• 99 
.103 

1 
• 21 

13 
• 86 
• 30 
• 89 

8 
4 

• 68 
• 65 
• 41 

1 
• 81 
.112 
• 32 

1 
.128 







PPOCEEDINGS Int s1■p■siu■ ■n s■all 
a■■pu1ers in lhl! arls 

• 

lSBN 0- 8186- 0499- 9 
IEEE CATALOG NO. 83CH1930- 7 
LIBRARY OF CONGESS NO.83- 816 25 
!EEE COMPUTER SOCIETY ORDER! NO. 499 

ffi~ 
I- ► 
[~Ul 
,::-Ul 
.:Ow 

.8~~ 


