
PPOCEEDINGS
Qllt. Sl■P■li■■ ■■ s■all
••■p■ll!rs i■ Ille ar1I

OCTOBER 25-28, 1984
PHILADELPHIA, PENNSYLVANIA

SPONSORED BY:

IEEE Computer Society
Delaware Valley Chapter ACM/SIGGRAPH
Small Computers in the Arts Network
and in cooperation with ACM/SIGGRAPH

2\/'~ /
,,.. ;·.,·.;.

ffi, IEEE COMPUTER SOCIETY 'Ef*98Y THE INSTITUTE OF ELECTRICAL AND
.-,·-•""'~- - .. ELECTRONICS ENGINEERS, INC.

ISBN 0-8186-0610-X
!EEE CATALOG NO. 84CH2087-5
LIBRARY OF CONGRESS NO. 84-81880
IEEE COMPUTER SOCIETY ORDER NO. 610

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors' opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street

Suite 300
Silver Spring, MD 20910

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission , write to Director, Publishing Serv
ices, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1984 by The Institute
of Electrical and Electronics Engineers, Inc.

ISBN 0-8186-0610-X (paper)
ISBN 0-8186-4610-1 (microfiche)
ISBN 0-8186-8610-3 (casebound)

Library of Congress No.84-81880
IEEE Catalog No. 84CH2087-5

IEEE Computer Society Order No. 610

Order from: IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

1ff#.~8'-I ·--•nm--• THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

ii

1984
Proceedings of the

Fourth Annual
Symposium on

Small Computers
in the Arts

October 25-28. 1984
Philadelphia

Sponsored by:
IEEE Computer Society

Delaware Valley Chapter ACM/SIGGRAPH
Small Computers In the Arts lfetwort

and In cooperation with ACM/SIGGRAPH

Organized and Produced by:
Small Computers in the Arts Network

iii

Symposium Chairman:
Proceedings Editor:

Organizing Commitee:

Dick Moberg
Donna Mansfield

Eric Podietz
Bill Mauchly
john Senior
terry Sherin
Trip Denton
Tom Rudolph
Cathy Del Tito
Laura Giannitrapani
Joan Shafran
Alan Datri

V

Vf'JRODUCTLON

We would like to introduce these Proceedings of the Fourth Annual
Symposium on Small Computers in the Arts by relating just a bit of the
history of the group that organizes it, the Small Computers in the Arts
Network. This group is committed to the promotion of small computers in
the arts through its monthly newsletter. SCAN. concerts. the Symposium,
and informal meetings.

This current group emerged out of an earlier one. the Personal
Computer Arts Group which held its first computer arts actiVity, a
computer music concert. in 1978. The group hoped to provide a forum for
creative people interesting in using computers in the arts.

Computer arts were once the province of engineers and ·-iechies ... but
now is more widespread. Computer art and music have infiltrated the
popular culture: computer graphics can be seen frequently on television.
and synthesizers are an accepted part of today·s popular music. This
Proceedings reflects the universal position or computers in the creative arts
today.

We have included articles on computer arts topics: hardware. interface
issues, software and tool design, aesthetics, education. as well as
descriptions of gallery and performance pieces. This broad range of
interests in, and uses of, computers in the arts was what the organizers of
the Symposium had hoped to encourage and stimulate from their very first
meeting and we are pleased to present a collection of articles so
representative of the current interests and applications of the computer in
the arts.

To contact the group, please write to:
The Small Computers in the Arts Network
B0119'.5-4
Philadelphia, PA 1910 5

vii

Table of Contents

P%"oceedings Cclllmli. ttee. • v

In'trod.uction. vii

What Are Good Computer Pictures?••••••••··••··••·•···••·•••••·••••••••••••• 1
R.E. Lucas

Is Consistent Motion Necessary for Good Computer Animation................. 4
R. Leeman

Computer/Art--De-polarization and Unification.............................. 7
D.M. Palyka

Illusion and Technology •••••••••••••••••••••••.•••••••••••••••••••••••••••• 17

I.v. Kerlow

Effectiveness Standards for Computer Graphics•••••••••••••••••••••••••••·•• 23
M. Holynski and E. Lewis

Type Principles for Low Resolution Type•••••••••••••••••••••••••••••••••••• 29
A. Wagner

Microcomputer Applications for Graphic Design•••••••••••••••••••••••••••••• 37
s.E. Metros

3-D Computer Generated Animation••• 42
J.E. Sachter

A LOGO-Based CAI Program for Producing Representational Art •••••••••••••••• 50
J.J. McGinnis

The New Studio: The Computer Graphics Workstation•••••••••••••••••••••••••• 52
A. Kaprow and J.K. Shafran

Interscore--An Interactive Score Editor for Microcomputers ••••••••••••••••• 58
p. Prusinkiewicz

An Assessment of Microcomputer-Based Art Activities for Secondary
Art Programs. • . • • • • . • • • • • • • • • • • • • • • • • . . 65

C.M. Naumowicz Zacher

Red Network: A Conceptual Art Piece Using Microcomputers ••••••••••••••••••• 72
G.K. Shortess

Computers and PoetrY••• 76
N. Wi1son and w. Wright

Digital Sampling and FFT Analysis of Acoustic Sources: A Micro-Computer
Implementation. • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • . • • • • • . • 89

J. Klapholz

ix

Data Compression of Computer Music ••• 98
M. Keith

Computer Music and the Human Interface: Imbedding Performance Knowledge
at the Graphics Level•• 103

s. Levine

Teaching Programming to Musicians •• 114
F.K. Dannenberg, R.B. Dannenberg, and P.L. Miller

An Art Based Microcomputer Learning System••••••••••••••••••••••••••••••••• 123
c.G. Del Tito

Using Computers to Write and to Teach Writing•••••••••••••••••••••••••••••• 125
o. Mansfield

Animating at Ohio State: Thoughts on a Graduate Program
in Computer Graphics ••• 130

W.J. Kolomyjec

Author Index • • • • . . • • • . . • • 13 5

X

WHAr ARE GOOD COMPUTER PICTURES?

Richard E. Lucas

Masters Program/ Computer Graphics

Art Education Department

Ohio State University

ABSTRACT

Within the rapidly growing field of com
puter generated pictures there exist many
schools of thought concerning an aesthetic
evaluation of such imagery. Presently, and
unfortunately, there are no generally rec
o~nized criteria for the qualitive evalua
tion of this art form.

This paper offers the critic and layman
alike a more cognizant vantage point from
which to seek and identify those qualities
I percieve are inherent to computer art.

Once upon a time there was a man
called Onk, He and his Cro-Magnon
family lived in a cave in central Europe
during the end of the last glacial
period, One night, after a hard but
fruitful day of hunting, Onk returned
home with a fresh kill and began to draw
a picture on the cave wall of what he
had experienced during the hunt, When
he had finished, Onk's family came
forward and gazed intently at the
figures Onk had made,

Twelve thousand years later a young
paleontologist named Jill came upon the
cave during a spelunking expedition,
Discovering the picture in the cave,
Jill reached for her camera and
proceeded to photograph it for further
study at a later date, She eventually
wrote a book on her adventures and
included her photos with the text,

One day Fred, a computer scientist,
found the book in his local library and
checked it out. Intrigued with the
figures within the photographs, he set
about designing a program that would
generate the images by way of computer.

CH2087-5/84/0000/0001$01 .00 c 1984 IEEE

After many unsuccessful attempts, Fred
finally arrived at a solution and made a
picture on his print-out machine, He
submitted the image, along with a paper
he had written on the subject of
computer pictures, to a national science
magazine. The magazine published Fred's
article as well as the picture he had
generated on his computer.

Some time afterward a copy of the
magazine found its way into the hands of
Margo, who was the curator of a highly
respected art museum, Upon reading the
article, Margo became fascinated with
the technique and irony of Fred's
picture. She persuaded the museum to
purchase the original print-out and
included it in the museum's very next
exhibition of modern art. As it
happened, Robert, an art critic for the
city's newspaper, was invited to the
opening of the show. Shocked upon
viewing the print-out that had been
purchased by Margo from Fred, who was
inspired by Jill's photograph of Onk's
drawing, Robert bellowed angrily, "Just
WHAT in the name of art is the meaning
of THIS?!",

Thus is the question of art and
computer and their relative significance
within the grander scheme of aesthetic
analysis,

As early as 1937, Electronics
magazine was printing examples of
oscillographic design based on the
principles of analytical geometry.
While these images were generated by a
somewhat different method than those
later calculated by analog computers
they still represent some of the
earliest attempts at combining
mathematics and electronic machines in a
creative endeavor, For over three
decades, the field of computer imagery
has been growing, changing, and pushing

its way into the already complicated
domain of aesthetic pursuit. It has
been treated by critics and scholars
alike as a bastard child; abandoned at
birth, an orphan of the arts, it
continues to quest for its true
identity. Now, on the brink of
maturity, the computer image is making
its strongest claim yet to its rightful
heritage within the kingdom of art.
Where and why this new method of
creating images may find its niche in
the world of aesthetics depends largely
on our perception of it as a true art
form.

Historically, the final realization
of any new art form reguires the general
consensus of scholarly ~nalysis as well
as passing the test of time, the
ultimate proof of its lasting value.
The passage of time, of course, takes
care of itself and with its passing does
a fairly thorough job of weeding out
trends and fads. It is the matter of
analysis, or more particularly, a system
for evaluating that which delineates
itself as computer art which represents
the real issue at hand. By what
criteria might computer generated
pictures by assessed as being art in the
first place, and, if art, then how may
we appraise the merit of that art? I
suggest that we begin on familiar ground
with a criteria for establishing that a
given image produced by way of computer
is a definitive work of art.

Generally, the issue of criteria
for identifying art fuels much
discussion and debate. For my purposes,
however, I would like to offer a
truncated definition of art that, while
open to criticism, is my own and one I
find suitable ■ "Art is that creation
spawned from acquired knowledge combined
with intuitive feeling, at once
informative and emotional in import.
Its roots lie deep in the imagination of
man and its face is the intentional
creation of man's own skilled hands.
The only function of art is to provide
an aesthetic experience; serving any
other purpose distracts it from that
intent and removes it from the domain of
art."

The term "aesthetic experience" in
the aforementioned definition demands
further clarification. For this I will
rely upon a condensed version of an
interpretation by Professor Harry s.
Brody of the University of Illinois:

2

"The aesthetic experience is the
understanding of a work of art
which, in turn, gives value to
experience everywhere. This ex
perience provides a clear intent
of that art, and the intent pro
vides ever new experience of it,
affecting the viewer with both
anticipation and fulfillment.
It is the perception of that
design containing superior and
subordinate elements within it,
and the realization that each
element makes a valuable contri
bution to the total design."

As for the critical analysis of
computer imagery, the basis for
appropriate criteria rests firmly upon
the established processes by which
formal artistic endeavors are measured.
However, it is necessary to expand the
boundaries of presently-accepted
analysis to include characteristics
unique to computer art. The field of
computer imagery encompasses a variety
of applications most of which fall
outside the purpose of art and are not
my concern at this time. Therefore, I
am speaking only about the computer
picture created for the sake of artistic
achievement and suggest that there are
inherent properties of computer art, as
art, that require some changes in the
way we evaluate it.

Critics generally rely upon a
structured method for analyzing works of
art that follows a set pattern of
discussion. The four general categories
of discourse include description,
interpretation, evaluation, and theory.
In the areas of description and
interpretation, there are often
overlapping arguments, matters of point
relevant to both categories. It is
within these two divisions that certain
amendments should be affected to better
evaluate computer art.

I will try to explain what I mean
in considering the unique qualities of
this art form, qualities that justify
special attention in the field of
critical analysis. These new
considerations, of which there are two,
I will define as the "philosophy of
approach" and the "application of
technology." Regarding the first term,
I am referring to the intellectual
problem solving process by which the
artist endeavors to create. Computer
imagery, from a scientific viewpoint, is
a creative use of mathematical theory,
or more simply put, is the science of
numbers applied to making pictures. In

this field, the conceptual beginnings of
an idea and the execution and
realization of that idea are steeped in
analytical reasoning involving the
skillful use of algebra, trigonometry,
calculus, and geometry. More than mere
skills, these arithmetic philosophies
influence the orientation of aesthetic
sensibilities and, in my opinion, affect
the artist's insight toward achieving a
desired image. It is the nature of
programming, I believe, that the
creation of art by way of computer is
inclined toward a unique level of
conscious decision-making. It is this
atypical creative process, the
philosophy of approach, that must be
investigated within the description and
interpretation of computer art.

The second term, "application of
technology," also represents a condition
exclusive to this field of art. I am
referring to the state of hardware and
the hardware industry responsible for
providing the means by which this art
form has grown. To quell any immediate
protest agaitist this particular point, I
would argue that there exists an acute
distinction between the development of
computer hardware and the development of
such hardware as that of, say, the
photographic or movie industry. While
those two fields of endeavor have been
supplied with a continuous flow of
updated equipment to improve image
quality, that flow represents a series
of refinements related to long-standing
principles of the physics of optics.
Indeed, the situation changes when
discussing the manner in which the
computer hardware industry is
developing. While many of the
improvements in this field may be
designated technological refinements,
the technology itself is in a constant
state of flux. There are and will
continue to be quantum leaps in research
providing the industry with
revolutionary breakthroughs and
generating entirely new concepts in the
development of the hardware used to
generate computer pictures. This
seemingly endless transmutation of
theory affects not only our perceptions
of this technology but also the way in
which we apply it to the creation of
aesthetic imagery. As these fundamental
changes influence this art form, so must
it influence our description of and
interpretation of it. The criteria for
analysis should include an understanding
of these changes if we are to fully
understand the concepts behind the art
itself. Our perceptions can only remain
clear if our knowledge of the field is
complete.

3

To what extent the aforementioned
considerations influence the steps in
which computer art is analyzed is the
responsibility of the critic. I am only
advising that these factors do play a
role in the formation of criteria for
analysis and should not be overlooked in
the development of those criteria. I am
not proposing sweeping changes in the
established system for evaluating art to
suit some lofty notion about computer
imagery. Rather, I simply suggest that
we stretch the boundaries of those
criteria in specific areas to encompass
what I feel are characteristics specific
to the field of this art form. In all
other respects, I am comfortable using
the present means by which we assess and
experience art. Ultimately, it is that
aesthetic experience we receive from an
artistic endeavor that determines its
level of quality.

ls Consistent Motion Necessary for Good Computer Animation

Ruedy Leeman

We can look to the visual media of
photography, film and video to establish
some criteria for the evaluation of
computer generated images. Some
criteria for good photography are
interesting subject matter, pleasing
composition, and color and lighting
appropriate to the intent of the
photographer. These are just a few
criteria used to judge artistic
photography. The criteria used to judge
product, commercial, architectural, and
other service type photography are
related to the photograph's economic
effectiveness. The three previously
mentioned criteria would be used to
judge service photography but would be
relative to the customer's purpose
rather than the photographer's purpose.
The criteria for good film and video
would include the criteria for
photography, consistent motion, an
interesting plot, supportive music, and
a coherent visual concept. These
mentioned criteria would be the basic
criteria for judging the film and the
video media.

Since computer animation uses many
of the formal features of photography,
film, and video media, the criteria used
to judge them are appropriate to judge
computer generated animation. I believe
consistent motion to be one of the most
important criterion for judging computer
generated animation therefore, I am
limiting my discussion to the use of
consistent motion to produce good
computer generated animation.

Consistent motion is an important
criterion for judging the quality of
computer animation since consistent
motion will support the overall concept
of the computer animation by being an
integral part of the animation. Roget's
thesaurus describes "consistent" as in
keeping with one's expectations, logical
agreement among things or parts, and to
be compatible or in correspondence.
This description of "consistent" can
help define what is meant by "consistent
motion" in a computer animation.
Consistent motion is motion that is in

CH2087-5/84/0000/0004$01 .00@ 1984 IEEE
4

keeping with one's expectations, motion
that has logical agreement among its
parts within a time frame, and motion
that is not disturbing or incompatible
to the mind's eye. Simply stated it is
motion that is consistent with the
purpose of the animation. If smooth,
realistic, or erratic motion are needed
for the interpretation of the artist's
concept and the motion is producing the
correct clues to this interpretation,
then the motion is consistent. If the
motion lacks consistency relative to the
visual concept of the computer
animation, then the motion is not
transporting the intended ideas of the
artist and thus is not successful. For
example, if a computer animation is to
be set in the "real world", then the
motion needs to be consistent with the
physical rules of the "real world" if it
is to remain believable to the viewer.
If the animation is not set in the "real
world," then the motion need not use the
rules of the "real world," but a
consistency of motion is needed to
interpret the concept of the computer
animation. To keep the movement
compatible and believable to the eye in
a computer animation, an object must not
jump from one position to another
position without a smooth transition
between the two positions unless this
inconsistency of motion is consistent
with the visual concept of the computer
animation.

Various methods are available to
establish a smooth transition of an
object between two locations relative to
time within a computer animation. This
can be done by manipulating the object
or by manipulating the position of the
viewer. Assuming we manipulate the
object, the artist can achieve a smooth
transition between two time dependent
locations of an object by looking at the
established pathway before the first
position and after the second position.
If the path to the first position is a
gradual curve and the path from the
second position is very sharp, then the
path between the two positions needs to

begin with a gradual curve from the
first position and interpolate into a
sharp curve going through the second
position, to establish consistent motion
between the positions. The acceleration
and deceleration of the object at the
two positions should also be consistent
with the acceleration or deceleration of
the relative positions of the object.
If the object is decelerating on its way
to the first position and accelerating
when leaving the second position, then
the object needs to interpolate from
decelerating to accelerating between the
two positions of the object. The amount
of curvature of the path and the degree
of acceleration or deceleration are up
to the artist as long as the
acceleration-deceleration and path are
continuous within a relative radius of
the location of the object. In this
way, consistent motion can be
established by manipulating the object.

Another method to establish
consistent motion between two positions
of an object is to change the position
of the viewer, in other words, to cut to
a different view during the position
change of the object. The second view
must be from a vantage point that
displays the object from a completely
different angle and relative distance to
the viewer. The separate views indicate
to the viewer that a change in position
has taken place and permits the viewer
to perceive the change without
confusion. The importance of varying
the two views can not be overstated. If
the views are too similar, the object
will tend to jump to the second position
during the cut and the viewer will not
accept the motion as real.

Movement in a computer generated
animation needs to simulate the movement
of objects in the physical world,
assuming the animation is set in the
physical world. Not all motion in a
computer animation, however, needs to
use a physical formula for motion
control to be accepted as good
animation. The physical formula of
motion can be a starting point for the

simulation of movement in the "real
world". The artist needs to be aware of
the physical properties of objects in
motion. For example, when an object is
thrown in the air, it generally moves
along a parabolic curve, slowing down as
it reaches the top of the curve, the
object then begins to accelerate as it
proceeds downward along the parabolic
curve. Other physical properties are
available for harmonic or sine curve
movement. Whether the artist uses the
exact physical formula or an
approximation of the formula to control

5

motion is not important. It is
important for the viewer of the
animation to accept the motion to be
real and believable. In order to insure
that the motion is real, the artist
needs to be aware of how objects move in
the physical world sos/he does not have
objects doing absurd actions that would
detract from the appeal and interest of
the computer generated animation set in
a real world situation. An animation
with believable motion is a good vehicle
to present the artist's concepts and
ideas.

Of course, the artist may find it
necessary to completely break the rules
of the physical world in his animation
to illustrate some other imaginary
world. The motion in the animation
still needs to be consistent with the
"imaginary world" the artist is trying
to portray. For example, an artist
might establish a world that has
contradictory motions relative to the
"real world". A ball could bounce
higher after each striking of a surface,
a small object could easily support a
large object, or an object with short
transport appendages could go faster for
longer than an object witft long
appendages. If the artist established
this "imaginary world" then he would
need to be consistent in the motion
within this world or the artistic
intentions of the animation would be off
target. Only if the artist establishes
a world that goes between an imaginary
and real world can the motion be totally

nonsensical to be considered consistent.
An object within the confines of an
"imaginary or real world" can possess
certain powers of motion that are not
consistent within that world but this
power of motion can not fluctuate in the
object if the object is to possess
consistent motion. For example,
"Superman" comes from another world, he
can fly through the air and stop
locomotives with a single hand. This
gives the author of the story a
superhuman vehicle for telling his
story. If "Superman" was inconsistent
in his super motion, the title of the
show would be "The Great American Hero,"
rather then "Superman". To illustrate,
if "Superman" was flying through the air
to rescue a damsel in distress and his
power of flight was intermittent then
"Superman" would be inconsistent with
his established character. The audience
would be forced to view "Superman" as a
clumsy funny guy like "The Great
American Hero" rather than the do good
save the world boy scout character
previously established. The intent of
the author's story would go from a light
drama to comedy. In any case, the
inconsistency of motion of "Superman"

would cause the visual concept of the
story to be something completely
different from the intent of the author
or artist.

In conclusion, without consistent
motion relative to an "imaginary world"
or "real world," the concept of the
artist is attempting to bring forth in a
computer animation can get lost or
completely misinterpreted. In general,
for real world situations if the motion
in a computer generated animation is not
noticed, the motion is probably
believable to the viewer and supportive
to the plot and concept of the computer
animation. When the motion is noticed,
usually something is not believable
about the movement and the animation at
the very least is distracting to the
viewers. With an computer generated
animation set in an "imaginary world",
the artist intent determines the degree

of absurd and irrational
necessary to transport the
concepts and ideas.

motion
artist's

6

Computer / Art -- De-polarization and Unification

by

Duane M. Palyka

Computer Graphics Lab
New York Institute of Technology
Old Westbury, New York 11568

June, 1984

ABSTRACT

An unnatural duality has occurred in
western society that separates individuals into
the archetypal roles "artist" and "scientist".
Computer graphics/art, besides being a
showcase for this duality, can provide a means
for resolving it. As an individual well
grounded in both roles, the author details his
attempts to integrate these roles in his own
personality in order to produce unique art
work.

No one can deny the separation of art
and science in our western society. This dual
ity is also reflected within the individual (a
microcosm of the macrocosm) as a right-brain
/ left-brain polarization. This social separa
tion, emphasizing the scientific side as the
dominant side, also separates the individual
from his psyche-- his imagination, his intui
tion, human factors and humanitarian con
cerns relegated by left-brain thinkers to the
realm of the "irrational".

According to Jose Arguelles in his book
The Transformative Vision, " ... the problem
of specialization did not become globally criti
cal until the development of a mechanistic
technology in Europe during the late Iron Age.
Accompanying this development was the split
of cerebral functions, leading to the creation of
the two archetypal roles of artist and scientist
. . . Insofar as each is rooted in only one side of
the human brain-- the scientist in the left, the
artist in the right-- each is an incomplete

CH2087-5/84/0000/0007S01 .00 o 1984 IEEE 7

being." 1

As if separation of man into the "techni
cal" man and the "psyche" man was not
enough, the former became attached to the
money /power structure and the latter has had
to negate his psychic basis in order to survive.
"Thus, as the culture develops along profit
making lines that stress novelty, gadetry, and
innovation for the sake of innovation, the
artist consciously or unconsciously is swept
along." 2

Where does this leave the computer
artist? Which side of his being forms his
work? Is he an artist begging for tools from a
technician, or is he a technician making left
brain images? Computer art is a showcase for
this duality yet it also offers a rare opportun
ity to resolve it. My hope is that the indivi
dual can transcend society's definition of
scientist and artist and function more freely as
a human being. Blurring the social roles
should make it psychologically easier for the
individual to move between the left and right
brain hemispheres.

A passive solution to this problem is to
dissolve the mechanism that blocks the two.
In other words, get out of the way and allow it
to happen. The ego is the mechanism that
prevents the natural flow between hemi
spheres. Convert the inner parent/child or
master /slave relationship to one of co
operation. On the one hand, the "rational"
left-brain cannot do everything itself. And on

1 Jose A. Argiielles, The Transformative Vision
(Boulder: Shambbala., 1975), pp. 16-17.

2Argiielles, p. 16.

the other, when the artist swings the other
way, there is usually equivalent resistance to
getting involved with technical tasks such as
programming. Perhaps future generations of
artists who grow up programming computers
and making computer art will have less rigid
brain mappings than we have. Perhaps too,
less rigid technical tools will replace program
ming and make the flow between hemispheres
easier. In any case, we should really be
interested in developing the whole man, not
partials on either side.

Currently computer graphics/art
exemplifies this duality and dominance even
further by tying the creation of images to
commercial production, bringing with it the
superficial gadetry and the "innovation for the
sake of innovation" mentioned above. Under
commercial emphasis, computer graphic tool
development dominates and brings along with
it competition and secrecy. The computers
used now are expensive and the artist must
create on the scientists' terms just to get
access to the equipment. Furthermore, if the
artist is not a programmer, he must depend
upon the scientist to provide the software
tools for him to realize his esthetic-- tools
which the scientist thinks that the artist
should have based upon what he sees as artis
tic tools of the past.

One of the paradigms of computer
graphics/art is the desire and competition to
design tools for generating the most "realistic"
images. This attitude revolves around the
scientist's myopic view of art seen only from
the technical side. An artist's work is a bal
ance of "psyche" and "techne", but it is the
latter aspect that the scientist relates to and
identifies with "art". "Both art and science
rely on technique; the difference between them
is in the degree of contact with psyche." 3

From this viewpoint, the scientist-become
"artist" deals with spaces that have
mathematically correct perspective with
detailed and rigid object definitions. He
becomes concerned with issues of how to make
clouds, trees, and mountains look "accurate",
without considering that this could be a sub
jective determination. It appears to him that
the "jaggies", the staircasing effect inherent in
digital images, serve no esthetic purpose but
interfere with the technical (and, hence,

3Argiielles, p. 94.

8

commercial) conception of visual reality.
Thus, he forces art to be pulled further from
the psyche and into the linear time/space
left-brain domain. To be fair, it is a left
brain-based society which demands these tools
and the scientist is fulfilling its needs for com
petitive commercial and military applications.
It's frightening to think of videogames as
being a training ground to kill people, but mil
itary simulators are computer graphics pro
ducts not unlike videogames.

It's easy enough to point out deficiencies,
but it is another matter to show positive alter
natives. My own work has been concerned
with resolving these issues, and I would like to
share with you my personal exploration
towards right/left brain unification and
art/psyche involvement.

In all of my computer art work to date, I
have done my own programming in order to
merge my esthetics into the software. In the
main body of art works I wish to discuss, I
accept standard concepts of object-oriented
computer graphics as my basis-- e.g., solids of
revolution, polygon tilers, B-spline patches,
and polygonal databases. Object-oriented
computer graphics involves tools designed to
build objects, not spaces. Spaces incorporat
ing objects made with these left-brain tools
usually have the feeling that the elements fit
together arbitrarily. This is more so in spaces
constructed by engineers than by artists since
artists are sometimes able to transcend the
design limitations of the engineer's tools. In
any case, a spatially-oriented computer graph
ics tool set would promote better holistic
thinking-- a right-brain function in the right
brain realm of visual spaces. Later, I shall dis
cuss how spatial tool design relates to my
work.

Using these programming concepts, I
proceeded to design and build instances of
these tools with particular orientation towards
my artistic sensibilities. For example, I accept
the notion that programming accidents and
complex interaction sometimes contribute to
interesting visual effects that may relate to my
esthetic. I try to be open to creative associa
tions. I then use these tools to build imagery
based upon poetic mathematical concepts and
my own psychic sense, which I describe as sur
realistic in its patterns of free association.
Allowing mathematical/programming ideas to
merge with visual ones, I attempt to find a

unique form of personal right/left hemisphere
expression-- an expression controlled and
sometimes hampered by my initial premise or
starting with traditional left-brained computer
graphics tools. The final work still reflects a
stiff, object--oriented space with
mathematically-calculated light sources, shad
ing, and perspective. Frankly, the design or
the original computer graphic tools is strong
and it is hard to resist using them as a start-
ing point. It is much harder to design per
sonal tools or equivalent strength completely
on my own.

In describing my work, I concentrate on
artistic esthetic ideas and artistic technical
ideas that are unique to my work, and I
minimize the description or general computer
graphics tools, which can be found elsewhere.
Consequently, if the reader is not familiar
with general computer graphics tools, I refer
him to Andrew Glassner's recently-published
book Computer Graphics User's Guide and
Judy Sachter's Master of Arts thesis for Ohio
State University entitled "The Basic Concepts
of Three-Dimensional Computer Graphics for
Artists". Both are oriented towards the artist
as user. Ms. Sachter's thesis hopefully will be
coming out in book form in the near future.

In thinking about three-dimensional
computer graphics, one must deal with two
related spaces: one is the two-dimensional
visual space in which the work is seen, and the
other is the multi-dimensional mathematical
space that contains the numeric information
and algorithmic schemes to generate the
work. 4 The visual space, being projected from
the mathematical space, can be thought of as
a certain way of looking at the latter space.
The rendering technique involved takes a
snapshot from one point of view of a more
complete and complicated space that really
has many points of view. This relationship of
spaces is similar to the esoteric idea that our
own view of experiential reality is being pro
jected for us by a more fundamental and com
plete "greater reality"; and, as our conscious
ness grows, we are likely to experience more of
the "greater reality" and develop greater
understanding of how the lesser realities are
projected from it and by it. Hence, in greater
realization, we are able to free ourselves from

4Judy E. Sachter, "The Basic Concepts of Three
Dimensional Computer Graphics for Artists" (unpublished
M.A. thesis, The Ohio State University, 1984), p. 11.

9

individual lire patterns.

Likewise, in computer graphics, the more
we understand the mathematical reality
behind the images, the more we are able to
understand the projection of the individual
images and to see them in a different light.
Our added awareness frees us from old pat
terns or thinking about images. Similarly,
once we see how software systems logically
work, we can free ourselves from being stuck
to one particular software system. Instead of
jumping around the branches or a tree trying
to familiarize ourselves with each new branch,
we should ground ourselves in the roots and
see where the branches come from.

The artwork that I'm presenting has
esthetic considerations that include more than
"meets the eye". Although one can appreciate
it on that level alone, if one reaches into the
"greater reality" of the work, one gets more
from it. This is like understanding the formal
logical organization or Rembrandt's "Polish
Rider" (The Frick Collection, N.Y., 1655) or
the symbolic meaning within Robert Campin's
masterpiece "The Annunciation" (The Metro
politan Museum of Art, N.Y., about 1425-28).
Except for its deeper mathematical basis, this
method of relating an artwork to its "greater
reality" is merely an extension of what artists,
art historians, and art lovers normally do with
works of art.

Figure 1. "Space Carrots".

As in nature, my three-dimensional com
puter artwork has its evolutionary roots based
in the "egg". Various parts of the work
"Space Carrots" (see figure 1) are "mathemati
cal eggs" formed using the concept of "solid of
revolution". Although the term "solid of revo
lution" may he inferred from the following
text, please refer to Sachter for a better
description.6 A vector that forms the radius of
a circle in the "X-Z" mathematical plane
grows larger as it moves downward in the "Y"
direction towards the center of the form, and
then grows gradually smaller again towards
the bottom to form an egg. The varying
radius, using the vertical egg-like curve to
determine its length, changes as it lofts circles
in the "XZ" plane. In mathematical space,
the circles themselves are really nothing hut
(x,y ,z) point calculations that are deposited
equidistantly from each other at the edge of
the radius which spins in a circular path.
Looking at it from the top down, each set of
equidistant points vaguely resembles a circle.
To give our egg visual substance, we use our
calculated points to attach h-spline patches to
our etheric form much as a roofer would use
nails to attach shingles to a curved house.6

Even though the use of patches may
seem to he over-kill to the technically
sophisticated reader for such simple "egg
carrots", they are indispensable for generating
the green, amorphous forms in "Space Car
rots". These forms are generated simply by
adding some restrained random numbers to
the radius lengths that form the egg.

Although I could generate a wide variety
of interesting forms by varying my egg radii
randomly, I decided to utilize solids of revolu-
tion for more con trolled sculpting effects. 7

However, instead of using multiple curves to
define the object, I used a table-lookup tech
nique similar to that used in texture mapping
and hump mapping.8 In a frame buffer other
than the rendering buffer, I drew an unusual
picture of my face using conventional paint
system techniques (see figure 2). The
drawing's uniqueness comes from the fact that

5sachter, p. 19.
6Andrew S. Glassner, Computer Graphics User's

Guide (Indianapolis: Howard W. Sams & Co., Inc., 1984),
p. 130.

7Sachter, p. 19.

8Glassner, pp. 101-104.

10

Figure 2. "Face".

during its execution I visualized the drawing
as an unwrapped soup-can label to he wrapped
around an egg. I used my imagination to visu
alize my head as an egg with shades of light
and dark representing the spatial differences
between my head and the egg. In the "null"
case, if I had presented to my rendering a:Igo
rithm a totally gray drawing in place of
"Face", it would have sculpted a faceless
Humpty Dumpty.

In generating the egg, each time the
radius required a new length, instead of
adding some random number to it the pro
gram would add to it a number from the
frame buffer which contained the face draw
ing. If the number showed white in the "face
drawing" buffer, the radius would move out
the furthest, and if the number showed black,
the radius would shrink towards the center of
the egg.9 As you can see by the resultant
"Egghead" picture (see figure 3), the experi
ment was not as successful as one would have
hoped. My final result resembles what I look
like in someone else's reality projection hut
not what I look like in my own! Actually, the
problems I encountered with this experiment
stem from two sources: (1) my preconditioning
as an artist in seeing light and shadows in
figure drawing and (2) the grossness of the
tools I'd developed to do the task. That
taught me not to get caught up in the above-

9Glassner, p. 161.

mentioned "realistic rendering" paradigm!

Notice that I incorporated the Z-buffer
into the lower half of the picture as part of
the image. A Z-buffer is an extra frame buffer
or two used to hold the picture's depth infor
mation in order to allow a programming
mechanism to resolve depth overlap and inter
section on a pixel-by-pixel basis. This
mechanism determines how much of the image
gets projected from the multi-dimensional
"greater reality" to the two-dimensional frame
buffer space. 10 Actually, exotic uses of the Z
buffer adds another chance component to the
scheme of things. Since I love to incorporate
chance factors into my artwork, I use the Z
buffer extensively either visibly or behind the
scenes throughout my work.

"Warm-Cool One" (figure 4) is just such
an example of one of my "behind-the-scenes"
use of a Z-buffer. This picture was created
using both the finished two-dimensional frame
buffer image of "Space Carrots" and its saved
Z-buffer. On a pixel-by-pixel basis, I used the
following procedure to modify the image: (1)
First, I separated the pixel's color component
from its intensity component. This was fairly
easy since using an 8-bit pixel, I defined the
intensity to be the lower 5 bits and the color
to be the upper 3 bits. Here, I had 8 different
colors to work with and 32 different intensities

Figure 3. "Egghead".

10Glassner, p. 169.

II

Figure 4. "Warm-Cool One".

for each color. (2) Then, I picked out the
pixel's associated Z-buffer value from the same
pixel position in the saved Z-buffer. (3) Using
this value as an index into a red/green pepper
mint scheme which I had mapped onto "Z
depth", I accordingly changed the pixel's color
value. (4) Finally, keeping the old intensity
with the new color, I put the new pixel into
the old pixel's frame buffer position.

This scheme actually started out as an
attempt to make use of artistic warm/cool
space to exaggerate depth cues-- a trick which
makes a two-dimensional picture look more
three-dimensional. Later pictures along this
line were more successful but were less visu
ally interesting than this one. In my work, I
have the general attitude that the visual
image takes precedence over the concept
behind it.

Two of the most powerful tools designed
for three-dimensional computer graphics are
the "polygon tiler" (or "polygon renderer")
and the use of a three-dimensional points
polygon database to generate images. In the
"greater reality", the points-polygon database
contains numeric information on how to
render a particular complex form, and the
polygon tiler understands this format and
renders a view of the form in the visual
frame-buffer space. I shall keep the descrip
tion brief here and again refer the reader to
longer descriptions in both the Sachter and
Glassner books.

I developed the polygon tiler which I
used extensively in the next set of works to
reflect my own esthetic interests. I actually
used it for the first time back in "Space Car
rots". Notice, in "Space Carrots", the ran
domly formed beam-like form that intersects
the space. The sides of the beam, with accom
panying aliasing artifacts, were rendered by
the tiler.

In "Figure with Aura and Guards"
(figure 5), we have three apparent instances, or
views, of a female figure defined as a points
polygon database and rendered using my
polygon tiler. I say "apparent instances"
because the central form in the picture is actu
ally composed of several exploded instances of
the figure which are overlayed with various
degrees of transparency. The form explosion
occurs along the vector direction of the
polygon normals, calculated at each vertex of
polygonal intersection. In this case, each
"normal vector" at a particular vertex is the
sum of vectors perpendicular to the surface of
every polygon which intersect at that vertex. 11

If the normals were rendered along with the
polygons, the figure would look like a porcu
pine. However, the normals are like ghosts in
that they are not rendered from the "greater
reality" into the preceived reality, but may
affect it nonetheless.

Figure 5. "Figure with Aura and Guards".

11Glassner, p. 68.

12

In another behind-the-scenes manuever, I
have included the "egg" concept as part of the
"greater reality" of "Figure with Aura and
Guards". The texture on the surface of the
figures is a reflection of the egg's presence.
The subtle mechanism behind the presence of
the egg needs further clarification: The egg, in
this case, is a sphere with infinite radius whose
center is the center of the female database.
Instances of the picture's Z-buffer are ran
domly placed on the surface of this sphere as
part of the following algorithm: Rays from the
figure emanate along the normal vectors away
from th·e figure and towards the sphere's sur
face. They retrieve Z-buffer patterns and
colors to be put back on the surface of the
figure.

Here, we have a dance which is an
interaction between the Z-buffer mapped on
the surface of the invisible egg and the figure
being rendered at the egg's center. A change
in one affects the other. As in a dance of
subatomic particles, complex time-space
interactions occur which make events appear
unpredictable.

In addition, the figure's dance with the
egg is symbolized by her auric emanations
towards the egg. In fact, the central figure
turned out to be so delicate that I just had to
put two guards in the picture to protect her.

The remaining pictures in this series
were produced by the same algorithmic

Figure 6. "Sparkling Giacometti Sequence".

mechanisms used in the previous ones, and all
contain the dance with the egg. "Sparkling
Giacometti Sequence" (figure 6) reflects the
use of the "augmented" transparency mode of
my polygon tiler. The "augmented tran
sparency mode" renders transparent polygons
with sparkles at the edges of the polygons.
The "sparkles" really are the result of a bug,
or programming mistake, that occurred during
the implementation of the transparency
feature. Here is a case where a mistake in the
code became a "feature" of the program. I
kept the bug as part of the program and
worked around it to complete the tiler's tran
sparency option.

The four works "Sparkling Giacometti
Sequence", "Tall Movement" (figure 7),
"Stretched Movement" (figure 8), and
"Stretched Movement Zoomed" (figure 9) are
products of a certain spatial tension pro
grammed into their "greater reality". This
spatial tension causes distortions to figure
instances which are placed in a spatial line
with each other. The distortion occurs along
the direction of the normal component which
is in line with the other figures. However, the
end figures remain unaffected when rendered.
The distortion also varies from figure to figure
based upon where a figure is placed relative to
the others.

"Picasso Two" (figure 10) is the pinnacle
of this series. It is the product of the complex
interaction of every element mentioned so far.
In this work, the effects created by chance,
grouped with those created by unpredictably
complex algorithmic interaction, form a visual
tension when played against the solid
definition of the figure. This tension in visual
space is similar to that which I find in many of
Picasso's paintings.

Spacial tension is also an integral com
ponent of the next series I attempted-- a series
much different from the previous one. These
new images are the product of a unique
attempt to create a form-generating space that
resembles, in some sense, our own real star
filled "outer" space. This new visual space
has stars in it like in the cosmic space. They
create gravitational forces on objects which
enter the space. However, that's where the
similarities end. The visual space differs from
"outer" space in that these stars have no mass
and their interacting gravitational forces actu
ally create visual forms. Within each of these

13

Figure 7. "Tall Movement".

Figure 8. "Stretched Movement".

Figure 9. "Stretched Movement Zoomed".

Figure 10. "Picasso Two".

contained spaces are placed several random
points, or stars, that exert gravitational forces
upon the space. A blobby form is then gen
erated in their midst by the forces created by
the stars. "Space One" (figure 11) is a six-by
six matrix of star spaces with their associated
blobby forms. "Tex Blob" (figure 12) is one of
those space blobs with patterns texture
mapped onto its surface. And "Warm-Cool
One Dipped into Gravity Space" (figure 13) is
"Warm-Cool One" dipped into one of these
gravity spaces. Finally, "Folded Space"
(figure 14)-- a freer, more complex result-- is
composed of overlapping spaces that create
blobby forms which ripple away from their
centers.

Earlier, we mentioned the need to create
more space-oriented computer graphics tools
for more right-brained, holistic methods or
design. In some sense, this last series involves
a primitive attempt to do just that. Please do
not infer that the visual spaces should resem
ble our cosmic space-- that was simply part of
its artistic implementation- but rather, the
merit of its artist-tool design lies in its facility
for designing a visual space which, in turn,
controls the design and placement or objects
within it. This reverses the usual method or
spatial design within which objects are arbi
trarily placed together. Philosophically, the
objects in the real "greater reality" are much
more related than what our senses normally
lead us to believe. My artwork attempts to
suggest that relationship. I would prefer gen
eral artistic tools that do the same.

14

.. • ' • -•
• • " -• -

' I • ' ..
• • • //1111 • •
• -- ' • • ..
" • .. -• •
Figure 11. "Space One".

Figure 12. "Tex Blob".

Figure 13. "Warm-Cool One Dipped
into Gravity Space".

Figure 14. "Folded Space".

After this, for my next work I chose a
medium more flexible for realizing psyche/art
involvement with less emphasis on mathemat
ics. I used traditional animation techniques
with a computer production base. This 22-
minute piece called "Living Above the Mouse's
Ear" reveals psychic permutations which
create their own dreamlike spaces- typical of
my conventional painting concerns.

All of my artworks, whether computer
generated or conventional, have a strong sur
realistic basis. Working in conditions condu
cive to a psychic flow causes various interest
ing images and ideas to emerge on both cons
cious and unconscious levels. Here one can
relate the creative processes and visual pro
ducts to theories based upon manifestations of
the numinous element, or the collective pre
conscious. J. C. Gowan defines "preconscious"
as " ... that aspect of the psyche, sometimes,
not always, available to the ego. Preconscious
insights tend to be expressed through right-
hemisphere imagery." 12 Gowan's "collective
preconscious" concept is similar to the "collec
tive unconscious" concept of Carl Jung except
that its definition is more flexible towards
"becoming conscious".

Making computer art through the design
and/or modification of programming tools
requires great efforts in time and energy. Just

12 John Curtis Gowan, Operations of Increasing
Order (Westlake Village, California: By the Author, 1426
Southwind Circle, 1980), p. xvi.

15

to develop the programming proficiency neces
sary to work this way, I passed up the oppor
tunity to make a lot of conventional art.
However, computers are seductive and fun; I
enjoy programming. Time and energy permit
ting, programming by day and painting by
night gives a pleasant right-brain/left-brain
balance to my life. It even gives me a means
of making a living without compromising my
art. However, you will notice that these last
two statements are indicative of the social
aspect of the problem. I feel that resolving
this duality on an individual basis is impor
tant enough to warrant the effort. Such efforts
further the development of consciousness, both
individual and collective.

ABOUT THE AUTHOR

Duane M. Palyka is an artist and com
puter scientist working and teaching at the
New York Institute of Technology Computer
Graphics Laboratory in Old Westbury, New
York. He received a Bachelor of Science
degree in Mathematics and a Bachelor of Fine
Arts degree in Painting from Carnegie-Mellon
University and a Master of Fine Arts degree in
Art from the University of Utah. His com
puter art has been exhibited internationally
since the 1968 "Cybernetic Serendipity" show
at the Institute of Contemporary Arts in Lon
don. In the early and mid 70's Mr. Palyka
was a research associate and systems program
mer in Computer Graphics at the University
of Utah.

REFERENCES

1. Arguelles, Jose A., The
Vision (Reflections on
History of Human

Tran1~formative
the Nature and

Expression).
Boulder: Shambhala, 1975.

2. Edwards, Betty, Drawing on the Right Side
of the Brain. Los Angeles: J.P.
Tarcher, Inc., 1979.

3. Glassner, Andrew S., Computer Graphics
User's Guide. Indianapolis: Howard W.
Sams & Co., Inc., 1984.

4. Gowan, John Curtis, Operations of

Increasing Order. Westlake Village,
California: By the Author, 1426
Southwind Circle, 1980.

5. Gowan, John Curtis, Trance, Art, and
Creativity. Buffalo: Creative Education
Foundation, 1975.

6. Sachter, Judy E., "The Basic Concepts of
Three-Dimensional Computer Graphics
for Artists." Unpublished M.A. thesis,
The Ohio State University, 1984.

16

ILLUSION AND TECHNOLOGY

Isaac Victor Kerlow

26 Gramercy Park South, New York, NY 10003

ABSTRACT

Illusion and Technology reviews
the ways in which technology, including
computer technology, has influenced
imaging procedures throughout history.
The two main objectives of this paper are
to present a methodology for analyzing and
classifying computer generated images
according to their technical attributes,
and to encourage an awareness of the
aesthetic issues that exist in their
realm.

Categories: Imaging technologies,
tools and methods, visual language,
coaputer generated images, relational
database.

1. Tl-£ EVOLUTION OF IMABING TECHNOLOBIES

Technology in general can be
defined as a set of tools and methods
designed for solving a specific task.
Imaging technologies are the set of tools
and methods designed for the creation of
images. Imaging tools are the physical
instruments (guch as pencils, brushes or
computers> that can be used to perform a
specific operation. Imaging methods are
the set of procedures and operations <such
as draw, erase, color, move) that describe
the way in which the tools should be used
in order to achieve the desired results.

Imaging technologies have been a
critical instrument in the development of
human conciousness and the communication
process. Nan has created images since the
earliest stages of his life on earth.
Visual images, especially those which
represent reality, have always had a
magical power of evocation: they can
create illusions of time and space. The
early examples of visual communication
were highly symbolic. Nevertheless, some
of them like the ancient pictograms
created by prehistoric civilizations
evoked reality with such power that they
could substitute it.

CH2087-5/84/0000/0017$01.00 o 1984 IEEE
17

The visual representation of reality
and ideas is based on a set of visual
elements and operations. The creation of
effective illusions extends into the
knowledge and control of the imaging tools
and the visual language. Successful
imaging operations transform images into
powerful icon6 and objects into mythical
symbols.

During the Rennaisance the medieval
barriers that prohibited the
representation of the material world were
broken with logical thought. Man
rediscovered the beauty of nature and
embarked in a major effort ta develop the
technolgy for representing the world.
Rennaissance artists, not satisfied with a
<typically gothic) symbolic representation
of the world, developed a science of
painting which contained methods and
rules to represent all the subtleties of
the visual world in a measurable way.

The methods developed during the
Rennaissance for representing reality
remained in use for several centuries.
But some imaging technologies developed
after them affected imaging techniques and
theories. For example, the development of
photographic techniques that captured
reality without direct human intervention
thrust painters into the exploration of
alternate methods for representing reality
and even for creating non representational
images. Years later, the visual
flexibility of film and television
enriched the imaging environment with
movement and time. Today the computer
offers new creative alternatives. A more
detailed description of the evolution of
imaging technologies can be found in
reference <4>.

After centuries of innovation in the
imaging field, visual creators posses not
only a collection of imaging tools and
methods but also a structured visual
language with an extense vocabulary and
precise rules. Visual language, just like
written language, has a syntax as well as
discrete elements and operations.
Mastering the visual language results in
the ability to build precise and effective
visual co~unication.

The visual language can be
implemented in different technologies.
And each technology enriches the visual
language by adding new imaging techniques
and a vocabulary of its own. The visual
language can be implemented today in the
computer, the latest technological
innovation in the field of imagemaking.

2. THE EVOLUTION OF COMPUTER IMAGING
TECHNIQUES

The first computer imaging systems
were developed in the late fifties. Most
of those systems were based on large
computers, ran in non-interactive modes
and displayed visual information on
monochrome vector displays. Such systems
were used to visualize and represent
objects and situations in different
applications including command and control
systems, simulation of real time flight
and physics experiments, medical diagnosis
and design and manufacturing. The
Sketchpad lJrawing System developed by
Ivan Sutherland in the early Sixties
marked the beginning of interactive
computer graphics.

During the sixties several hidden
surface algorithms were developed and
implemented on real time color surface
shaded animation systems. The first
graphics oriented languages were developed
during this period and, also, image
processing techniques (such as those
developed at the Jet Propulsion Laboratory
for NASA's Space Program) were
incorporated to computer imaging systems.

The seventies and eighties have
witnessed the development of specialized
graphics hardware and a large variety of
realistic rendering algorithms which are
of special importance to the consolidation
of the visual language of computer
generated images.

3. REALISM IN COMPUTER GENERATED IMAGES

The visual language and creative
values of early computer generated images
were somehow determined by technical
limitations. But the development of
computer technology (both hardware and
software} as well as the expansion of the
creative goals and standars lead to the
development and consolidation of a visual
language unique to computer generated
images.

Various strategies have been devised
to implement realism in computer generated
images, and each one of them generates
very different results. Rendering
algorithms, data representation techniques
and image resolutions are three important
factors that affect the style and quality
of computer generated images. For
example, when four different computer

18

animation production companies created
images for the movie Tron (1982} each
one of them stamped their own style and
visual quality to the sequences each one
of them produced.

It is important to understand the
technology behind computer generated
images in order to understand their true
value and meaning. Since the sixties
various methods have been devised for the
creation of realistic computer generated
images and some of them are listed in the
following paragraphs. A detailed
description of each method is beyond the
scope of this paper, but detailed
technical descriptions and an extensive
bibliography can be found in references
(2} and (6).

We find different imaging methods in
each of the stages of the process for
building a computer generated image. Such
methods can be divided in object
definition procedures, hidden surface
removal algorithms, shading models, and
surface definition procedures.

Object definition procedures include
blueprint digitization, coplanar
elevations, and mathematical or procedural
descriptions. Early mathematical
descriptions were based on geometrical
primitives, more recent methods include
regular and irregular polygon meshes,
curved surfaces and fractal surfa.ces.

Methods for the removal of hidden
surfaces in polygon meshes include object
space algorithms such as Warnock's area
subdivision (1969}, Watkins' scan line
(1970), and Newell's depth sort (1972).
Improvements to these methods have been
made by several authors during the
seventies and eighties. Image space
algorithms were first sketched by Appel
(1967}, and developed later by Whitted
11980).

Methods for hidden line removal in
curved quadratic surfaces (sphere, capped
cone, ellipsoid, etc.) or parametric
bicubic patches of different orders by
were developed by Catmull (1975), Blinn
(1978) and Whitted (1980). .

Early shading algorithms based on
Lambert's cosine law determined only
visible surfaces with diffu-e reflection.
Warnock (1969) introduced a reflection
model that took into account the object
color and the specular component of light
(highlights}. Gouraud (1971) developed a
method of normal interpolation to generate
smoothly curved surfaces. Phong (1973}
developed a reflection model that included
diffuse and specular terms. A model of
reflecting surfaces developed by Torrance
and Sparrow (1967} was based on
illumination engineering theory, and was
implemented by Blinn (1977, 1978}. Cook
and Torrance (1982} developed a method for
describing the optical charachteristics of
a material and, therefore, for rendering
more complex and subtle images.

Several shadow algorithms have been
reviewed by Crow (1977). Transparencies
were made possible by the ray tracing
procedur~s developed by Appel (1967), The
Mathematical Applications Group (1968),
and improved by Kay (1979), Whitted and
Weimer (1980) and Hall (1983).

The creation of visual textures with
mapping procedures was introduc'ed by
Catmull (1974) and improved by Blinn and
Newell (1976). Normal perturbation
procedures were elaborated by Blinn (1978)
and developed by Haruyama and Barsky
(1984). The creation of spatial textures
has been executed with fractal procedures
by Fourier and Carpenter (1981) and Norton
(1982), and with particle systems
procedures by Reeves (1983) •

4. A HISTORICAL ANALOGY

The search for creating realistic
computer images has many parallels with
the efforts made during the Rennaisance
for the realistic representation of
reality. During the Rennaissance, artists
and technicians developed the technology
needed to represent reality and to surpass
the threshold of perception. Rennaisance
artists, for example, built pigments,
oil-based aglutinants and refined the
rules of representation.

Many of the central topics in
Rennaissance art theories (such as volume,
lighting, texture and perspective) are
some of the central topics in today's
research for the generation of realistic
images with computers. Today, though,
research is conducted with a different
technology. Computers allow for the
numerical description of images in three
dimensi'onal environments and for their
a.utomatic transformation into a two
dimensional environment.

The imaging techniques employed by
different artists or schools (during the
Rennaissance and today) mark the style of
their works. Styles of pictorial
representation of reality have evolved
with the imaging technologies and
stylistic differences can be found by
analizing the technical procedures for
creating images.

Today we can group the images
produced by Rennaisance artists based on
stylistic considerations that arise from
.technical procedures. For example, the
Italian Rennaissance painting can be
defined in terms of four major schools or
styles according to the imaging tools and
techniques they employed. Most of the
early works dealt with developing the
synta>: rules and the basic operations of
the visual language, while later works
dealt with structuring those elements and
symbols to depict complex scenes and
stories. A brief description based on the
technical achievements of the four major

19

Italian Rennaissance painting schools is
suggested in the following paragraphs.

The Florentine School painters (i.e.
Giotto, Fra Angelico, Boticelli, Leonardo
da Vinci, Michelangelo) were the masters
of form and movement. They simulated
reality and represented the surface of
things with an almost scientific fidelity.
They elaborated the principles of
perspective, studied the effects of light
on volumes and portrayed people with a
high degree of likeness and expression.
In later years, based on direct
observation and study of human anatomy,
they mastered methods to represent the
human nude in motion.

The invention of a perspective based
on mathematical was first sketched by
Brunelleschi and later codified and
formulated by Leon Battista Alberti in his
work Della Pittura published in 1457.
Leonardo da Vinci introduced at the end of
the sixteenth century the aerial
perspective or simulation of the
atmosferic phenomenon by which distant
forms loose the sharp definition of their
edges and appear dimmer and less distinct
to the observer.

Florentine artists considered light
as a condition for giviny relief to shapes
and for making th~ model visible. da
Vinci, fot e>:ample, examined shading
subtlei..ies such as transparent objects and
the variation of color intensisties
created by light. For more detail on
chiaroscuro and perspective techniques in
the Italian Renna i ssa.nce see references
(1) and (7).

The Venetian School painters (i.e.
Giovanni Bellini, Giorgione, Titian,
Tintoretto, Canaletto, Guardi and Tiepolo}
are characterized by the splendour and
harmony of color that determines the mood
of their paintings. They did not only
fill drawings with color but also
portrayed athmospheres. Their works are
full of profound emotion based on the
psycological values of color. Venetian
portraits of common people are more than a
likenes, they transmit emotions.

The Central School painters (i.e.
Duccio, Simone Martini, Pier□ de la
Francesca, Perugino, Raphael) were not
obsessed, as the Florentine painters, with
naturalism. They were concerned more with
the theme than with the formal aspects of
the work and developed an intrincate sense
of composition to illustrate stories.

Most of the Northern School painters
(i.e. Pisanello, Mantegna, Antonello da
Messina, Coreggio, Parmigiana) remained
linked to the principles of the Middle
Ages and to the rather gothic Flemish
style dominant on the other side of the
Alps. With the exception of some
influenced by the Florentine and Venitian
Schools (i.e. Coreggio), most of these
painters were interested in reviving
antique techniques and values.

S. A CLASSIFICATION METHODOLOGY

A methodology for analyzing and
classifying computer generated images
based on their technical attributes can
become a powerful tool for evaluating them
in the context of contemporary images.
The purpose of such a classification is
not purely encyclopedic but helps us
understand the style and visual value of
computer generated images.

The method suggested here classifies
computer generated images based on their
technical attributes, it analizes their
structure and locates them in a historical
perspective. This classification strategy
examines the critical steps of the
creative process that determine the
attributes of the final image. Eventhough
this classification model is based on the
analysis of technical attributes, its
purpose is to classify the images
themselves and not the specific techniques
(procedures or algorithms} that generated
them.

This classification methodology
structures information as a relational
database. Such a database is structured
on relations; the entries can be related
with each other in different ways and they
can be reorganized in different
conf i gur at i ans. A m·ore in-depth l oak at
relational databases can be found in
reference (5).

Relational databases can be easily
understood by users and they facilitate to
change the database without affecting the
logical structure and applications
programs because they represent data in a
logical way, independently from the
internal representation of the data to the
computer. Relational databases keep
entries located in a dynamic structure
with as many levels of detail as needed.
Relational databases are usually
represented in a tabular form as a two
dimensional array where a field (or
domain) is defined by a class of
attributes. Several fields define an
individual entry or record <table 1).

Data input can be made through
on-line data entry forms that include
critical attributes (table 2). Such forms
can be structured as multiple choice forms
or as blank forms. The use of numerical
codes makes the implementation of such
database possible in a commercially
available database package.

A list of entries can be sorted in
different ways by using different sort
keys. One or several sort keys can be
used to select entries in relation ta
meaningful categories. For example,
computer generated images classified from
a historical perspective would use date as
the primary sort key, using software codes
and resolution as sort keys would result
in a classification of realistic images,

Table 1. Simple relational database in a two dimensional tabular farm.

1. Entry#
2. Author Name
3. Work Title
4. Date
s. Company/ Schaal
6. Country
7. Software Codes
8. Hardware Codes

1 2 3 4 s 6 7 B

2370 Blinn J Voyager 1982 JPL USA 03 07 00 04 01 07 02

RECORD 0732 Greene N Quark 1984 NVIT USA 01 OS 00 09 03 04 00

3270 Kawaguchi V Growth 1983 Nippon E C JAP 01 07 04 02 02 OS 01

7320 Porter T 1984 1984 Lucasfilm USA 02 07 01 02 03 01 03

FIELD

20

Table 2. Database entry form.

ENTRY NUMBER:

TITLE OF WORK:

NAME OF AUTHOR:
Birthdate
Sex

DATE CREATED:

PLACE CREATED:
Company/School
City
Country

HARDWARE DESCRIPTION:
Computer Brand and Model
Computer Category Codes
Memory KBytes
Frame Buffer Depth
Output Device Resolution

SOFTWARE DESCRIPTION:
Data Definition Techniques

2D primitive shapes
3D geometrical primitives
Manual digitizing
Scanning
Mathematical functions
Procedural methods
AI techniques

Rendering Techniques
Hidden surface removal
Shading and lighting model
Texture method
Color space
Image processing

CREATIVE ENVIRONMENT:
2D
3D
4D

ORIGINAL:
Animated Sequence Frame
Installation
Hardcopy

Photography
Hybrid Methods

CREATIVE PURPOSE:
Scientific
Technical
Commercial
Artistic

ADDITIONAL REFERENCE INFORMATION:
Artist involved in software design?
How was the system accessed?
Theme of work?
Etc.

21

and so on and so forth. Unusual
classifications can be defined usina more
complex sort keys (table 3). -

An interesting application of this
classification methodology is the
selection of computer generated images
based on their visual excellence, creative
innovation and aesthetic qualities. It is
not the purpose of this classification
methodology to solve lenghty aethetic
discusions or to explain in detail the
changing nature of art and artistic
creation. But the model suggested here
can help to determine the aesthetic value
of a specific work based on its stylistic
attributes that derive from a technical
analysis.

Computer art can be defined as
those works that have been created with
the aid of computer-based tools and
procedures, and with the purpouse of
fulfilling an aesthetic need in the
creator as well as in the audience. The
final database helps to locate a specific
work or group of works in a conceptual
frame. Nevertheless, without a direct
judgement of the image itself, the
database does not contain the value
judgments to fully judge the aesthetic
value of an image.

This methodology can also help to
group works in different schools or styles
according to the imaging methods used.
This analysis and classification method
can be especially useful when dealing with
works that have been created with
integrated software packages that are
capable of alternate types of rendering
images in more than one way. Some of
those software packages (or test beds)
are described in references (3) and (8).

CONCLUSIONS

Imaging technologies have always
been an integral part of the imaging
process and, therefore, have always
influenced the resulting images. The
analysis of the historical development of
imaging technologies can help to
understand the relation that exists
between images and the technologies used
to create them.

The analogy between computer imaging
techniques (which still are in the
developmental stage) and the Rennaissance
painting techniques can illuminate the
importance of technical issues for a
stylistic classification.

The organization of computer
generated images as a structured
relational database can provide valuable
information on their style and
technological development. The
classification model suggested here can be
implemented in commercially available
database management packages for
microcomputers, or in artificial
intelligent expert systems.

Table 3. Sorting the database with
different primary and secondary sort
keys {upper case) genera.tes different
reports ..

Report A (Author/Historical):
AUTHOR NAME
BIRTHDATE
Company
City
Country

Report B (Historical/Regional}:
DATE
COUNTRY
Author Name
City

Report C (Work/Techniques):
WORK TITLE
SOFTWARE CODES
Hardware Codes
Author Name
Company
Country

Report D (Artistic Works):
PURPOSE CODES
ORIGINAL CODES
Work Title
Author Name
Date

22

REFERENCES

1. Barash, Moshe. Light and Color in
the Italian Rennaisance Theory of
~rt. New York: New York University
Press, 1978.

2. Foley, James D. and Van Dam, Andries.
Fundamentals of Interactive Co~puter
Graphics. Reading, MA:
Addison-Wesley, 1982.

3. Hall, Roy A. and Greenberg, Donald P.
"A Testbed for Realistic Images."
Computer Graphics and
~pplications, November 1983,
pp. 10-20.

4. · Kerlow, Isaac Victor. "Illusion and
Technology." M.S. Thesis, Pratt
Institute. New York, 1983.

5. Martin, James. Principles of
Data-Base Manage~ent. Englewood
Cliffs, N.J.: Prentice Hall, Inc.,
1976.

6. Sutherland, I.E., Sproull, R. F. and
Schumacker, R. A. "A Characterization
of Ten Hidden-Surface Algorithms."
~CM Co11Jpating Surveys, Volume 6,
Number 1, 1979.

7. White, John. The Birth and Rebirth
of Pictorial Space, 2nd ed. London:
Faber & Faber, 1967.

8. Whitted, Turner and Weime,-, David.
"A Softwar-e Test Bed for the ·
Development of 3-D Raster Graphics
Systems." Computer Graphics,
August 1981, pp. 271-277. ·

EFFECTIVENESS STANDARDS FOR COMPUTER GRAPHICS

Marek Holynski and Elaine Lewis

Boston University

Abstract

This paper presents the development of standards
for computer graphics based on the definition of
psychologically relevant structural variables.
Different methods of obtaining graphic stimuli
which illustrate these variables in a visual form
are overviewed. A discussion of the creative
potential of computer generated imagery is
supported by initial evaluation experiments aimed
at assessing the relative effectiveness of various
structures.

The Need for Aesthetic Standards

Producers of computer graphic art often
become so excited by the technical process of
creating graphics that they have little or no
regard for the aesthetic quality of their finished
work. A few masterpieces are produced along with
hundreds of dull and boring pictures.

In the past, effective graphic production
relied upon the technical skill of the producer.
That is, the artist had to become a master of a
particular medium, often through years of tedious
training and practice. This "apprenticeship
period" allowed an artist to develop a refined
sense of aesthetics along with technical skill.
Some of the new computer graphics generation
systems, however, free producers from many
technical aspects of creating images. By offering
high quality results through easily learned
commmand languages and flexible input devices,
users can become "instant artists." Unfortunately,
therir aesthetic sense may not have kept pace with
their ability to make pictures. Their work is
technically proficient without being artistically
gifted.

CH2087-5/84/0000/0023$01 .00 C 1984 IEEE
23

The challenge of producing more pleasing
pictures can be met through the development of
formal criteria or standards for aesthetic
quality. In fact, the computer can assist the
selection of superior images without usurping
producers' control. That is, a -"fi 1 ter" can
select potentially good images from the population
of possible images. Ultimately human evaluators
will select the best from the potentially good,
and initially their judgements will establish the
standards which guide this filter. This can allow
users to focus on the more intellectual aspects of
picture-making. They can spend more time being
creative and less time being technicians.

The computer's enormous capacity offers a
would-be computer artist creative potential not
provided by traditional media. In addition to
considering rule systems for design, computer
artists must plan for effective use of the
unexpected. While they are using various
transformations to pattern their elements they can
combine these in unexpected ways. The unexpected,
defined as the random choice provided by the
computer through a random number generator, offers
many interesting possibilities. This new creative
freedom and the computer's phenomenal capacity for
speed allows artists to generate many images. The
need for a filter becomes even more crucial.

An Approach

Several scholars have focussed on standards
for the computer graphics medium. Some have
established categories for structural ele.ments
possible through programming techniques [l], [2],
[3]. Others have attempted to correlate simple
graphics with human evaluation [4]. A problem
with these approaches, however, is that they fail
to incorporate established principles of design.
Aesthetics for a new medium should acknowledge
cultural context. Rule systems must build upon
those of past and current media. A better
approach considers production technique and human
response within the context of traditional design
principles.

This paper documents three perspectives
toward defining computer graphics for empirical
testing. The first incorporates fully determined
visual structures, fractal patterns, which are
often used in computer image generation. The
second considers the aesthetic potential of a
crude form of artificial intelligence, where the
computer structures images; and the third deals
with traditional design principles as rules for
structuring images.

The First Perspective

One way to define the structure of computer
graphics is to use the deterministic algorithms
that have produced the images. The simpliest
images obtained this way are line patterns -- sets
of line segments whose endpoints are specified
according to a set of rules. The most interesting
class of line patterns, called fractal patterns or
fractals, falls between the Euclidean definition
of one and two dimensional objects. Some consider
the design potential of fractal patterns as works
of art, while others use fractals as primitives to
create more elaborate images. Increasingly they
are used to create naturalistic landscapes (river
networks, cloud formations) and a range of organic
forms (tree branching patterns) [5].

Fractals' relevance as visual primatives plus
their precision and flexibility make them
desirable as variables. In this perspective,
various levels of two fractal patterns are tested
for their relation to viewer preference.

Two types of patterns, each using a different
fractal equation, were generated. For each type
ten examples were produced in order to create a
differential, a smooth range of stimuli that vary
from a straight line to an extreme curve. Figure
1 illustrates one type, Koch curves, and Figure 2
is an example of the second type, dragon curves.

The algorithm used to produce the Koch curves
is based on the regular subdivision of a triangle.
The first level is the triangle itself. At the
second level each side of the initial triangle is
divided into thirds and the middle third is
replaced with two sides of a new triangle, one
third the size of the original triangle.
Subsequent levels are formed by following this
rule and replacing every line segment of the
previous level with four new segments, each one
third the length of the previous level.

The algorithm for the dragon curves utilizes
the following recursive rule: a level O dragon is
a straight line, a level 2 dragon is a right angle
(two straight lines), a level N dragon is composed
of a level N-1 dragons with different
orientations.

Two variables were tested in the experiment:
dimension and density. The angle of the triangle
in Koch curves as well as the orientation of
dragon curves were treated as dimension variable
O. In each case O values of 0, 20, 40, 60, 70,
75, 82, 86, 88, and 90 were used in order to
produce a range of stimuli representing a
differential scale with ten levels.

Three levels of density were represented
through a different number of line segments within
the images. The most simple (DENSITY 1) has 256;
the mid-value (DENSITY 2) has 1024; and the most
complex (DENSITY 3) has 4096 line segments.

Sixty slides were produced of all levels and
densities for both types of fractals. All sixty
slides were tested for viewer preference using an
open-ended ratio scale. That is, subjects were
asked to assign numeric values to indicate their
preference for each pattern.

Figure 1: Example of a Koch Curve

24

Figure 2: Example of a Dragon Curve

For some densities, a monotonic relationship
with a global maximum was shown consistently. ln
general, subjects preferred the denser, more
complex patterns. Figures 3 shows one example of
the precise relationships between preference and
dimension for all densities of the Koch curve.

It is curious to note that for both types of
patterns subjects preferred dimension levels in
the upper mid ranges. This suggests a consistent
preference for O values between 86 an 88 degrees.
Perhaps through testing different types of fractal
patterns, this characteristic will emerge as one
standard for an aesthetic filter.

w u z w

60

55

50

~ 45
.....
w
0::
a...

40

35

MEAN PREFERENCE BY DIMENSION FOR THREE DENSITIES

}, /\
!\ A / \
: •, l ·. . \
! \(\ I . I ! /\ \. / \.--· ,.

I • l
I l
I l
I l

.

I
I
I

' I . I
\

Legend
{256)

·······{1024l,
_,...ill>.W

30+---~~----,------~------,-----r-----.-------r-----,-----,-------,
0 2 3 4 5 6 7 8 9 10

DIMENSION

Figure 3: Relationship between Preference and Dimension of the Koch Curve

25

The Second Perspective

Since generation of computer graphics
involves a compromise between structure
(algorithms) and chance (random choice), a
categorical scheme aimed at image evaluation can
be drawn from specific levels of these two
parameters. That is, all computer graphics can be
classified according to their degree of structure
and randomness.

In Arts and Computers [6), Holynski suggests
five categories for classifying images. These
categories vary according to the amount of
structure imposed by the artist balanced by the
unexpected offered by the computer. If considered
as a formal dimension, these categories are levels
which can be described precisely through ordered
patterns of a basic element.

The full description of
illustrating this approach was
Here, we present only its brief

the the experiment
published in [7).
overview.

Each stimulus pattern is a grid of sixteen
basic elements. The manner of determining the
orientation of these elements can define the order
level of each stimulus. Four orientations of the
element are possible and for the least ordered
type of pattern RANDOM PLACEMENT all
orientations are equally pr~bable for every
element in the grid. Orientation is assigned
through reference to a random number generator.
An example of this category of stimulus is seen in
Figure 4.

Figure 4: Example of a Random Placement Stimulus

26

To achieve the two more ordered types of
patterns, element orientation was varied in a more
systematic way. Both translation and reflection
patterns begin with a four element quadrant where
each element was randomly placed. Patterns
representing the middle level for order can be
produced by duplicating -- TRANSLATION the
original quadrant to fill the remaining three.
Figure 5 shows a typical translation pattern. The
most ordered patterns were produced by reflecting
the original quadrant about both inside edges and
the central point. This creates a symmetrical
REFLECTION -- pattern as shown by Figure 6.

Figure 5: Example of a Translation Pattern

Figure 6: Example of a Reflection Pattern

Twenty-one slides were chosen to represent
three levels of order (seven for reflection, eight
for translation, and six for random placement).
An additional dimension, color, was expored
through three hues (nine white, six red and six
blue).

The sti~uli were rated with regard to
preference by assigning a number between 1 and 10
for each pattern. Five represented an average
amount of liking with higher numbers indicating
greater preference. Mean (average) values were
calculated fer all preference ratings. When
considered as a whole, the average preference
rating was 4.829. When considered according to a
particular slide's order value, some significant
differences appear according to a stimulus' order.
A summary table follows:

code

1
2
3

value label

REFLECTION
TRANSLATION
RANDOM PLACEMENT

mean

5.579
4.881
3.886

std dev

0.795
0.639
0.528

n 44

As this table clearly shows, reflection
patterns were most preferred. This suggests that
viewers like more ordered patterns better than
less ordered or random ones. These results, as
expected, are consistent with previous findings
[9].

The Third Perspective

This perspective defines three mathematically
based variables that relate closely to Swiss
Design Theory and grid systems, important concepts
in graphic design [10], [12]. From this tradition
springs the foundation for variables like
complexity, order, and regularity as relevant
dimensions of visual form.

These variables, COMPLEXITY (amount of
information), REGULARITY (proportional consistency
of information) and ORDER (pattern of
information), have been empirically tested for
their relation to viewer preference [7], [8], [9].
When represented through computer generated
stimuli, all are strong predictors. Order is
especially significant. In some cases, the
structural variables defining a stimulus have
predicted sixty percent of the variance in
preference. Again, these dimensions of design may
provide the basis for an asthetic filter.

COMPLEXITY is defined as number of pixels per
stimulus. Number of pixels varies from 2 to 99
per side of the matrix as complexity ranges from 0
to 16. REGULARITY, which also ranges from Oto
16, corresponds to systematic variation in width
and height where larger values indicate more
extreme ratios. ORDER defines pattern variation
within a stimulus. As order varies from Oto 16,
0 indicates a systematic black and white
checkerboard and 16 indicates a completely random
distribution.

27

The stimuli for this experiment were forty
three slides which showed bot~ a range of levels
for each variable (a visual differential) and all
possible combinations of three levels of the
variables were produced. Fifteen of the 43
stimuli illustrated three visual differential
scales simplicity/complexity, regularity/
irregularity, and order/disorder -- each with five
levels. While these scales were created, only one
form variable was manipulated. The other two were
held constant. Of the remaining stimuli, twenty
seven were produced to illustrate every
combination of three levels for each form
variable. Two of these patterns are illustrated
in Figures 7 and 8.

Figure 7: A Stimulus Pattern Showing Low
Complexity

and Low Irregularity

Figure 8: A Stimulus Pattern Showing Low
Complexity

and Medium Irregularity

The stimuli were rated using an open-ended,
ratio level preference scale. When complexity,
regularity, and order values were applied as
predictors in a regression_ e~u~tion, complexity
and regularity are highly_s 7gn1f1cant: Order was
not found to be a sign1f1cant pred1ctor. The
summary table appears below:

variable b

REGULARITY 0.6725061
COMPLEXITY 0. 7156979
ORDER -0.1597848

beta f*

0.46681 13.767
0.36874 8.654

-0.10748 0.743

* significant at 0.01
n=46

where: beta, b - standardized and unstardandized
regression coefficients

f - significance lev~l

These findings imply
regularity are appropriate
for an aesthetic filter.

Discussion

that complexity and
variables to consider

By looking at variables for visual form, we
can construct a rule system that will free artists
from many of the more mundane aspects of
production and will allow them to focus on making
more intelligent design decisions. Ultimately
this will facilitate more pleasing results. A
side benefit will allow more economical use of
graphic systems.

This paper presents three methods for
quantifying visual form, techniques which relate
both to image production methods and to the way
that people process visual design. All of these
measures have been shown to correlate with viewer
preference in a variety of ways. Through more
extensive examination of the relationship between
form and preference, researchers can establish the
foundation of theory necessary for an aesthetic
filter.

As computer graphics are used more widely in
conjunction with other media -- print, film, video
and lasers -- or as an independent artform, the
need for standards will become more obvious. In
the meantime, mor~ basic research is needed to
define the direction of future studies. This
paper presents a very fertile approach.

28

REFERENCES

[l] Jim Fleming and William Frezza, "NAPLPS: A
and Graphics, Part 1: Introduction, History,
and Structure," BYTE, A New Standard for Text

-February, 1983, pp.203-254.

[2] Bruce Olenchuk, "Graphics Standards",
COMPUTER GRAPHICS WORLD, August 1983, pp.
56-60.

[3] Chris Bailey, "Graphic Standards are Emerging
Slowly but Surely", ELECTRONIC DESIGN,
January 20, 1983, pp. 103-110.

[4] Reiner Schneeberger, "Experimental Aesthetics
with Computer Graphics: Analyses of Viewer's
Impression of Computer Graphics", COMPUTER
GRAPHICS AND ART, May 1978, pp 20-28.

[5] Yoichiro Kawaguchi, "A Morphological Study of
the Form of Nature", COMPUTER GRAPHICS, vol.
16, no. 3, 1982, pp. 223-232.

[6] Marek Holynski, ART AND COMPUTERS, Wiedza
Powszechna, Warsaw, 1976.

[7] Marek Holynski and Elaine Lewis,
"Experimental Visual Evaluation for Computer
Graphics", IEEE PROCEEDINGS, 3rd SYMPOSIUM ON
SMALL COMPUTERS IN THE ARTS, 1983, pp. 21-24.

[8] Elaine Lewis, "An Effectiveness Measure for
Visual Communication Media: Toward Definition
of Visual Principles", Doctorial
Dissertation, Department of Language,
Literature and Communication, Rensselaer
Polytechnic Institute, 1981.

[9] Elaine Lewis and Brian Keith, "The Addition
of Content and the Consistency of Preference
Ratings for Visual Structures", paper
presented at the 1983 annual meeting of the
International Communication Association.

[10] J. Muller-Brockman, GRID SYSTEMS IN GRAPHIC
DESIGN, New York, Hastings House, 1981.

[11] A. Hurlburt, THE GRID, New York, Van
Nostrand, 1978.

Type Principles For Low Resolution Type

by Annette Wagner

Wagner Design
884 Pippin Avenue
Sunnyvale, CA 940B7
40B 749-0266

Abstract: This paper is a review of the typefaces
designed for Apple Computer, lnc.'s Lisa Office
System microcomputer by the author. It covers the
decisions made through first and second release of the
fonts, explains basic type practices and shows how
their application can improve the quality of the low
resolution fonts in question.

INTRODUCTION

The typefaces discussed in this paper are those
designed for Apple Computer's Lisa®. There were
two major releases of the Office System software on
the Lisa. The first release, June 1983, contained
about 40 fonts. For the second release of the
software, August 1984. the complete font library
was revised and augmented by 20 fonts. This paper
covers some of the design questions that arose in the
first version of fonts, and how those issues were
handled in the revision for second release to further
improve their quality.

PROJECT CRITERIA

The Lisa font project started in September 1981
in the middle of the development cycle for the Lisa
computer. The original project criteria was tor a set
of screen fonts to be based on the designs of Courier,
Elite and Tile (Illustration 1), which are all daisy
wheel type designs. A secondary model was Century
Schoolbook for the serif fonts. The character set was
the basic ASCII set, later extended to include
european and math support.

ABCDEFGHIJKLMNOPQRSTUVWX-~Z
abcdefghijklmnopqrstuvwxyz-

ABCDEFGHIJKLMN0PQRSTUVWX..XZ
abcdef ghij klmnopqrstuvwxyz. ..

ABCDEFGHIJKLMNOP(i)RSTUVWX-.YZ
abcdefghijklmnopqrstuvwxyz-•

Illustration 1: From the top Courier,
Elite, and Tile daisy wheel typefaces.

CH2087-5/84/0000/0029$01 .00 © 1984 IEEE
29

Apple Computer Inc.
10443 Bandley Or. MS4·N
Cupertino, CA 940B7
40B 973-2946

Modern 24 Point
Modem 18 Point

Modem 12 Point
Modern 10 Pitch

Modern 12 Pitch
Gothic 15 Pitch

Classic 24 Point
Classic 18 Point

Executive 12 Point
Courier 10 Pitch

Elite 12 Pitch

Modern 24 Point
Modern 18 Point

Modern 14 Point
Modern 12 Point

Modern 12 Point 10 Pitch
Modern 10 Point 12 Pitch

ltodern 8 Point 15 Pitch
llodtn I Point 29 ,i tell

Classic 24 Point
Classic 18 Point

Classic 14 Point
Classic 12 Point

Classic 12 Point 10 Pitch
Classic 10 Point 12 Pitch

Illustration 2: Lisa 1 typefaces at the
top and Lisa 2 typefaces at the bottom.

The range of fonts included a 12 pitch, 10 pitch
and a typewriter proportional font matched to daisy
wheels and 18 and 24 point display fonts for headline
use. {see Illustration 2). The fonts were in two sets,
serif and sans serif. Myself and another designer,
Elizabeth Hall from Elizabeth Hall & Associates,
were hired to design the fonts to this criteria.

There were two basic typeface designs used on the
Lisa and a variety of type sizes from 8 point to 24
point. Illustration 2 shows the range of sizes. both
first and second release. Classic is a serif font
similar to Century Schoolbook and Courier. Modern
is a sans serif similar to Helvetica and Univers.
(There is a glossary at the end of the paper.)

The fonts on the Lisa are stored as bitmaps
with width tables and other information. The fonts
are both fixed pitch and proportionally spaced. A
fixed pitch font is one in which each character is a
fixed width; the number refers to the number of
characters in a line of text an inch long. A
proportional typewriter font is a fixed pitch font
with one to five pre-set widths. This is different
from typesetting fonts in which every character can
be unique in width.

Fixed pitch fonts were carried over onto the
computer because of the ease of coding and the
mechanical limitations of early printers. One always
knew how wide the letters were, no matter which
letter one was typing. The use of these kinds of fonts
is one of the reasons text on computers is considered
to be of poor legibility and readability.

The marketing focus for the Lisa was to sell the
machine into a business environment in which
compatibility with a daisy wheel was essential. The
Lisa marketing group developed this strategy based
upon assessing the target user community. This
compatibility with the daisy wheel printer influenced
many characteristics of the first release font design.

WHAT YOU SEE IS WHAT YOU GET

The software support for the type work was
performed by Jeff Parrish who developed the Lisa
font editor. The editor allowed one to edit letters
pixel by pixel on an enlarged grid (Illustration 3).
Among other things. one could alter spacing around
the character easily, lay characters over each other,
and immediately see the results of any work.

r

•

•
•

A

t t

The blue drear,ns oft
to be desired when oQe
unicorns and firelizards.
of the north wind in its
newborn spring day in it
ize with the delicate det
heat and justly so havin!
and vampire bats inters~
requirements of unicorn
rubies and emeralds in a
blond virgin's hair. Gha~
the notes of the music t

Now the reason that

Illustration 3: Font editor screen with
bit-editing grid and text panel.

30

h. work started on the screen fonts. printing
became a bit more of a reality. Owen Densmore
started the print group and began looking at printers.
I began designing a group of experimental fonts to put
the printers through their paces. As we determined
which printers we were going to use we started to
develop the printing strategy. Since Lisa was to be a
what-you-see- is-what-you-get (WYSIWYG) system,
we had to make the printed image the same as the
screen image.

We determined we had three devices to match to
each other: a dot matrix printer (144 X 160 spots per
inch), a daisy wheel (48 X 120 spi), and the Lisa
screen (96 X 72 spi). The dot matrix printer also
runs in low resolution mode using the screen fonts;
this is not counted as a separate device because the
fonts were primarily designed for the screen. At this
point in the project, we began to design a separate
set of fonts for each device. Each set was composed
of two parts, serif and sans serif.

Character Width Matching: The different sets
of fonts, one for each device, had to be matched to
each other. This was accomplished through the use of
conversion formulas which converted a number in one
resolution to a corresponding number in another
resolution. This is a simple task for a computer.

Width tables contained in the font format would
be read in and converted using the computer program.
For first release this was done with same size fonts
only, i.e. an 18 point dot matrix font to an 18 point
screen font. For second release fonts were adjusted
for family continuity, discussed in Type Rules below,
by converting from size to size. i.e. 24 point Modern
to 18 point Modern to 14 point Modern. (This part
of the matching was not necessary for the WYSIWYG
system and was only used as a guide. Parameters in
typefaces do not I inearly change from large to smal I
sizes; see Type Rules).

The numbers from the dot matrix printer do not
convert evenly to numbers for the screen. Roundoff
errors occurred all the time; common cases were 5.4,
9.6, 16.8, 10.2. In most cases we would round down.
The cases we made exceptions for are uncooperative
letters like M. m, w, and W. These letters were
more legible with the extra pixels.

Although it is best to match from the top down in
a WYSIWYG system, this was not possible with the
daisy wheel fonts. For the 12 pitch, 10 pitch, and the
12 proportional we matched from the daisy wheel up
to the screen and the dot matrix printer. For the 18
and 24 point fonts we matched from the dot matrix
printer down to the screen and the daisy wheel. For
second release we were able to add to the 12
proportional width tables and to do some adjusting
which allowed a compromise with the daisy wheel for
those particular fonts.

We developed eleven fonts per device all matched
to each other. Once the bitmaps and matching were
completed the fonts were compressed and bui It into a
font library, a component of the Lisa Office System
software. I designed the Modern fonts for all devices
and the Classic fonts on the daisy wheel and Elizabeth
Hall designed the Classic fonts for the screen and dot
matrix printer.

EVALUATION OF FIRST RELEASE

After first release of the fonts was done I
reviewed the issues that had come up during the
development cycle. Some issues were use related,
some software related, and some type related. One
issue would lead to another. I will explain some
examples of the first two here. The last set of
issues, type related, will be explained in more detail
in the Type Rules section.

Daisy Wheel Impact: The world still revolved
around the daisy wheel printer and this caused several
problems. One, the type model for the sans serif
fonts was Tile and had never been designed as a
display font. There were no versions of it in a display
size, yet the Modern display fonts had to resemble
the daisy wheels. The decision was made, fol lowing
marketing guidance, to design new fonts based on the
daisy wheel model. The fonts were released but were
too bold and were a compromise between the
typewriter and typesetting world which meant the
quality was poor.

Second, since what-you-see- is-what-you-get, al I
the devices had to have display fonts (18 and 24
point), including the daisy wheel. These fonts were
composed of the period on the daisy wheels. A daisy
wheel has, as an artifact of the typewriter, an
oversize period. The original resolution of the period
was 48 X 60 spots per inch. The print group was able
to double this resolution in the width direction, giving
48 X 120 spi. This meant the dots overlapped quite a
bit in one direction and barely in the other direction.
It is a monument to bit editing that these fonts look
as good as they do. (See Illustration 4).

Common Usage: Output from the Lisa included
the usual letters, memos, proposals and etc. One
kind of usage led to re· thinking the way we designed
the display fonts. That was the use of overhead.
transparencies and slides. Overhead transparencies
need big type so that everyone in a room can see the
Information projected on a screen, yet the amount of
information on one transparency can be quite large.

We had designed the display fonts on Lisa to have
a tight character spacing, as is the current trend in
the type field. But by the time the printed output
from Lisa was copied, then made into a transparency,
the transparency was two generations from the
original and suffered image degradations from both
the copier and the transparency maker. The image on
the transparencies would Invariably be blurred and all

31

ABCDEFGHIJKLMNOPQRSTUV
WXYZ abcd~fghijklmnopqrstuv
wxyz 0123456789 &• !?=-+"'
ABCDEFGHIJKLMNOPQRSTUV
WXYZ abcddghijklmnopqrstu
vwxyz 0123456789 &•!?=-+"'

ABCDEFGHIJKLMNOPQ
RSTUVWXYZ abcdefghi
jklmnopqrstuvwxyz
0123456789 &*!?=-+"'
ABCDEPGHIJKLMNOPQ
RSTUVWXyz abcdefghi
jklmnopqrstuvwxyz
0123456789 &*!?=-+"'

Illustration 4: Modern and Classic 18
point and Modern and Classic 24 point
daisy wheel samples. (48 X 120 spi)

the characters would run into each other. This would
be aggravated by holding the characters.
(Illustration 5).

Software Issues: The bold and italic versions of
the typefaces on Lisa were done by algorithms in the
low level graphics code called QuickDraw. The
algorithms take numbers from the font and do
calculations on them to modify the font's bitmap in
some way.

The bold algorithm takes a bitmap and writes it
once and then moves the bitmap over one pixel and
rewrites it again. The resulting character is smeared
to the right. This method is common on computers
and barely acceptable with two adjustments. The
amount to which the character is bolded should be
commensurate with the size of the type, i.e. an
eighteen point type should bold more then a ten point
type. So that characters do not run into each other,
the amount that a typeface is bolded should be added

FCR>a.R
FCR YO-R
FCR Yc:x..R

FOR YOUR
FOR YOUR
FOR YOUR

Illustration 5: An example of blurring in
o copy. Lisa 1 on the left, Lisa 2 on the
right.

to the width of the character to compensate for the
smearing that occurs. These two adjustments were
made to the second release of fonts on Lisa
(Illustration 6). The algorithm did not change; the
numbers fed to it did. However, the effect of this
change was to make bolded characters wider. One
implication is that a fixed pitch font in bold and
normal would no longer line up. Fonts that had to
line up were handled specially, i.e., LisaTerminal and
QuickPort fonts.

FOR YOU/ DFORMA TICW
FOR YOUR N'ORMA TION
FOR YOUR INFORMATION

FOR YOUR INFORMATION
FOR YOUR INFORMATION
FOR YOUR INFORMATION

Illustration 6: Modern 18 pt. bold italic,
bold and regular on Lisa 1 and Lisa 2.

The italic algorithm takes a bitmap and starting
at a specified point on the baseline moves up and over
to the right placing dots as it goes; up three, over
one, etc, (Illustration 7). For a mathematical
formula the algorithm is acceptable though it does
leave some blank areas. The angle at which the
letters are slanted is a bit steep at the smaller sizes.
The major problem with it is the character is not
centered in the bounding box when the algorithm is
through. The letter hangs out of the bounding box to
the right and not to the left. (See Illustration 8)
This creates spacing problems when one word is
italicized in a I ine of regular text.

Traditionally, italic fonts are separate designs.
With the advent of digital typesetters regular fonts
can be mechanically obliqued. Either way, the
character is skewed from a point below the x-height
I ine, about the center of the font (Illustration 9).
This centers the letter in the bounding box with equal
overhang on either side.

HIYM
H.IYM

Illustration 7: Example of italic
algorithm.

32

This is an example of
an it,tlic word in a line
of normal text and
idi&t overhang is.

Illustration 8: Italic example with part
of the text selected to show the overhang
problem.

A way of fixing the italic algorithm to mimic the
typesetting font, is to take the amount of pixels that
the letter hangs over on the right, divide it in half,
and start writing the character on the device to the
left of the normal starting point by that amount.
This change was not implemented on Lisa though it
may still be at some future time.

Illustration 9: Correct place to rotat(a
letter.

TYPE PRINCIPLES & SECOND RELEASE

When the Lisa fonts were designed the first time
most attention was paid to the problems of making a
WYSIWYG system work. As a result some of the
fonts were not as successful as they could have been.
In this section I mention some principles that we
applied to the fonts as we revised them. The reason
these practices were not emphasized in the first
release was that, theoretically, they would not have
had any impact on the fonts because of the low
resolution of the devices. This was found to be
untrue when those practices were actually put into
use.

In Illustration 10 you can see defined the parts of
a letter or letterform. It is the x-height that
determines the size of the font. The larger the
x-height the easier the font is to read. The x-height
is 40 to 60% of the body size of a font. Most
x-heights in the Lisa fonts range between 50 to 60%
and are considered to be of medium to large
x-heights.

bounding box
············L•

lowerca:.e letter:.

serif Hem

ascender

X-height
or body

de:.cender

capital or
uppercase

_Baseline

Illustration 10: The parts of a letter.

The relationship between ascenders, descenders,
and the x-height changes in a typeface as the point
size changes. Display fonts, 14 to 72 point, have a
smaller x-height, larger ascenders and descenders and
less letter spacing. Text fonts, 8 to 12 point, have
smaller ascenders and descenders, a larger x-height
and more letter spacing. This progression of change
is not linear.

Historically typefaces were cut in metal and a
separate font was cut for each size. The changes
made accommodated the human visual system though
it was done instinctively at that period of time. For
a more complete explanation see Bigelow (1983).

The relationship between the vertical stem and
the x-height determine the weight of the stem versus
the x-height. The relationship is 5 to 6 stems per
x-height. If the stem is one pixel wide, then the
x-height should be five or six pixels tall. On the Lisa
screen the fonts are single pixel stems up to 14 point
and increase from there. The ratios, starting at a
point run: 5:1, 5:1, 6:1, 7:1, 9:2, 13:3.

A family of type is a grouping of all the type
sizes and variations of a particular typeface.
Variations include roman, italic, light, condensed,
bold, etc. (Illustration 12). Across a family of type,
items like stroke weight, x-height, capital height,
ascenders and descenders are harmonized so that any
size and variation of the family is recognizable as a
member of that family. A font is one member of a

33

family, i.e .. Modern 12 point is a font in the family
of Modern.

This idea of a family was implemented as the Lisa
fonts were re-designed so that the various parameters
of each font corresponded not only to its counterpart
on a different device but also to its own family

· members. For example, the 24 point parameters for
x-height, cap height, ascenders and descenders are the
guide for the 18 and 14 point parameters. The way
in which fonts change from text to display sizes was
also taken into account. As mentioned before bold
and italic are done by algorithms in QuickDraw, as
well as other variations such as shadow and outline.

ITC Cushing Book
WITH SMALL CAPS

ITC Cushing Book Italic
ITC Cushing Heavy

ITC Cushing Medium
ITC Cushing Medium Italic
ITC Cushing Bold

ITC Cushing Bold Italic

Illustration 12: A type family.

Leading: The space between lines makes for
easier readability. The longer the line, the more
leading is necessary. Bodoni's rule: For good
readability specify one third of the size of text type
for leading. Illustration 13 shows normal, tight and
loose leading. When leading is too tight or too loose
the eye gets lost trying to read across a line of text.
On the Lisa the leading is set in the font, but the
applications can override it.

Word spacing is the white space between words.
A guide to a determination of the correct amount is
the width of the lowercase 'r' in the typeface in
question. Too much word spacing creates 'rivers'; too
little makes the eye work to distinguish the word.

A typeface with large x-height requires
more leading than one with small
x-height. A general guideline: Type with
small x-height, no leading; normal
x-height, 1 point; large x-height, 2 points.

A typeface with large x-height requires
more leading than one with small
x-height. A general guideline: Trpe with
small x-height,no leacfing; norma
x-height, 1 point; x-height, 2 points.

A typeface with large x-height requires

more leading than one with small

x-height. A general guideline: Type with

small x-height, no leading; normal

x-height, 1 point; large x-height, 2 points.

Illustration 13: The top paragraph shows
normal leading, the middle paragraph tight
leading and the paragraph loose leading.

Artifacts of the devices play havoc with this and
other practices. The aspect ratio of the pixel on the
Lisa screen is 2:3. The vertical dimension is thinner
than the horizontal dimension. A supposedly even
weight font on Lisa is not truly so. Dots on the
screen are written with a writing beam that turns on
and off very rapidly. The beam can overshoot causing
dot erosion; a single pixel stroke is too I ight, but a
double pixel stroke is too dark.

Physical factors of the devices affect the ability
to which one can implement minor adjustments. An
issue that came into play from the dot matrix.
printer was that of dot separation (lllustration14).
Two single stroke vertical bars have to be separated
by a minimum of three pixels or they are not
recognizable as two separate strokes.

An observation from some experiments I did
shows that the more times a vertical line is broken
down to form a curve the less distinct the form
becomes and the shorter the viewing distance from
which one can discern the form. This was determined
at a 10 point font size on the Lisa screen
(Illustration 15).

11 IW 111111 ~1u1111m 11111111 Iii 1111 11111111111111111 Ill llll 111111111

Ill
1111111111
111m1111
1111111111
II !111111
II ~11111

Illustration 14: Dot separation. This was
printed on the dot matrix at 144 X 160
lines per inch. The lines are separated by
1, 2, 3, and 4 pixels from left to right.

abcdefghijklmnopqrstwwxyz
abcdefghi j k lmnopq rstwwxyz

Illustration 15: Screen resolution fonts
printed on the dot matrix printer. The top
line shows a rectangular letterform and the
bottom shows a curved letterform.

Letter spacing is the white space around a
character, sometimes referred to as inter character
spacing. When spacing is done correctly the visual
space between characters should optically look the
same. This creates an even rhythm of dark and light
which is very well suited to what our eye wants to
see (Bigelow 1983).

To more easily determine the correct spacing
we break the letterform into elements (Illustration
16) which are the vertical, horizontal, diagonal, and
curve. There is a rule of typography based on these
elements that explains how spacing works. It states
as follows:

34

"Letter spacing and word spacing
must be consistent. Once you
establish whatever amount of letter
spacing between two vertical strokes,
or a vertical stroke and a slant, a
slant and a curve, etc., thereafter
whenever that same combination of
strokes occurs, the spacing should be
the same throughout. Same with
word spacing. This rule should never
be violated."

- From one of the typography
manuals used in a class by Paul Sinn.

I \J
Illustration 16: The elements of a
typeface.

The original method of spacing letters was to
put the same amount of white space between each
letter regardless of what kind of strokes the letter
was composed of. If we look at the 24 point
Modern font for the dot matrix printer, Illustration
17, the first line of text, 'HOHOOHH', in the first
example, shows all the characters as having 5 pixels
between each regardless of stroke type. The spacing
was uneven from the right to the left of the letter.

The next example shows three pixels around a
curve and four around a vertical; this gives the
6- 7-8 example. In the last example the vertical
spacing was Increased to five pixels on either side of
a vertical giving the 6-8-10 example. At the same
time the diagonals have been adjusted from three
pixels on either side to one pixel on either side.

HOHOOHHOOOHHH
HOHOOHHOOOHHH
HOHOOHHOOOHHH
HXHXXHHAHAAHH
OXOXXOOAOMOO

Illustration 17: The top example shows the
characters with 5 pixels between
characters. The middle example shows a
variation of 6-7-8 in pixel spaces. And
the bottom example shows the final spacing
of 6-8-10 pixels.

In this way, the spacing for the curve/vertical,
curve/curve, vertical/vertical, etc. pairs was
produced. From these pairs the rest of the spacing
could be determined. A rule of thumb in typography
states that if the space between two verticals is X,
then the space between a curve and a vertical is
1/2X. That gives a starting point from which the
font can be visually adjusted.

Illustration 18 shows various characters and the
amount of surrounding white space in pixels.
Characters like A. L, E, S, and J went through
several steps to determine the correct spacing for
both sides of the character. The same basic process
was applied to the lowercase letters with the
difference being that the numbers were smaller and
spacing was therefore tighter than the capitals.

H~HJJHHJOJQJ1J
H~RH RRH H R.O~RORR
HSHSSHHS~dsoss
H,EHE~EHHE(jEOEE
Ht:HLLHHCdLOLL
noonnononno
nanbncndnenfngn
oaobocodoeofogo

Illustration 18: The nllllbers indicate the
spacing for J, R, L, E, and S.

Next the screen version of the 24 point font was
matched to the widths of the dot matrix printer 24
point. This approach had the advantage that the
spacing was more uniform. But as a result of going
to the lower resolution the lowercase letter spacing
became the same as the uppercase. The difference
in pixels between different kinds of strokes
continued to become much smaller; the size of a
screen 12 point font yields a minimum of 2-4 pixels
between strokes compared to 3 to 10 pixels in the
24 point dot matrix font.

This discussion has focused on the Modern font,
which is sans serif. The serif font, Classic, was also
adjusted with this method and Illustration 19 shows
the change in Classic 24 point for the dot matrix
printer. There was a wider range between verticals
and curves than with the sans serif font. Dot
separation has an impact here on how close the
serifs can get to each other.

35

HOHOOHHOOOHilli

OXOXXOOAOAAOO
HOHOOHHOOOHHH
HXHXXHHAHAAHH
OXOXXOOAOAAOO
champions
noonnononno
nanbncndnenfngn
oaobocodoeofogo

Illustration 19: On top is the version one
with 4 pixels between curves, 12 between
verticals and O between serifs. The bottom
is 6 between curves, 16 between verticals,
and 4 between serifs.

Even with the limitations of the devices the
spacing adjustments improved the quality of the
typefaces. The space between characters becomes
rhythmic and even, which is essential to the read
ability of the typeface. (This also clears up the
copying and overhead transparency issues.)

CONCLUSION

This paper has shown how the fonts incorporated
in the Lisa 7/7 software were improved by the
application of a variety of type principles.
Considering the typeface designs currently used on
some microcomputers, these typefaces offer
legibility and readability to the best of the device
resolution. While low resolution type will never
compare with graphic arts quality type, it should be
obvious that type designed with these practices in
mind is a definite step closer to that quality than
fonts which ignore such rules.

The Lisa fonts were designed for their particular
devices, but only to the extent that the physical
factors that affected the type design were taken into
account. They were modeled after typesetting designs
to the point that one can recognize a resemblance to
a sans serif Helvetica/Univers letterform.

When typefaces are designed for typesetting,
practices are followed similar to the ones mentioned
here, though typesetting machines have a minimum of
720 lines per inch resolution, and usually much higher.
The subtleties of letterform design are therefore
much more complex.

In translating type into the low resolutions of the
computer, the trained type designer employs his
knowledge as a filter to bring the elements of good
type to a typeface design within the restrictions of
the device. This means that not all the subtleties and
details of a design may make it to the printer or
screen, but that those which are necessary to make
the design a good one wi 11.

Bibliography:

Bigelow, Charles and Day, Donald, Digitt1/ Typogrt1phy,
Scientific American, August 1983, p. 106 - 119

Bigelow, Charles, Principles of Structured Font
Design for the Person,1/ Workstt1tion, Byte Magazine,
Setember 1984.

The text of this paper was printed on lmagewriter
using 717 Office System software on a Lisa
computer. The typeface is Modern 12 point at high
resolution. The ii lustrations were done using a Lisa
and a Macintosh computer.

Glossary

Ascender: The upper stroke in a lowercase letter: b.
d, f, h, k, I, t.

Bitmap: The array of pixels that compose an image
whether it be a letter, pattern or picture.

Bold: A typeface variation in which the weight of
the character is heavier then normal. Used for
emphasis.

Bounding Box: The smallest box within which a
character image is contained.

Capital: The large letters in a typeface, also
uppercase. Cap height is a measurement of the same.

Decipherable: Text which is read with difficulty,
which must be deciphered.
Descender: The downward stroke in a lowercase
letter: g, j, p, q, y.

Device: Something an image is output onto.

Display: Fonts from 14 point to 72 points of size.

Family: All the variations of a typeface i.e. regular,
bold. italic. condensed. extended.

36

Font: A font is one variation of a family of type. A
complete assortment of any one size and style of
type.

Italic: A typeface in which all the characters are
slanted to the right. Used for emphasis.

Leading: The space between lines of type. It is
measured in points.
Legibility: The speed at which letters can be
recognized. Text is read with minor difficulty.

Letter Spacing: The white space between letters.

Lowercase: The small letters in the alphabet.

Pitch: The numbers of charcters per inch in a line of
text across a page. Fixed pitch fonts have a fixed
number of characters per inch.

Pixel: The smallest segment of a raster line that
can be discretely controlled by the display system.
Also bit. From picture element.

Point: A system of measuring type. There are 72
points to one inch.

Readability: The measure of ease of reading a
printed page. Text is easy and pleasurable to read.

Resolution: The number of controllable pixels on a
device. In this paper the measurement used is spots
per inch.

Sans serif: A typeface with no serifs.

Serif: The short crossline at the end of the main
stroke.

Stem: A straight vertical stroke or straight diagonal
stroke in a letter with no vertical strokes.

Stroke: A straight or curved line.

Text size: Type from 6 point to 14 points in size.

Typewriter Proportional: On the daisy wheel
printer a proportional wheel is one on which the
characters have perhaps five pre-set widths to choose
from.

Uppercase: Capital letters; it refers to the storage
of the letters in hot metal times.

Weight: Refers to the heaviness of the stroke in a
font. The stroke can be light, regular or bold.

Word Spacing: The white space between words.

WYSIWYG: What you see is what you get. A term
describing visual fidelity between devices.

X-height: The body of the letter minus ascenders
and descenders i.e. ·x·. The lowercase ·x· is used to
measure this in points.

Lisa is a registered trade11ark of Apple COlll)Uter. Inc. Nacintostl
is a tradellark licensed to Apple.
ITC is International Typeface Corporation. New York.

-,--

• l
I
I .,
I

e!

-------------- -

•
•
•

.Abstract
Department of Art

Unfversity of Tennessee/Knoxville

This paper provides a broad overview
of some of the microcomputer applications
for the field of graphic: design. The
author's purpose is to explore applications
beyond obvious production oriented tasks.
She begins by comparing the past role of
America's "Commercial Artist" to the
"Designers" role today. In doing so, she
demonstrates the need for computer
assistance within the changing field of
Gr·aphic: Deign. The remainder of the
article describes possible microcomputer
applications for typesetting, animation,
business graphics, page layout,
photography, television, typography design,
creative problem solving, education,
communication, concept sketching, business
services, and image making.

Background
American Graphic: Design has undergone

an evolution (1). From the turn of the
century until the 1950's Graphic: Design
was the domain of technicians, aptly
called Commercial Artists. A successful
Commercial Artist was one who could take
ideas provided by the client and render
them in decorative and stylized ways. This
is no longer the case. Today, a "Graphic:
Designer" plays a multifaceted role
focusing on design as a process requiring
multidisciplinary professional skills
beyond the scope of artistic: talent <2>.

Presently, the graphic: design
profession is a primary contributor to
modern visual culture.• Graphic:
c:ommunic:ation techniques are used for
persuasive, informative, and educational
purposes. The increased need for design
and the comple>:ity of new modes of
communication demand new roles requiring
new kinds of designers.

• Designers are now translators,
interpreting written and verbal
information into visual imagry.

e They are teamplayers and coaches
worK1ng beside professionals like
editors, typographers, stylists,

CH2087-5/84/0000/0037$01 .00 c 1984 IEEE
37

producers, suppliers, illustrators,
photographers, printers, marketing
statisticians, media buyers, computer
consultants, and other specialized
designers.

• Today, designers must be
literate in areas related to
sociology and psyc:hology in order to
analyse, predict and control
behavioral responses to proposed
messages.

• A designer must be wel 1 versed
in principles governing business.
Not only does the design studio have
to project a professional attitude,
but the designer must also possess
the voc:abulary to communicate with
business c:lientele.

• Designers must be tec:hni call y
oriented so that they may perform, or
direct, the production steps required
in preparing a graphic: communication
piece for publication or broadcast.

• Designers are, of course,
artists. An artist manipulates visual
elements within a predefined visual
field. In the case of graphic:
design, the image should be distinct,
dynamic:, mood provoking, and
aesthetically pleasing.

• Lastly, the transition from the
Commercial Artist of the 1950's to
the "Designer of the BO's" means that
a designer must possess a strong set
of creative problem solving skills.
The design process today is no longer
solely dictated by the client.
Today, a client hires a designer or
design team with the expectation that
they will carry a project through
from concept to final piece. This
responsibility includes: defining
and researching the problem, creating
criteria for a successful solution,
generating options for solution,
selecting the best of these options,
producing the piece, and, oftentimes,
even monitoring the project's success
in the market-.-

:Cntroduction
Computer technology is playing an

important role in defining the scope of
today's designer. A report titled, "The
Market for Computer Graphics in the
Graphic Arts Industry," published by Frost
and Sullivan, Ltd., predicts that
electronic paint systems will become
unive~s~l graphic design tools in graphic
design and video studios. The influx of
the new technology will be so great that
sales of this computerized equipment will
top seven billion dollars by 1990 131.

Print Magazine prefaced the results
of a computer graphics usage survey of its
readers by stating, "Computer graphics
systems are forecast by industry experts
as the highest growth segment of the
computer industry for the next five to ten
years" (41.

However, the computer industry has
been shortsighted in limiting its
applications for design to those
performing production oriented tasks.
Production is only a small segment of the
total design process. A designer must
integrate the social, economic,
psychological, and physical attributes of
a design problem into a successful and
distinct solution. Therefore, if a
computer is to be a worthy investment it
should address the needs of both creative
and practical tasks.

This paper will provide an overview
of production applications along with
other more creative applications for using
computer technology to enhance the total
design experience.

It should be noted that a desigr
studio or educational institution need not
invest thousands of dollars in order to be
part of the "computer revolution." Most of
the applications discussed in this paper
can be accomplished with a personal
computer and add on peripherals.

The system I am using is an Apple II
Plus with 64K of memory, two disk drives,
a dot matrix printer with a graphics
interface, an RBG color monitor, a
graphics tablet, a video digitizer, and a
communications modem. This equipment costs
approximately $5,000.00. Software,
supplies, books, etc. costs an additional
$1,500.00.

38

AJop l i cations
TYPESETTING INTERFACE

A designer is usually provided with
written copy for a project. However, he
or she is responsible for choosing and
sizing a typestyle that will enhance the
visual concept without compromising the
informational content of the message.
Traditionally, a professional typesetter
sets the copy to the designer's
specifications. Most typesetting is done
on a specialized computer. Therefore, it
is possible to use a communications modem
to interface a microcomputer, located at a
remote site, with typesetting equipment.
This allows the designer, after entering
the correct conversion table, to directly
keyboard and specify the desired type and
layout. The advantages of this system are
a quicker turnover, less chance for
errors, cost reduction, and a more
personalized involvement with the actual
product.

TYPOGRAPHY DESIGN

Many of the graphic packages on the
market include a selection of type fonts
that the user can manipulate in respect to
position, size and weight. Occasionally,
the designer will want to create a
typeface for a specific use. Most type
design routines provide the user with a
magnified grid in which existing
characters can be altered and new ones
created from scratch. The resolution is
not nearly good enough to be substituted
for professional typesetting, but the
characters can be used for rough concepts
and do have a certain sensitivity in their
own right.

PAGNATION SYSTEMS

One of the most tedious jobs the
designer performs is "keylining" a piece.
Keylining is the process in which the type
and artwork are pasted to a board, colors
are separated by "cutting" overlays, and
instructions are provided for the
printer. Large computer systems have been
extremely benefical in assisting the
designer in completing this task. Time
Magazine, for e>:ampl e, replaced X-acto
knives and waxers with "Vista", a system
designed by Scitex Corp. Ltd. This system
is comprised of two screens. One of the
monitors displays, in symbolic form, the
designated story, headlines, art, and
pictures. Time's designer can move the
elements around and alter size and
position. The second monitor shows, in
full color, what the actual page will look
like. When completed, the page can be
outputted fully keylined (5).

Microcomputers are unable to provide
the high quality of image required for
publication. However. word-processing
programs are available that have "cut and
paste" routines which can combine type and
images together on a single page. In
addition, images, copy, grids for layouts,
letterheads, etc. can be designed and
saved, then retrieved when needed. This
technology is useful in the concept stages
of the project. In fact, some advertising
agencies have been experimenting with
"soft proofing" of ads in which they
electronically transmit the rough concept
to the client for viewing and critiquing
(6).

BUSINESS GRAPHICS

One of the more popular applications
of computer graphics is creating charts,
graphs, diagrams, and information graphics
for presentations, training programs, and
other ·situations where complex data is
better understood ii: it can be visually
communicated. Many quality programs are
on the market that can manipulate data
into a variety of graphic formats. The
problem with the microcomputer versions is
the inferior quality of the resolution and
output. However, if the need exists,
business graphics can be composed on a
micro and then be electronically sent to a
professional computer slide production
house for printing <7).

PHOTOGRAPHY

Glenn Rand, Director of the Lansing
Community College Photographic Technology
Program in Michigan, has written a unique
program for the Apple that can be used by
photographers "to add dimension to the
black and white printing process" CB>.
Dr. Rand's program uses the CRT as a "very
controllable" light source. The light
pixels are individually programmed to
imitate the procedure of "dodging and
bur·ning."

TELEVISION

Most of the computer graphics
produced for television are created on
large, powerful, and expensive systems.
However, Chyron Corporation of New York
recently introduced a low cost
microcomputer peripheral capable of
generating both video text and graphics.
This system is not as sophisticated as its
larger counterparts, but for a designer
working with public television or a cable
information network it provides good
quality graphics for displaying titles and
credits, and fulfills other broadcast
needs (9).

39

ANIMATION TECHNIQUES

There are excellent software packages
available for micros which provide the
"tools" to create two-dimensional
animation. "MovieMaker", by Eric S.
Podietz, is a fine example of a easy to
understand program that allows the user to
develop, edit, and review animated
sequences. The designer can apply this
technology to planning storyboards or
producing animatics for television
commercials. A computer used for
animation will save the designer time by
actually drawing many of the frames and
allowing for immediate changes.

SERVICE

One of the advantages to using a
microcomputer instead of a stand-alone
imaging system is that it fulfills the
many design related applications
previously discussed, and, also can be
used to perform everyday office related
functions. A wor·dprocessing program can
be used to write letters, advertising
copy, articles, briefs, etc. Databases can
be tailored to generate class records,
client profiles, mailing lists, and any
other organizable information. Accounting
packages can be used to keep financial
records. A communication modem can
connect the user to other computers,
electronic information networks and
services ranging from library circulation
databases to letter ~uality printers.

A software package is available for
IBMs and IBM compatible systems that
manages the day-to-day functions of an
advertising agency. Developed by Gabel
Advertising, Inc. in Colorado, to handle
their own business's chores, it provides
specialized management tools for billing,
cost accounting, general ledger entries,
payroll planning, invoicing, and check
printing.

COMMUNICATION SERVICE

A microcomputer fitted with a
communication modem can send and receive
information. This makes it an ideal
vehicle for communicatng timely, design
related news and information between
students and/or design practitioners.

Currently, I am working on a project
to electronically publish a newsletter
titled, "Design-on~Line." This publication
would feature articles, employment
opportunities, legislative news, grant
listings, a date-line for conferences and
other events, an interactive student
message/bulletin board, resource lists,
and other design related information.
"Design-on-Line" will be shared with other
machine compatible design programs and

studios. Eventually, it could grow to
serve a larger audience and possibly be
self-supporting from subscription and
advertising revenue.

EDUCATION

Microcomputers, as an imaging tool,
have already made an impact on design
education. However, a computer in the
classroom can also be used to perform
other, diverse, design related tasks.
"PFS," by Software Publishing Corporation,
is a good example of a database management
system that can be very useful in a
1·earning environment. An educator can
personalize a form for listing information
like bibliographies, slides catalogues,
historical data, designer biographies,
paper specifications, market statistics,
industrial product standards, etc. Once
the form is composed a student can enter,
access, rearrange, change, or delete
information.

The advantages of such a system are
the following: Information can be rapidly
retrieved from various item headings.
Data can be continually updated. Hard
copy, even mailing labels, can be easily
obtained. The computer provides the user
with an interactive session which, in
turn, implies a more interesting approach
to learning. The information is available
to anyone with access to the disk. It can
even be sent over modem to other educators
and design practitioners.

The computer can also be used, in a
learning environment, to provide
self-paced educational units on everything
from how to perform specific design
related tasks to to how to use the
computer. Studen.t s can use a system to
review assignments, access hand-outs, or
take tests.

Another intriguing use for such a
system would be personalized electronic
sketchbook/journals. Every student would
be required to use a disk to keep notes
and sketches. This disk would be a good
way to document a term's work and
research. In fact, e>:isting databases
could be accessed and information
pertinent to particular problems and
solutions could be saved unto the journal
disk for future reference.

CREATIVE PROBLEM SOLVING

Many designers willingly accept the
computerization of design production but
balk at high-tech interference with the
creative, conceptual phases of the design
process. However, the microcomputer is an
ideal tool for accessing, organizing,
manipulating, visualizing, and evaluating.
information relative to a design problem.

40

This process, of logically exploring a
problem by playfully coaxing the user into
manipulating information in ways that new
combinations and fresh ideas surface, is
called Creative Problem Solving (10).

Last year, at the 3rd Symposium on
Small Computers in the Arts, I presented
"Electronic Thinking Cap," a paper
describing my research on adapting a
conventional creative problem solving
model to microcomputers. This computer
enhanced model consists of a foundation
program and numerous application
programs. The foundation program is a
hierarchically structured, attribute
storing, database in which the user can
search for, add to, reorganize, and delete
information. The application programs
are, for the most part, "games" which
allow the user to interact with the
foundation program in order to generate a
quanity of alternative solutions.

The advantages of microcomputer
enhanced creative problem solving are
numerous. Information can be
systematically and rapidly accessed and
processed. A quantity of options can be
generated, manipulated, and visualized.
One-to-one interaction is readily
available. An objective appraisal can be
used to determine a priority ranking of
idea options. The design process can be
documented through a history of the user's
interaction with the model. Lastly,
"Electronic Thinking Cap" can provide the
designer with a non-stressful and,
hopefully, enjoyable high-tech experience
(11>.

Sl<ETCHING TOOL

The most creative phase of the design
process is the concept stage.
Traditionally, the designer uses colorful
markers on tracing vellum to present his
or her ideas to the client. These are the
standard tools of the profession because
they allow for subtle to significant
reworking of the concept. A
microcomputer, used as an electronic
sketch pad, is an inviting alternative to
markers and vellum. The computer can be
programmed to perform an array of visually
exciting manipulations once the image has
been inputted. For e>:ample, using "The
Complete Graphics System," written by Mark
Pelczarski and David Lubar (Penguin
Software), a designer can magnify portions
of the image, choose from a palette of 100
colors, paint with over 90 different brush
strokes, add text, create mirror images,
move selected parts of the image, change
colors, and rotate and shrink the image so
that multiple views are shown
simultaneously. Furthermore, the images
can be saved to disk and then retrieved
for viewing, reworking, or hardcopy

output.

Models for packaging graphics and
other three-dimensional concepts such as
e>:hibits, costumes, stage designs, product
prototypes can be built, panel by panel,
using the 3-D routines. Once all the
points have been visually or
mathematically entered, the image can be
moved, sized, rotated, and even drawn
upon.

IMAGING TOOL

Computer generated art has been slow
to gain acceptance by the design
community. Owning or buying time on large
imaging system is e>:pensive, yet, the
smaller microcomputer systems cannot
provide the standard of quality needed for
professional work. However, the industry
is beginning to respond to the needs bf
illustrators and designers who want to use
the computer as a fine art tool but cannot
afford a stand-alone imaging system.

Chartpak Company, producers of
transfer lettering and graphic art
products, recently introduced, "System
640," a graphic system compatible with the
IBM PC. This system offers many of the
same features of the sophisticated
stand-alone systems, at about a tenth of
the cost. The advantages of these kinds
of "add-on" systems, other than their
affordablity, are accessibility, ease of
operation and the versatility of the
personal computer to also be used to
perform numerous non-imaging tasks.

Co:nclusio:n
This paper has provided a generalized

overview of some, but certainly not all,
of the microcomputer applications for
graphic design. Furthermore, the field is
so dynamic, and growing to rapidly, that
some of the information presented in this
paper will, no doubt, be obsolete by the
time this publication goes to press.

There are two important points to
keep in mind when considering
microcomputer applications for design.
The first is that computer technology need
not be financially prohibitive. The
potential user needs to decide on the
priorities for use and purchase a
microcomputer system that best serves
those needs. Most systems are modular in
composition and peripherals can be added
as finances permit and the need merits.

Secondly, there is no limit to the
microcomputer's potential as a creative
addition to a design environment. Massimo
Vignelli, an internationally renown
designer stated, "The computer frees the
designer to design" (12>. If the designer

41

approaches the machine with
then he or she can go
preconceived notion that a
solely a production tool and
fulfill a wide range of
creative tasks.

an open mind
beyond the

computer is
use it to

diverse and

Re:fere:nces
1. D. Fahnstrom, "Technology, A Necessity

in Design Education," The Design
Journal, Vol. 1, No. 2, 1983, p.11.

2. P. Meggs, A History of Graphic Design,
New York: Van Nostrand Reinhold, 1983,
pp.424-48, p.491.

3. "Artists Will be Among Beneficiaries
as Computerized Equipment Purchases by
Graphic Arts Industries Top $7 Billion
by 1990," Typeworld, Oct. 28, 1983,
p.20.

4. J. Hoffman and R. Auster, "Results of
Print"s Computer Graphic Survey,"
Print, March/April 1984, pp.92-93.

5. J. A. Meyers, "A Letter from the
Publisher," Time, April 4, 1983, p.1.

6. K. F. Schmidt, "Electronics in
Printing," Print, Jan./Feb. 1983,
pp.88-89. ---

7. T. Scannel, "Say it with Pictures,"
Inc., Sept. 1•;,02, pp. 130-132.

8. G. Rand, "The Co~puter in the
Darkroom," unpublished, 1983.

9. K. Lainis, "Microprocessor-based
Character Generation," Electronic
Imaging, Oct. 1983, p.18.

10. S. E. Metros, "Electronic Thinking
Cap," 3rd Symposium on Small Computers
in the Arts, Silver Springs, MD: IEEE
Computer Society Press, 1983,
pp. 30-31.

11. D. Koberg and J. Bagnall, The Universal
Traveler, Los Altos, CA: Wm. Kaufmann,
Inc., 1976.

12. M. Vignelli, Proceedings from AGI
Viewpoints Conference, Toronto:
Alliance Graphique Internationale,
1982.

3-D COMPUTER GENERATED ANIMATION

Judy E. Sachter

Computer Graphics Research Group
The Ohio State University

ABSTRACT

As computer graphics has become
more sophisticated technologically,
it has become an obvious tool for
animation. While many 2-D and 3-D
computer animation systems are
based on traditional eel animation
concepts and terms, there are a
number of new concepts and design
criteria the artist must consider
when working in this new 3-D medi
um. Computer animation is a
multi-stage process, or animation
pipeline. The computer animation
environment is described, and each
stage in the pipeline is discussed,
with special attention to data gen
eration, data manipulation and mo
tion control techniques.

1. Introduction

Animation is the graphic art which
occurs in time and conveys complex informa
tion through a sequence of images as seen
over time. The source of information for
the viewer of animation is implicit in pic
ture change; change in relative position,
shape, and dynamics. Norman McLaren, a
well-known Canadian animator, describes
animation:

Animation is not the art of
DRAWINGS-that-move, but the art of
MOVEMENTS-that-are-drawn.

What happens between each frame is
more important than what exists on
each frame.

Animation is therefore the art of
manipulating the invisible inter
stices that lie between frames.
The interstices are the bones,
flesh, and blood of the movie (and)
what is on the frame (is) merely
clothing (17].

CH2087-5/84/0000/0042$01.00 o 1984 IEEE
42

This equilibrium between form and
movement characterizes animation and makes
it unique as a graphic medium. In anima
tion anything can move in any desired way;
this is what makes animation so exciting.
The artist can create and bring life to new
and imaginary worlds. In this respect ani
mation is one of the most creatively free
mediums. Ironically, animation which is so
artistically free is also a time consuming,
tedious, and expensive medium.

2. USES OF COMPUTERS IN ANIMATION

As computer graphics has become
sophisticated technologically and as
puter availability has increased, it
become an obvious tool for animation.

more
com
has
The

computer can be used as an augmenter for
conventional animation and as an image syn
thesizer in computer generated anima
tion (14]. As an augmenter in traditional
animation the computer is used to control
the moves of the camera, eels and/or the
animation bed of the animation stand. One
advantage of the computer is its ability to
deal with complex relationships precisely
and rapidly. The computer is able to
repeat mathematical operations over and
over again either identically or with small
incremental changes. It can be used to
compute camera moves, as well as keep the
detailed records for the exposure sheets
that are necessary for animation organiza
tion and production [3].

Computer generated animation can
include both 2-D animation and 3-D anima
tion. The approach to 2-D computer anima
tion is very similar to the process of
traditional eel animation. The animator
need only learn how to use the computer and
the specific software available to create,
store, and playback the animation [5].

3-D computer animation, in some
respects, is similar to clay, puppet, or
model animation. In 3-D animation the
model, props, and backgrounds are built
and/or painted, then the lights are set up
to show the dramatic effect desired. A

motion picture camera with single frame
capabilities is set up and one frame of
film is exposed. The animator moves the
model just a little and a frame is exposed.
Repeating this process over and over again
is the process of creating animation. As a
result of the persistence of vision, when
these single frames are-projected at an
appropriate rate they appear to blend into
movement.

2 .1. 3-D Computer Generated Animation

In 3-D computer generated animation a
mathematical model of the characters,
props, and background are created by the
artist and stored in the computer memory.
Many copies or instances of one model can
be used. If one tree is digitally gen
erated, it can be used to create a forest.
For a scene, these models can be manipu
lated by changing their size, position, and
orientation in space. The color and sur
face properties are assigned to the models.
As with model animation the lights are set
up to best show off the form and the
action. The "camera" or eyepoint from
which this scene is viewed can be placed
anywhere and moved at will. The resulting
image is rendered on a display device.
Then the image can be stored in computer
memory and/or recorded one frame at a time
on video tape or film.

2.2. Preproduction Planning

The process of planning for an anima
tion is essential. Animation is a visual
art form, a form of communication.
fore, the idea is the first and most
tial step of creating an animation.
what makes the animation work.

There
essen
It is

The storyboard is the conceptualiza
tion of the animation in a visual format.
Animation is time consuming and expensive.
Through the storyboard, scenes can be
edited and rearranged prior to actual
rendering, thus avoiding a great deal of
time and expense. The storyboard contains
the action, timing, sound, motion, transi
tions, information flow, rhythm, and char
acter development, as well as the lighting
specifications and the "camera" shots.
There should be enough drawings, usually in
comic book form, to get across the key
ideas and to be able to clearly follow the
action. Even in highly interactive com
puter animation systems preplanning and
storyboarding is essential.

2.3. Movement and Timing

43

The animator's main concern in 3-D
computer graphics is the choreography of
objects, lights and the camera. The anima
tor must communicate this information to
the computer for each frame of the anima
tion. These changes or transformations are
controlled in various ways by the animator,
depending on the system being used.
Besides specifying the parameters of the
objects and the view for a scene, the focus
is on the changes of these parameter over
time for the desired effect. The reader is
referred to the excellent film on timing
and motion in animation by Norman
McLaren (18].

A common pattern of movement is to
hold, accelerate to constant speed,
decelerate, and hold. In traditional ani
mation tedious mathematical calculations
must be performed by the artist and written
on the exposure sheet, and/or incorporated
into the drawings or models in order to
generate the proper motion for each frame.
In computer animation, of course, we can
program these mathematical functions so
that the animator is free to concentrate on
designing motion rather than calculating
the numbers to enter on an exposure sheet.
While the mathematical functions used in
traditional animation can bew applied in
computer animation to move the models,
lights and camera, the computer can keep
track of many objects and changes simul
taneously, so that the animator can control
movement much more complex than in tradi
tional animation. In addition, since the
computer, not the animator, evaluates the
mathematical functions that generate
motion, it becomes practical to incorporate
much more complex and realistic models of
motion into animat~on sequences.

Since many 2-D and 3-D computer anima
tion systems are based on traditional eel
animation concepts and terms, the reader
should become familiar with this field.
Preston Blair [2], Frank Thomas (29], Brian
Salt (28], Eadweard Muybridge [19,201, Eli
Levitan (16], and Harold Whitaker (30] are
good sources on traditional animation tech
niques and terminology, as well as motion
and timing.

2.4. Time and Space: Computatioo Cost

An artist considers the cost and avai
lability of materials and the quality of
the workspace when designing a work of art.
This is also true in computer graphics.
Cost in computer graphics refers to two
factors: computation time and memory space.

Modeling is often seen as a process of
simplification; yet portraying the world in
a manner that is believable to the viewer

requires detail. As a digital image grows
more complex and detailed, the more expen
sive it will be to produce. Conversely,
while a simpler image may be easier to pro
duce, it will appear less realistic. Com
putational cost is related to a number of
factors such as the complexity and number
of objects in a scene, and the complexity
of the light and shading models used. The
artist must take these issues into con
sideration when designing an animated
sequence.

The sophistication of the graphics
software used to generate images can vary.
Programs that try to closely represent the
real world may be very complex and require
extended computation time. Similarly,
mathematical models that try to represent
highly detailed objects will take longer
and require more computer memory to calcu
late images. The time it takes to produce
one image can vary from a few seconds to a
few days!

Realism in 3-D computer graphics
requires a fairly powerful computer, con
siderable mass storage, and a color display
device with its own memory. The price of
computers and memory has decreased substan
tially in the last five years, but they are
still very expensive. Fortunately for the
artist, a new generation of microcomputers
is approaching the performance of the mid
range computer. Some of these micros are
now being tested and used in computer
graphics labs. We can look forward to the
day when substantial computing power for
computer graphics is readily affordable.

3. Artistic Control of Computer Animation

In an analogy with conventional
cinema, in computer graphics the animator
is able to position and orient simulated
light sources and a synthetic camera.
Objects can be made larger or smaller or
scaled. They can be turned in space or
rotated. They can can be moved around in
space or translated. These manipulations
are called transformations. Any parameter
that can be controlled for an object can be
changed over time during an animation
sequence. For example, incrementally
translating an object to another position
in space over a series of frames will make
it appear to move. Varying the distance
between moves can either speed up or slow
down the motion. If an object is rotated
by .5 degrees per frame, it will turn 12
degrees a second, or revolve completely
around twice in one minute of animation.

Computer graphics has some of the same
problems as traditional animation. If the

44

size of the move is too great it will
create the effect of a visual stutter. In
computer graphics the simulation of motion
blur is being explored to eliminate this
problem [15,23].

Depending on the system, the animator
may be able to define a path which an
object will follow. A path allows the
artist to design complex motion through
mathematical procedures.

All of the above operations can also
apply to objects that are attached
hierarchically. A bicycle can be built out
of separate parts. The wheels, the handle
bars, pedals, seat, and a rider can be
attached to the frame of the bicycle. As
the bicycle frame is translated down the
street all of the parts come along. The
wheels and the pedals can be rotated at a
speed appropriate for the distance of the
translation, and at the same time the han
dle bars can be turned. This motion of
articulated objects can become extremely
complex.

Object attributes such as shininess,
texture and color, transparency of an
object can change from frame to frame. The
background color can change slowly from day
to night colors, or a dull opaque object
may become shiny and transparent. Lights
can also change dynamically. Their range
of influence can be scaled incrementally,
they can change colors, or even fly around
influencing the lighting and color of other
objects in the animation.

One feature unique to computer graph
ics is the ability to arbitrarily and
weightlessly move the "camera". Views
impossible in other medium can be achieved.
The eyepoint and center of interest can be
used in animation to simulate filming con
ventions or techniques, such as a cut, pan,
dolly, truck or crane shots. Changing the
view angle can simulate the changes of a
zoom lens. For example, since the camera
is always aimed at the center of interest,
for a pan the "camera" is stationary and
the the center of interest is moved. In a
trucking shot the center of interest and
the eyepoint follow parallel paths.

4. The Animation Environment and The Ani
mati~Pipeline

An animation environment has both
hardware
hardware

and
for

software components. The
the computing environment

includes a computer or computers, termi
nals, printer, tape drive, and extra memory
discs. System software for the computing
environment includes an operating system,
text editor, drivers for the hardware and

various programming languages. The graph
ics hardware includes display devices, such
as a CRT, vector display or picture-system,
a color raster display device, frame
buffer, and various input devices such as a
mouse, knobs, dials, joysticks, switches,
buttons, bit pad and digitizing camera. In
an animation environment it is also impor
tant to have a way of recording animation
on film or video.

The graphics software necessary in an
animation environment can be categorized by
the purpose of the software: creating and
editing data, scene description and motion
control, display algorithms or rendering
programs, post production (image process
ing) and a system for saving, filming,
and/or recording frames.

Most environments are not made up of
one large program. Instead systems are
made up of several efficiently designed
special purpose programs [7,9]. These pro
grams carry out their designed task and
send the results to the next program to
implement its special task. This is called
the animation pipeline, which looks some
thing like:

data generation-> scene description->
rendering-> opticals -> camera

4. 1. Data Generation

Data generation software allows the
artist to create the mathematical models
that will be animated. Some of the methods
for building data are projection, lofting,
solid of revolution, and combina
torial [27,26].

The biggest concern in designing the
data generation system is the ease of use
for the artist, its efficiency, and immedi
ate graphic feedback. The artists greatest
concern is the ability to create the forms
they want. There are some animation sys
tems that combine the data generation with
the animation system.

4. 2. Data Manipulation

Artists want to be able to refine and
adjust an existing object to achieve the
best possible form. An interactive system
that facilitates these adjustments is
extremely helpful. To edit data by hand
can be very tedious and time consuming,
especially for large objects. For example,
if a polygon is defined incorrectly, it
may take a while to find out exactly which

45

polygon it is and correct the problem. To
move a point the artist would have to edit
the data file and change the values for
that coordinate, display the object to see
if the change was correct, and so on until
he is satisfied. An object editor can
allow the artist to change a polygon
description, move points, or even add,
delete, or assign color to polygons or ver
tices and immediately see the results [9].
The artist can interactively see the object
while he adjusts, edits, and refines the
form and may even undo some operations that
do not look right [24]. In addition a
variety of mathematical techniques are
known for cutting, bending, and distorting
objects, as well as generating fractals.

4. 3. Surface Description

Surface description, such as color,
shading model, texture, transparency, or
light reflectance of objects are usually
carried out in the display algorithm, but
the artist has to specify these parameters.
In many systems these parameters are desig
nated in the animation script, but in other
systems are part of the object description.
They are mentioned here, because sometimes
special purpose programs are used to create
the desired effects. An important example
is texture mapping. A texture pattern must
be created to be mapped onto an object.
This pattern can be created in several
ways; through the use of a digitizing cam
era, through a paint program, a weaving
program, procedurally generated, or a scene
description created by the artist. This
image or a section of this image must be
mapped onto the object. Sometimes special
software is useful for mapping a texture in
the particular way an artist desires.

4.4. Scene Description and Animation

In a scene description the contents of
a frame are described. An animation system
allows the animator to describe a sequence
of images. The types of animation systems
currently in use are~-~ keyframe systems,
animation languages, systems for control
ling articulated figures, systems for simu
lation or a combination of these.

Interaction between the artist and the
computer can be device-driven or language
driven. In a device-driven system the
artist interacts with the computer through
switches, knobs or dials, bit pad and
receive immediate graphic feedback.
Depending of the system, the artist can see
these changes in real time. In a
language-driven system the artist creates a
textual script and then 'runs' the script
to see the animation. Some systems allow

the artist to interact through either or
both methods.

4.4.1. Keyframe Systems

A keyframe is similar to an extreme in
traditional eel animation. In a keyframe
system the animator specifies the scale,
position, orientation, color of objects,
and the view parameters for a frame. This
becomes a keyframe. Then any desired
changes are made in the objects or parts of
the objects, the animator specifies how
much time has elapsed since the last key
frame, and the new keyframe is set. The
computer interpolates the specified number
of in-between frames by computing the
changes between keyframes. These
inbetweens can be calculated linearly (uni
form incremental changes) or eased motion
can be generated. Some systems give the
animator interactive control over the
dynamics of motion.

A keyframe system developed at Pacific
Data Images, Inc. (PDI) [6], allows the
artist to interactively set up keyframes,
run pencil tests at various levels and use
the same script to fine tune the final ani
mation sequence. This system combines the
data generation and the animation into one
system. Another example of keyframe sys
tems is ANIMA II [13], a keyframe program
ming language which uses scripts and pro
duces real-time color shaded animation.

Some 3-D systems use a multitrack or
event driven approach, which allows the
artist to set times and events indepen
dently for each object, rather than all
objects in a scene for a keyframe. An
example of a multitrack system is MUTAN
(MUltiple Track ANimator) [11]. This sys
tem allows the animator independent tracks
for multiple characters, sound, and camera.
MUTAN is based on the exposure sheet used
in conventional eel animation. TWIXT [12]
is an event driven system. Twixt allows
the artist to interactively set up events
and playback the action in a pencil test to
see the motion. Where MUTAN has each
object on an independent tracks, TWIXT has
each parameter of an object on a separate
track. For example, the color of the
object could be eased-in while the transla
tion and rotation is eased-out. Twixt also
allows the construction of hierarchical
relationships among objects, and a shape
interpolation routine is built in as one of
the tracks. One advantage of an event or
multitrack animation systems over a key
frame systems is the ability to create the
motion of each object independent of other
objects in a scene. The sequences of events
can be used to develop an animation script
which can create either a realtime pencil
test in wireframe or low resolution shaded
images, as well as a final finished

46

animation.

4.4.2. Animation Languages

An animation language is a programming
language for animation and graphics, which
allows the animator to specify objects and
their dynamics and surface qualities as
well as camera dynamics. Graphics or ani
mation languages, like other programming
languages, allow for variables, iteration,
incrementation and conditional statements
for controlling animation. Some examples
of animation languages are ANIMA II, ANTTS
(Animated Things through Time and
Space) [8], and ASAS (Actor/Scripter Anima
tion System) [25]. ANTTS allows the anima
tor the possibility of hierarchical struc
tures and is able to run on a DEC PDP-11/23
micro-computer. ASAS combines the data
generation with the programming language
and incorporates advanced programming tech
niques. ASAS also allows the animator to
set up hierarchical structures.

4.4.3. Control of Articulated Motion

Animation of articulated figures is
difficult. Even in conventional eel anima
tion, rotoscoping was oft~n used to trace
live action film of an actor onto the eels
to better portray the motion. Sometimes
articulated models where used as a guide to
aid the animator [29]. An animation sys
tems focusing directly on this problem of
complex motion is BBOP [31], developed at
New York Institute of Technology (NYIT).
In this system the animator organizes the
structure of the articulated figure in a
short script. Then the animator interacts
with this figure through dials, bit pad,
and joystick to control the joint action of
the figures. The animator has immediate
graphic feedback. The camera may be placed
and a sequence of motion designed and
played back to test the motion. The anima
tor may specify the motion through graphic
means by adjusting a graph for the timing.
GRAMPS (GRAphics for the Multi-Picture Sys
tem) [22], designed for use for scientific
research in molecular models and chemical
research, deals with relationships of very
complex data structures.

4.4.4. Simulation

A simulation is a simplified model of
a phenomenon or action. Flight simulators
have been used for many years to train
pilots. The pilot interacts with the com
puter through all the normal flight control
devices available in a cockpit. These
analogue devices control the motion for the
real-time animation which is displayed on a
TV-screen "windshield". This simulation is
augmented by actual pitch and roll of the
cockpit for kinesthetic feedback.

Simulation of complex human motion is
being studied by Norman Badler [l], David
Zeltzer [33], and several others. sa, the
skeleton animation system [32]. -SA is
designed for the artist to interact with
the system at several levels. All move
ments can be set up in an interactive mode,
or ''skills", such as walking, can be stored
and used several times. Since walking and
running are cyclical procedures, these can
be used and re-used with only slight
adjustments to change the quality of the
stride. Principles from robotics and
artificial intelligence are important parts
of such systems.

4.5. Rendering and Display Software

The display algorithm can be imple
mented in software or hardware. The major
ity of animation labs and production houses
develop their own display software, using a
variety of rendering algorithms. Tech
niques have been developed to remove
hidden-surfaces from an image, and for ras
ter displays, to compute surface shading
and texture, all without introducing the
aliasing artifacts associated with digital
imagery. Research is continuing on effi
cient techniques for generating synthetic
images that are nearly indistinguishable
from photographic images. In general,
mathematical proficiency and programming
skills are not required to use such sys
tems. But as with any complicated tool,
the user who understands the basic concepts
can make the best use of the capabilities
of that tool. Foley and Van Dam [10] and
Newman and Sproull [21] are comprehensive
texts on computer graphics. See [27] for a
non-technical introduction to the field of
3-D computer graphics.

In an animation environment the time
it takes to generate the final image is
important. Some systems with the appropri
ate hardware allow the artist to view ani
mation sequences in real time. This facil
ity is extremely helpful in testing and
debugging the movement and timing of an
animation sequence. High resolution shaded
graphics are currently too slow to give the
animator this necessary feedback until
after much time has been spent calculating
frames and recording the animation on film
or video tape. For this reason many sys
tems allow the animator to choose the
appropriate viewing mode for a particular
stage of the animation. For example, a
pencil test can be displayed in wireframe
mode to get a rough idea of a sequence in
the early design stages. Next a low resolu
tion, shaded pencil test can be computed to
check the color and placement of objects
(which may be ambiguous in wireframe
views). Lastly, expensive, high resolution

47

frames are generated. This hierarchy E..!._
viewing modes makes the most efficient use
of the system. There is no reason to spend
days or weeks calculating high quality
images until the animator is confident the
sequence is correct.

4.6. Post Production

Optical or special effects can be per
formed electronically. It takes special
programs to do fades, wipes, dissolves,
mattes, titles, compositing and other image
processing. Sometimes 3-D animation is
calculated, saved and then used later as
2-D in the same manner as eels. This pro
cess is referred to as 2 1/2-D.

4.7. Recording

Animation can be recorded on either
film or video. Software and hardware are
necessary for this process. An animation
camera (16mm,35mm) must be interfaced with
and driven by the computer. Video equip
ment for recording one frame at a time must
also be interfaced and driven by the com
puter. Equipment for synchronizing sound
with the animation may also be available.
A number of problems can arise due to the
limitations of various imaging devices (see
Catmull) [4].

One problem in computer animation is
the transfer to hard copy. Transfer to
another medium usually causes problems and
also moves the product another generation
away from the original. In the transfer of
an image to film there can be a loss of
resolution. If the monitor resolution is
less than the resolution of the film then
the individual raster lines will be seen on
the film. There is also a loss of color
quality. This is similar to taking a color
print of a stained glass window with the
light shining through it; the color looses
some of the power of the luminance in the
print. If the image is taken by setting a
camera in front of the buffer the camera is
shooting through both the curved surface of
the face of the monitor and the lens, which
can reduce the quality of the image.
Hardware developed primarily for the pu~
pose of this transfer to film, use a flat
screen and usually do three separate passes
(either red, green, blue, or cyan, magenta,
yellow) which will yield higher quality
results. There may be problems with the
exposure in areas of high contrast because
the exposure has to be longer than the
refresh rate. If the final product happens
to be a film transfer to video the colors,
format, and resolution will change.

If the output is directly to video,
the problem is transferring the RGB digital

image to NTSC analogue. Some of the reso
lution is lost if the video is not a one
inch format.

The final form should be known prior
to calculating an animation due to the dif
ferent format size. The edges of the image
seen on the buffer may be lost when
transferred to video. This video safe area
has to be kept in mind while working on the
animation.

5. Artistic Concerns

The field of computer animation is
still new and there are many problems to
still be worked out, but the advantages are
great. Once a model has been created it
can be used and re-used with many varia
tions. If a scene is not correct the
artist does not have to redraw a sequence,
but must make some adjustments in the
script and regenerate the frames. There is
a freedom of form, camera movement, and
animation possibilities that no other media
provides. Once the artist/animator moves
into this realm of 3-D computer animation,
the artistic and aesthetic potential can be
realized.

1 •

2.

3.

4.

5.

6.

7.

Badler, Norman I. "Design of a Human
Movement Representation Incorporating
Dynamics". Course Notes, Seminar on
Three-Dimensional Computer Animation-,-

(July 27, 1982)ACM SIGGRAPH 82.

Blair, P. Animation.
Art Books, Tustin, CA

Walter
().

Catmull, E. "The Problems
Computer-Assisted Animation".
puter Graphics, g, (3)
1978)Proc. ACM SIGGRAPH 78.

Foster

of
Com

(July

Catmull, E. "A Tutorial
tion Tables". Computer
(3) (August 1979), pp.
ACM SIGGRAPH 79.

on Compensa
Graphics, _!l,

1-7. Proc.

Catmull, E. "Computer Animation State
of the Art". Course Notes, Seminar on
Two-Dimensional ComputerAnimation,
(July 27, 1982)ACM SIGGRAPH 82.

Chuang, Richard and Entis, Glenn "3-D
Shaded Computer Animation -- Step-by
Step". IEEE Computer Graphics and
Applicati~ ~. (9) (Dec 1983), pp.
18-25.

Crow, F. C. "A More Flexible Image
Generation Environment". Computer
Graphics,~. (3) (July 1982), pp.
9-18. Proc. ACM SIGGRAPH 82.

48

8.

9.

Csuri, C., Hackathorn, R., Parent, R.,
Carlson, w., and Howard, M. "Towards
an Interactive High Visual Complexity
Animation System". Computer Graphcs,
13, (2) (August 1979)Proc. ACM SIG
GRAPH 79.

Csuri, C., Gomez, J., MacDougal, P.,
and Zeltzer, D. Beyond the Story
board: A Tool Set for 3-D--Computer
Graphics --:fi"nuary 1984~ - Computer
Graphics Research Group, unpublished

10. Foley, J. D. and Dam, A. Van Fundamen
tals ,tl Interactive Computer Graphics.
Addison-Wesley, (1982).

11. Fortin, Denis, Lamy, Jean-Francois,
and Thalman, Daniel "A Multiple Track
Animator System for Motion Synchroni
zation". Proc. ACM SIGGRAPH/SIGART
Workshop on Motion, (April 1983),

PP• 180-186.

12. Gomez, J.E. "Twixt: A 3-D Animation
System". Proc. Eurographics '~.
(September 1984)To Appear.

13. Hackathorn, Ronald J. "ANIMA II: A
3-D Color Animation System". Computer
Graphics,.!..!._, (2) (Summer 1977)Proc.
ACM SIGGRAPH 77.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Halas,
Visual
(1974).

John Computer Animation.
Communications Book, New York

Korein, Jonathan and Badler, N. I.
"Temporal Anti-Aliasing in Computer
Generated Animation". Computer Graph
ics, 17, (3) (July 1983)Proc. ACM SIG
GRAPH83.

Levitan, Eli
niques. Van
York (1977).

Electronic
Nostrand

Image Tech
Reinhold, New

McLaren, Norman EXPO 1968, Montreal
Canada(). Quote from ~ation exhi
bit CinematiquePavilion.

McLaren, Norman and Munro,
Animated Motion Parts 1-5.
Film Board of Canacfa;<l979).

Grant
Nation

Muybridge, E. The Human Figure in
Motion. Dover, New York (1955).

Muybridge, E.
Dover, New York

Animals
(1957).

in Motion.

Newman, W. and Sproull, R. Principles
,tl Interactive Computer Graphics, 2nd
Edition. McGraw-Hill, New York
(1979).

O'Donnel,
"GRAMPS

T.J. and
A

Olson,
Graphics

Arthur J.
Language

Interpreter for Real-Time, Interac
tive, Three-Dimensional Picture Edit
ing and Animation". Computer Graph
ics, 15, (3) (August 198l)Proc. ACM
SIGGRAPH 81.

23. Potmesil, M. and Chakravarty, I.
"Modelling Motion Blur in Computer
Generated Images". Computer Graphics,
17, (3) (July 1983)Proc. ACM SIGGRAPH
83.

24. Ressler, S. P. "An Object Editor for
a Real Time Animation Processor".
Proc. Graphics Interface '82, (May
1982), PP• 221-225. -

25. Reynolds, C. W. "Computer Animation
with Scripts and Actors". Computer
Graphics, 16, (3) (July 1982), PP•
289-296. Proc. ACM SIGGRAPH 81.

26.

27.

Sachter, Judy E.
ics for Artists".
on Small Computers

(October 1983)

"3-D Computer Graph
Proc. 3rd Symposium
in the Arts, IEEE,

Sachter, Judy E., "The Basic Concepts
of Three-Dimensional Computer Graphics
for Artists," Masters Thesis , The
Ohio State University Columbus,
Ohio (June 1984).

28. Salt, B. Movements in Animation.
Permagon Press, Oxford (1976).

29. Thomas, F. and Johnston, O. Disney
Animation: The Illusion of Life.
Abbeville Press, New York (1981).--

30. Whitaker, Harold and Halas, John Tim
.!.!!& for Animation. Focal Press Lim
ited, London (1981).

31. Williams, L. "BBOP". Course Notes,
Seminar on Three-Dimensional Compirter
Animation-:- (July 27, 1982)ACM SIG
GRAPH 82.

32. Zeltzer, David "Issues in 3-D Computer
Character Animation". Course Notes,
Introduction~ Computer Animation,
(July 24, 1984)ACM SIGGRAPH 84, to
appear.

33. Zeltzer, D. and Csuri, C. "Goal
Directed Movement Simulation". Proc.
Conf. Canadian Society for Man-Ma~e
I"ii"teraction, (June 1981), pp.
271-279.

49

A LOGO-BASED CAI PROGRAM FOR PRODUCING REPRESENTATIONAL ART

James J. McGinnis

Temple University

ABSTRACT
A LOGO-based CAI program was

developed to facilitate the drawing of
realistic scenes on an Apple II
computer. The program generates objects
that children can use to construct
pictures. No two objects are ever drawn
exactly alike. A demonstration program
that automatically generates entire
scenes was also developed.

THE LOGO LANGUAGE
LOGO was developed at MIT over a

period of 15 years. A major goal of the
LOGO language is to transform the
computer into an object to think with}

LOGO is an ideal language for children
because it has relatively few syntax
constraints. In addtion, most commands can
be abbreviated which results in a command
set that places minimal typing demands on
new users. The simplicity of the language
allows children to concentrate on solving
problems without frequent digressions to
correct typing and syntax errors.

Pictures are drawn on the screen by
commanding a "turtle" that resides there
to move in the desired direction. Whan the
turtle moves it can, at the user's
discretion, leave a trail.

LOGO AND REPRESENTATONAL ART
In spite of the simplicity of the

language, children often have difficulty
creating realistic scenes. Young children
tend to loose track of the pan status when
moving the turtle. They draw lines that
were not intended or they accidently omit
l inas.

With this in mind, I created a CAI
program that facilitates the creation of
realistic scenes. The program consists of
a set of subroutines that draw scenic

CH2087-5/84/0000/0050$01 .00 © 1984 IEEE
50

elements such as clouds, mountains,
rivers, trees, and houses. The subroutines
perform several functions in addition to
drawing the object. First, they select the
color to be used. Second, they keep track
of the pen status. The pen is always
lifted at the end of a subroutine so that
the child can position the turtle for the
next object without leaving a line. The
program allows children to use a building
block approach to construct realistic
scenes while allowing them the flexibility
to add their own objects.

The subroutines that draw houses and
trees require the child to specify a size.
That requirement provides children with a
straightforward introduction to the
concept of a variable.

fhe tree subroutine uses a standard
binary trre algorithm to draw the
branches. The leaves are than placed on
the branches using an algorithm that
randomizes their location within an area
that is detrmined by the tree·s size.

The painting program has bean used in
several experimental courses that ware
taught at Temple University. Children
between the ages of 7 and 15 used the
program to create pictures. It was found
that children in these age groups had no
difficuly using the subroutines described
above.

A LOGO-BASED DEMONSTRATION PROGRAM
An additional program was created for

demonstration purposes. The program runs
all the subroutines while supplying
appropriate constraints on random
variables. For example, the program will
not allow the base of a tree to be drawn
above the horizon. There are no user
specified options. The demonstration
program takes approximately 4 minutes to
run and it never generates the same
picture twice.

The program makes use of a monocular
cue far spatial perception called
interposition. An abJect that partially
obscures another object is perceived as
being closer than the obscured obJect.
Clouds are drawn first. Mountains may
partially obscure them when drawn
afterward. Trees are drawn last so that
they will partially obscure mountains and
clouds.

rhe program uses two metnods to
produce a pseudo-perspective. The size of
the random elements that are incorporated
into a river is increased as tne height on
the screen decreases. l'he same strategy 1s
used to vary the size of trees. Figure 1

shows four pictures that were
automatically generated by the
demonstration program.

REFERENCES

CLJ Abelson, H. ~_ggo for the~!___~ _ _u_.
Peterborough, NH.: BYTE/McGraw-Hill,
1982.

C2l Abelson, H. and Klotz, L. ~B.§l!l__£~!
t:t,_l!!_~pl_~ I I: technic~LJn.2-1'!1:.1•1.
Cambridge, Mass.: Massachusetts
Institute of Technology, 1982.

C3J Papert, S. Mindstorms. New York:
Basic Books, 1980.

Figure 1. Four Pictures Generated by the CAI
Demonstration Program

51

THE NEW STUDIO: The Computer Graphics Workstation

Alyce Kaprow, Joan K. Shafran
(c) 1984

Consulting Research
Boston, MA

ABSTRACT: This paper will examine computer
graphic workstations for artists and designers.
It is important to understand the many componants
of a workstation, what one should "look for" when
investing in one and how to evaluate what your
goals and needs are when assessing these computer
graphic systems.

I. INTRODUCTION
A computer graphics workstation is the

artists/designers studio or the equipment that
constitutes the user's workplace for the creation
of visual and verbal material. It is the single
user system, consisting of input, display, and
output devices. It can be purchased either "off
the shelf" as a complete package, or can be
custom made from various components.

In this article we will examine those work
stations that are "off the shelf", designed for
artists and other users who typically use 2-D
design, illustration, and presentation graphics
as opposed to true 3-D graphics.*

Before making an investment in a computer
graphics workstation, it is important to under
stand the basic types, the relative costs, what
is included (hardware, software), what the state
of-the-market is for computer graphics worksta
tions, and what you need to know about the
industry in order to make an intelligent choice.
The following pages will discuss those issues
and describe the generic types that most designers
working now in traditional studios will be using.

II. WHAT IS A DESIGNER'S WORKSTATION?
Although computer graphics workstations are

typically made up of similar parts, there are many
inherent differences. It is not the individual
components that define these differences, but the
sum of the parts, or how they are put together to
create the total system. When looking at the
brochures for many of these systems, they appear
to contain identical hardware; but, because of the
design of the software, the prograrrming that
directs the hardware in its operation, they will
work as completely different systems and do com
pletely different things. When looking at com
puter graphics systems it is essential to under
stand the basics of hardware, software and

CH2087-5/84/0000/0052$01.00 C 1984 IEEE
52

interactive devices.
HARDWARE DEVICES: They are defined as various

components of a workstation such as the input,
interactive, and output devices and a means of
storing information and images. The computer,
often referred to as the CPU or central processing
unit, can be any size from micro to super. The
amount and type of tools, as well as the speed and
sophistication, are dependent upon the size of the
computer. The ability of one machine to perform
operations better and faster is often due to the
size of the base system for which it is designed.
The structure of the hardware will often allow the
use of some tools, but will make it impractical or
impossible to use others.

Most state-of-the-market workstations available
today operate with computers of approximately the
same power and similar characteristics. They are
mainly micro systems, which are dedicated to the
operations needed for particular design, illustra
tion, animation, and page layout tasks.

The parts of the machine that allow the artist/
designer to maintain control and get the job done
are the INTERFACES. There are three basic
divisions' INPUT DEVICES, INTERACTIVE DEVICES, and
OUTPUT DEVICES. These interfaces and how well
they function perhaps are of the most importance
for the designer using a graphics system.

INPUT DEVICES are those which allow the user
to place into the computer the initial images,
text, or other data that will be elements of the
final piece. These can be photographic images,
live video, points digitized off a tablet, using a
puck, a stylus, a mouse or lightpen, or numbers
input through the keyboard. All these inputs
become numeri ca 1 data that wi 11 define the draw
ing.

The two most common input devices are the
video camera and the digitizing tablet. The video
camera allows the user to scan in any dimensional
image or object, or to "grab" a single frame of
live video into the computer memory. The original
can be either black and white or color. Some
machines will accomodate full color, some limited
color, and others only black and white within the
computer. This capability is usually price depen
dent. The camera itself is often an ordinary
video camera that is linked to the computer through
hardware and software, which allows the scanned-in
image to be digitized, or read by the computer.

It is a frontend device, controlling the conver
sion of the image into digital data which the
computer can understand. The user need only be
concerned with the quality of the lens and the
camera, just as in a photographic system, for the
image quality is directly dependent upon how good
the lens is. Time is also of importance and the
user should be aware of how long it takes for the
image to be digitized into the computer system.
The time varies from machine to machine, and
ranges from l/3Oth of a second to many minutes.

The tablet, mouse and lightpen are devices
that allow the user to draw into the computer,
very much like drawing upon a blank sheet of pape~
The tablet contains a grid of wires that senses
the location on the drawing device and sends a
message of the point location to the computer.
Depending upon the routine or the process being
executed, the location is interpreted and allows
the user to paint, draw or edit. The mouse
usually operates without a tablet, directly on
the surface of a table. The lightpen, another
input device, "talks" directly to the computer
via light signals. This is used directly on
the display screen.

The keyboard, is a keyboard, is a keyboard.
The information is put into the computer by the
user in the form of alphanumerics or by special
function keys designed for a particular system.
Any system that relies solely or heavily upon
keyboard input, should come with a detailed list
and explanation of the function keys and their
meanings. Keyboard input is very individualized
for each computer and it is impossible to
describe any single system as being typical of
a 11 systems.

Computer programs can also generate numer
ical data from calculations and mathematical
infonnation that is then converted into an image
on the display screen. This is presently the
least common way of inputting in the 2-D artist/
designer system, although it is quite common in
true 3-D and other hybrid graphic systems that
depend on calculations for the method of locating
picture information.

On the other end of the computer chain are
the OUTPUT DEVICES. These allow the finished
computer graphic to be transferred to 11 hardcopy"
and taken out of the machine. The two major
categories that we will be concerned with are
photographic and printed output.

Photographic output devices are precisely
that. They allow the image on the computer screen
to be transferred to film or photo paper in the
form of photograph. The format may vary, but it
is most commonly a 35mm camera. Other fonnats are
from movie film (animation) and large format sheet
film (4x5 and 8xlO). Other photographic devices
are write-once videodiscs, videotape, and printing
plates.

The methods for taking a photograph of
computer graphics range from aiming a camera
directly at the screen and shooting, or using a
fairly inexpensive camera with a hood which
blocks all light falling onto the screen (thereby

53

eliminating reflections); to a more complex photo
graphic system, which produces the image on its
own internal monitor directly from the computer
memory. Clearly, the range, cost and sophistica
tion of the camera devices are vast and should be
considered before investing in any particular
style.

Printers and plotters are varied in style of
operation and output. The simplest is the single
pen plotter which simply records lines. Because
almost all art/design systems are capable of far
more visual operations and results, the pen plot
ter is rarely seen in that environment, as the
one and only output device. They are mostly used
at the architectural and engineering workstation,
where clean lines for mechanical drafting, floor
plans and elevations are necessary.

Multipen plotters produce a colored image
which can vary in complexity and color control.
This is dependent upon the number of colored pens
and the resolution of the plotter.

In the printer category there are dot matrix
printers on the low end and laser inkjet printers
on the middle to high end. Dot matrix printers
are alphanumeric printers that transfer typewriter
characters to paper. Here again, the simplicity
of the device will not allow more than letters,
numbers, and symbols to be printed, and therefore,
restrict the user in the form of output. Dot
matrix printers, like single pen plotters, do not
have unusual results unless they are under the
control of the artist/designer, who clearly sees
the advantages and characteristics of the devices
and exploits them in a unique manner.

Laser printers employ the use of a very
narrow and coherent beam of light which results
in precisely focused light. These are often used
in in-plant publishing situations, where large
amounts of paginated material can be stored, and
printed in sequence on both sides of the paper
and then collated for delivery. The process is
repeated for each copy. The less expensive
devices are used as high quality proofing devices,
very much like the traditional electrostatic
copier, but with greater accuracy, speed, and
some say, sharpness.

Other types of output devices will take the
form of thermal printers, typographic, for
galleys and proofs, videotape, direct broadcast
video, film for animation, videodisc, and printing
plates. Most output devices can be used with
most machines (once the proper "device driver" is
installed, if not included with the original
package), and some are included in the pricelists
of any given system.

The quality of the output device is in the
eyes of the beholder and the usefulness of the
final result is directly dependent upon the
intended purpose of the work. Most workstations
will be equipped to allow different devices to
be interfaced to the computer. But, by far the
major output device for artist/designer work
stations is the 35mm camera. Because all other
output devices are generally considered to be
secondary in quality and desirability by the

manufacturers, this article will limit the dis
cussion of output devices to a simple naming of
the generic types.

INTERACTIVE TOOLS: These tools are what allow
the artist/designer to perform the work with
fluency and efficiency. They are the controls that
allow one to work in a manner that is consistent
with more traditional tools and art/design inter
action. Interactive tools are both hardware and
software. It is the design and the integration of
the two that define both good and bad interactive
tools. Without a doubt, the most difficult and
challenging part of designing a computer graphics
system is the design of the interface and the
interactive devices that will allow the user ease
and fluidity of operation, while still maintaining
a high level of sophistication in the tasks that
are performed. It is important to keep in mind
that what appears to be the same level of opera
tion is quite different due to seemingly minor
changes. Just as the comfort of a chair is the
sum of all the design considerations for human
sitting, and one chair that looks almost identical
to another can be quite different to the individ
ual who uses it; the design of the interface on a
particular computer is also the sum of the parts
that are considered during the design phase.

HARDWARE INTERACTIVE DEVICES, many of which
have already been mentioned, compri.se the parts
of the machine that the user directly handles and
controls. They are the keyboard, stylus, puck,
mouse, lightpen, TSO (touch-sensitive-display),
foort pedal and speech recognizers. Clearly, the
design and ergonomic considerations are key
factors in the usefulness and "friendliness" of
these interactive devices.

SOFTWARE INTERACTIVE TOOLS: Once the par
ticular interactive device is chosen by the manu
facturer, the manner in which it functions with
the workstation is largely a product of the
prograITJ11i ng written to make it work with the com
puter. More often than not, the actual hardware
is similar and it is the software that is a key
factor in the friendliness of a particular station.
The issue is complex, and as workstations become
commonplace in the design studio, the design of
these interfaces will more reflect the needs,
tasks, and specifications of the user. The soft
ware and hardware engineers of these workstations
rarely take into consideration who the end-users
of these machines are. They believe that they
understand the process of design better than the
actual user, a professional artist/designer, who
has spent years doing these tasks. It is only
recently that computer companies have seen the
need to consult with professional artists and
designers for help designing the overall inter
faces that are appropriate to the marketplace.
Within the next several years we will see more and
more companies concerned with the "end user"
rather than the CPU.

The most common interactive control written
for computer graphics is the menu. This is a
"listing" of those routines and tools that are
part of the "designer's toolbox" of programs that
will allow all the art/design functions to happen.
An interactive menu will route you through the

54

system, enabling you to go from one routine to
another in a fluid and logical manner. The design
of these menus is very different in all cases and
quite particular to the system. Easy to read, well
laid out menus are an asset, for the user can
quickly go from one tool to another. Like a studio
of traditional art tools, the ease that one can
find the needed instrument is a key factor in the
ease in completing the work. Menus that are too
cramped and too complex are ineffective, so are
menus that are too limited.

Menus can be placed on a tablet (on a paper
or acetate overlay). They can be put alongside of
the picture space on the monitor, always in view.
They can be placed in the picture space but erase
able. They can be on a separate screen. Most
well designed menus are activated with the stylus,
puck, mouse, lightpen, or TSO. Less convenient
and "friendly" menus require the user to read the
list of choices and then to input the information
to the CPU by way of typed commands.

Other considerations for interactive devices
are concerned with the idea that the user must
communicate the needs in a comfortable way, con
sistent with design functions. Without this
approach to user control, the artist/designer may
never feel at ease and in control of the system
enough to ever embrace it as a common and useful
tool.

III. WHAT IS A WORKSTATION SUPPOSED TO DO?
Like a studio, the graphic workstation func

tions as a place to perform work, a space in
which to do the work, and a toolbox for doing the
work. Also, like a single artist's studio, the
computer graphics workstation can never supply all
the tools for all the tasks an artist/designer may
need to use. There is no single machine that will
do every job needed to be done. There is no
computer on the market that combines all the re
quirements of illustration, animation, typography,
layout and pagination, photographic manipulation,
image processing, and graphic design. And there
is no system on the market that can replace all
the tasks of the designer with the simple press
of a button. There is no computer on the market
that will ever replace the designer and artist.

What you can expect from a computer is that
it will perform tasks easily and quickly, having
the ability to make changes and variations with
much less effort than traditional tools. Also,
computers will allow the user the opportunity to
explore ideas that would not ordinarily be done,
for their overall complexity in accomplishing them,
and because the computer opens up opportunities
not necessarily available with traditional tools.
In addition, the combination of tools on the com
puter will allow new ways of exploring visual
language, perhaps redefining aspects of that
language and the process of design itself.

Computer graphic workstations can be placed
in specific categories. Most systems will overlap
into two or more, usually with a primary function,
often designated by the manufacturers, and second
ary ones, which often do not perform as efficiently
as the first.

The purpose of this analysis is to allow
you to think about major design considerations
as decided upon by the manufacturer. What is
important in this categorization is to keep in
mind the overall purpose of the computer and to
be aware that compromises had to be made when
designing the system. Because no one computer
graphic workstation will do all design/art jobs,
the primary category is the one that will be most
often followed, compromising on the secondary
requirements.

IV. THE FIVE CATEGORIES
BUSINESS AND PRESENTATION GRAPHICS: These

systems are designed to prepare graphics '.or pre
sentations and for consolidation of data 1n a
visual graph and chart format. Attributes of
these machines are primarily concerned with their
ability to store and interpret data in a visual
manner, perhaps through a variety of graph and
chart styles once the initial data is entered
into the machine. Generally, the choices for
color are more limited than other types of systems
and in some cases the colors have been pre-chosen
into very specific palettes. Often times they
are quite bold, allowing ease of presentation
when made into slides. In most cases much concern
has been given to the design of and the use of
type, in presentation formats. Many times the
display monitor is simply a rough version of the
final graphic, which uses a very sophisticated
camera to greatly increase the resolution of the
output.

Because many of the graphics are the result
of statistical data and must be interpreted into
charts and graphs, a common interface is the key
board as well as the tablet. The systems often
use basic shape-making routines that produce
circles and rectangles and other polygons to
format a presentation, and then manipulate these
shapes. In many instances the workstation will
incorporate a basic paint system to allow "free
hand" painting onto the screen.

ARTISTS' ILLUSTRATION AND SKETCH SYSTEMS;
These workstations are primarily used for paint
systems and image manipulations. They have much
more sophisticated paintboxes, with many more
color and brush choices. As these systems be
come commonplace and their costs drop, they will
likely be the workhorse of the basic art/design
studio, for they contain more of the typical tools
for artists and designers, with increased flexi
bility.

It is quite easy to find systems today that
have digitizing cameras as part of their basic
systems, as an accessory. These allow you to
input photographic and live video information and
then to do all the painting and manipulation
tasks with the digitized image. Typical manipu
lation routines include scaling, rotating, and
distorting. (Keep in mind that these manipula
tions are all 2-D, on the x and y axis only; i.e.
these are not true 3-D systems. But it is the
clever use of these functions that allow the

55

artist to render an illusion of 3-D.)

Other common routines found in this type of
system are those having to do with type, grids,
color changing, collaging, and cut and paste
tasks. The more sophisticated the system the
more colors available-up to the ability to
display approximately 250,000 colors on the
screen at any one time out of a field of
approximately 16.8 million colors. The low end
of this scale will offer a display of 12-64
colors out of a field of about 500. Most systems
are presently in the middle with approximately
256 colors displayable colors from the field of
16.8 million choices.

Output from these systems is usually in the
photographic formats noted in the introduction.
However, more and more systems are now interfacing
to inkjet plotters, which are available for re
duced costs.

DIRECT BROADCAST VIDEO AND ANIMATION SYSTEMS:
As their names imply, these systems are made for
the broadcast and animation needs of telecommuni
cations. They are often found in TV studios and
are used to have artwork quickly prepared and
then sent directly to the broadcast studios for
display on the air. Most of the news graphics
that are shown above the left shoulder of the
newsreporters are prepared in a studio down the
hall and wired directly to the video mixers in
the production studios. Requirements for these
systems are high-speed storage and retrieval of
images, size of the storage library for on-line
images, type (headlining, mostly), and image
manipulation. It is usually imperative that they
be in some way connected to a digitizing camera,
so that live video and photographic input can be
easily merged with graphics and then manipulated.
High resolution is not an issue, for the resolu
tion of TV broadcast is relatively low, and the
graphics need not exceed that amount.

PAGINATION SYSTEMS: The pagination systems
are designed for page layout and publication
design. The components include text, line art,
halftones, headings and folios. They were devel
oped initially for the prepress market and are
commonly seen in newspaper layout rooms or catalog
houses where there are large quantities of layout
and type manipulations in need of rapid publica
tion.

Their ability to format and size type is
essential. From the low end to the high priced
systems within this category, the manipulation
capabilities become more and more sophisticated;
with the most advanced systems allowing a very
rapid manipulation and exact visualization of
what will happen in the output. In the lower
priced systems only approximations and/or
"greeking" of the text is possible. Color has
not been a major consideration up to this point
because of the immense expense involved, and
most systems offer no color at all. It is the
black and white nature of these machines that
offer the speed of operation.

Pagination systems are usually front ends and
offer a large variety of type styles and sizes. In
the higher priced systems they are capable of merg
ing the text with images. Output from these
systems goes to typesetters, paper proofs, and
camera-ready artwork, and some systems can be
interfaced directly to plate-making devices at the
prepress site.

IMAGE PROCESSING SYSTEMS: These systems allow
photographic manipulations to be done directly in
the computer that would take hours to duplicate in
the darkroom. Sizing and scaling, rotating, crop
ping, tone and contrast control, and special
effects (reversals, solarization, posterization,
bas reliefs, etc.) are all part of the manipulation
menu available on these machines. Images are
scanned into the systems in high resolution, man
ipulated, and then output to camera-ready copy or
directly to plate.

Most systems are black/white only, at the
present time. At the highest end, however, there
are capabilities for color separations to be made
with three and four plate registered output.

V. COSTS AND PRICE VS. PERFORMANCE
Computer graphic workstations are expensive.

In the traditional studio, artists and designers
wishing to experiment with a new tool are able to
go to the nearest supply store and purchase it.
With the introduction of high technology equipment
into the art/design marketplace, the ability to
learn and experiment becomes rare outside the pro
duction house. Even within the production house
there is little time to experiment on non
production jobs.

Presently, the range of equipment is from
approximately $6000 on the low end to $1.5 million
on the high end. The mean is approximately
$30,000 for the average system, base cost, with
no bells and whistles. The costs of purchasing
and maintaining equipment still remain very high,
and although they are decreasing rapidly, they
will still remain outside the budget of the small
studio for quite some time.

With regard to the five categories, the least
expensive systems usually are those for business
and presentation graphics, continuing up the cost
scale through image processing systems. As the
systems increase in their complexity and add to
their toolbox, the price goes up (and up ... and up).
Thus, the more sophisticated system that allows
the user a full range of tools and functions be
comes cost prohibitive for all but the largest and
busiest production houses. In turn, the cost of
operation of these systems is such that the larger
and more complex the system, the less time there
is for "creative designing" vs. production work.
Indeed, this is a dilemma, for the increase of
computer graphics in the world of visual communica
tions necessitates all artists and designers to be
knowledgeable of (if not experienced in) computers
and their capabilities. But the opportunities to
get the experience is often the biggest deterrent
to the artist.

56

Clearly, you get what you pay for in computer
graphics workstations. The ability to design and
manufacture a machine containing all the needed
tools of the typical designer and still remain a
system that is within the budgets of most users
is a problem not yet solved. As each system
reaches out to include more and more functions,
with better and better interface, the cost of the
hardware drops proportionately; but, the cost of
the software that implements these tools is con
tinuing to rise.

The result is that systems are limited in
their toolboxes and their functions. The manufac
turers must make decisions concerning what to
include in their systems that will be the most
attractive to the potential user, leaving out many
options that are technically available, but far
too costly to include. Sophisticated tools are
costly because of the memory space needed in the
computer. The more tools, the larger the space
required to house them and to allow them to
operate. Without upgrading the extent of memory
of the base system, little is left for accessories
and picture storage. Compromises must be made by
all manufacturers, and those compromises are the
very definition of the machines.

As mentioned in the introduction, the inherent
hardware of any system is very similar to others
in its category. Their differences are in the
initial design and implementation of the software.
It is that configuration and implementation that
define the individual machine and its functions.

VI. CONCLUSION
Every artist/designer using a computer must

keep in mind the task to be done and how appropri
ate that system is for that task. Some tasks
demand compromise in the ease of control for
complexity of operation. Many factors add to and
subtract from the effectiveness of the interface
beca·use one function is linked to all others in
the chain. Interactive devices should be con
cerned with the idea that users can communicate
needs in a comfortable and consistent way. Using
keyboards as a major input device is a good example
of how the computer companies must become more
sensitive to the issue. The keyboard allows you
to input graphic elements which are "plotted" by
counting spaces on the keyboard. Although this
task is clearly effective for inputting textual
material, it is highly inefficient and counter
intuitive for graphics. Because of the demand of
the design community, we see fewer examples of
systems that have keyboards as their major input
device. It is the growing demands of this commun
ity that will force the industry to change the
methods, and hopefully, produce devices that are
effective as well as sophisticated for design
tasks. It is not the purpose of this article to
debate and discuss the features of all interactive
devices, but rather to understand that the computer
manufacturer is still in control of the ease and
comfort of the machines sold to the public.

It is obvious that the computer, like the
camera, is a tool. The workstation for computer

graphics is conmonplace in many studios and art
departments. Colleges and professional schools are
teaching computer graphics as part of their founda
tions curriculum. Enrollments in all computer
graphics courses, no matter how elementary, are
well above the space available. It is not simply
the "hottest fad" of the year. It is part of the
workspace and the vocabulary of visual conmunica
tions. With this in mind, the workstation is more
and more available and its use obvious in all
aspects of design and art studios. For the person
wanting to enter this world, it is important to
understand the initial reason for investing in a
computer graphics workstation, for those reasons
will be the key factors in deciding what category
of system to investigate, and how much money to
spend to purchase the minimum equipment needed to
get the work done.

*NOTES: In contrast, a true 3-D system is
one that can render three dimensional forms from
data (numerical). These forms can be objects,
environmental drawings and various forms of simu
lation; taking into account the angle of view,
rotation, volume, and other statistical informa
tion. A 2-D system is quite different from the
3-D one by the very attributes that define them,
and it is important to understand that they rarely
overlap in the same system.

There is a "pseudo 3-D" often found in com
puter graphics workstations, that gives the
appearance of dimensionality, but does not have
true 3-D characteristics of rotation, variation of
angle of view, and scaling. The results of this
could be described as the "look" that is part of
many graphic systems designed for artists and de
signers. These pseudo 3-D packages are linked to
the 2-D system and should not be compared with
the true 3-D systems in terms of performance. The
success of these pseudo 3-D tools is really the
cleverness of the user, describing the illusion of
volume, depth and space much like traditional per
spective drawings.

THE AUTHORS: Alyce Kaprow and Joan Shafran
are consultants and researchers concentrating in
the area of computer graphics workstations for art
and design studios and art schools and departments.
They both are active designers and teachers, and
have run hands-on workshops using various computer
graphics systems. Both have done graduate work at
the Visible Language Workshop at the Massachusetts
Institute of Technology.

57

INTERSCORE - AN INTERACTIVE SCORE EDITOR FOR MICROCOMPUTERS

Przemyslaw Prusinkiewicz

Department of Computer Science
University of Regina

Regina, Saskatchewan, Canada S4S 0A2

ABSTRACT
Since 1970, the GROOVE system has been the

classic example of an interactive editor of time
functions. It has inspired the design of an inter
active score editor for microcomputers, named
INTERSCORE. A composer is provided with a wide
range of easy to use editing operations, and with
both audio and visual feedback (in piano-roll nota
tion). An organ-Like keyboard is extensively used
as an input device. Time relationships are given
particular attention.

INTRODUCTION

Buxton et al. [2] divide the composer's tasks
in the context of computer music as follows:

1. Definition of the palette of timbres to be
available: This is analogous to choosing the
instruments which are to comprise the compo
ser's orchestra. The main expansion on the
analogy is that the composer also has the
option to "invent" his own instruments.

2. Score definition: Definition of the pitch
time structure of a composition. In con
ventional music, this task would be roughly
analogous to composing a piano version of a
score.

3. The "orchestration" of the score:
of instruments to a score.

Attachment

4. The performance of the material being devel
oped.

The conceptual framework induced by the above
classification is observed in this paper. Thus,
instruments are defined separately from the score,
and the possibility of setting up timbres individ
ually designed for each note is Limited. In re
turn, the removal of the instrument definition from
the score makes it potentially easier to construct
Long, complex pitch-time structures.

At the present time, music software available
on microcomputers makes it possible to define
scores using either one of the following
approaches:

CH2087-5/84/0000/0058$01 ,00 C 19114 IEEE
58

1. A score is defined as a sequence of statements
which explicitly specify the pitch and dura
tion of each note. Definition of a score is
conceptually similar to text editing. It is
also possible to edit a score using a symbolic
musical notation. The score is then speci
fied, for example, by picking notes of the
appropriate duration from the menu and posi
tioning them on the staff [12].

2. A score is thought of as a record on a
"pseudo-tape," simulated in the memory of a
computer. The sequence of events is defined
in real time, by playing an organ-Like key
board used as the input device. The user's
model of the system is that of a multi-track
tape recorder. Thus, a score is developed by
"recording" successive instruments with
"playback" on separate "tracks." An unsat
isfying track can be "erased." Smaller cor
rections can be made using a "punch-in/punch
out" facility [8].

The essential difference between these ap
proaches Lies in their rapport to time. In the
first case the composition time is dissociated from
the performance time. Time characteristics of a
note are defined as numerical parameters. Conse
quently, the order in which the notes are specified
may be different from the order in which they will
be played during a performance. The score can be
easily modified by inserting, deleting, or changing
appropriate statements. However, since it has to
be substantially processed by the computer before
the performance, effects of the modifications can
not be instantly evaluated.

In the second case the situation is diametri
cally opposite. The performance time is a Linear
function of the composition time. A composer has
immediate audio feedback: He hears what he plays.
Modifications of the score are made in real time,
by rerecording unsatisfactory parts. As a result,
the whole composition process occurs under real
time pressure. A mastery of the keyboard is neces
sary. Small adjustments are difficult to make.

An interactive score editor should provide a
composer with a wide range of easy to use editing
operations combined with good audio and visual

feedback. This objective was first met in the
GROOVE system [10]. The nature of interaction
implemented in GROOVE was described as follows:

One of the most important features of
GROOVE is the flexible control of "program
time" which may be used both to edit and to
alter the generation of the output func
tions.... We may slow down the progress of
program time by reducing the frequency of the
interrupt oscillator. Or we may stop the
progress of time altogether by throwing a
switch which essentially tells the computer:
"Don't progress time normally at all, but,
instead, use the value of a knob to give the
current position of time within one disk buf
fer •••• " The user may essentially "redraw"
any portion of any disk function using any
input device he Likes, such as the (X,Y) axes
of the 3-dimensional wand or a knob value.
While he is doing this, not only can he see
what he is doing on the oscilloscope display,
but he can also observe its effect on the
controlled process. So it is quite possible
to stop in the middle of a run and "tune up
the chord •••• " Given the appropriate com
mands, the system will allow any functions of
time to be altered in any conceivable manner.

The idea of the GROOVE system has been widely
recognized as a model example of interactive score
editing [6]. However, the system itself was not
portable and is not available since the unique
hardware was dismantled.

INTERSCORE is an interactive score editor for
microcomputers, inspired by GROOVE. It is written
in C, in a modular and portable way. At present
INTERSCORE is implemented on the Apple //e (*),
with a 5-octave alphaSyntauri (**) keyboard and
Mountain Computer Music System (+) synthesizer
boards [12]. Two pedals and a joystick complete
the hardware configuration. INTERSCORE makes use
of the Syntauri programs Quickwave and Wave to
define instruments. INTERSCORE files are compat
ible with the multitrack recording system METATRAK
(**) [8] and the Composer's Assistant (**) [13] can
be used to transcribe the score using conventional
notation.

This paper presents INTERSCORE from
(composer's) perspective. Time problems
interactive score editing are given
attention.

the user's
related to
particular

(*) Apple Ile is a trademark of Apple Computer
Inc.

<**) alphaSyntauri, Metatrak, and Composer's
Assistant are trademarks of Syntauri Corp.

(+) Music System is a trademark of Mountain Com
puter Corp.

59

From
embedded
functions
ries:

GENERAL DESCRIPTION OF THE SYSTEM

the user's perspective, the editor is
in a menu-driven control program. The
of this program fall into three catego-

1. Selection of the instruments (timbres) to be
used for audio feedback. These instruments
can be, but do not have to be the same as the
instruments used for the final performance.

2. File manipulation. This category includes
concatenation and merging. Concatenation of
files results in Longer scores. Merging in
creases the number of instruments playing con
currently [1].

3. Transfer of control to utilities, such as
programs to define new instruments, the screen
dump program, etc.

An example of the screen while editing is
shown in Fig. 1. The central area of the screen is
thought of as a window, in which the selected
portion of the screen is visualized as a plot in
pitch-time coordinates (scroll-bar notation [3,
9]). A non-continuous Line indicates two or more
instruments playing in unison. For comparison,
Fig. 2 shows the same piece of music using con
ventional notation.

Wide Lines at the top and the bottom of the
score (Fig. 1) show the current position of the
time cursor. The notes corresponding to this posi
tion are being played by the synthesizer. Under
the score, the text portion of the screen is used
to display the menu of editing operations and to
show the current state of the editor. The selected
mode is displayed in inverse video. Special char
acters warn about particular situations, such as
the end of the score being reached. The space in
the upper right corner of the text portion of the
screen is used to display additional information,
for example parameters of editing operations, error
messages, etc.

SCORE VIEWING

Even relatively short scores cannot be rep
resented in their entirety on the Limited surface
of a screen. Thus, an interactive score editor
must provide viewing operations which make it pos
sible to select the portion of the score to be
seen. In INTERSCORE this selection is thought of
in terms of moving a virtual window over the
scroll-bar representation of the score. Three
special keys ([, I,]) are used to position the
window in such a way that the time cursor appears
near the Left edge, in the middle, or near the
right edge of the window. The composer can also
specify the resolution of the presentation (number
of time units per pixel). Wide scope - Low resolu
tion views help in analyzing the general structure
of the composition and are particularly useful when
browsing through the score. High resolution views
are of great value when making fine modifications.

------------------•-.....time cursor

unison

Command?
C J

·''Res = 2
"Ins= 200

-- --

·''dtC =
,..,dtP =
·"Art =
·"Tern =

-

B
B
100
1

- -

AlJtD
Free
peD
Joys

time

·, notes played notes played
:,... on the keyboard'> by the

d
/ synthesizer

notes rea
from the score -----

-- -

.,..,--time cursor

Trig ESC/play Replace
Keyb Insert Adjust
peD Overdub Yank Write
Val Erase Put Quit

modes editing modes

Fig. 1. A dump of INTERSCORE screen.

portion shown in Fig. 1

Fig. 2. The score from Fig. 1 in conventional notation.
An excerpt from J. S. Bach, Das Wohltemperirte Klavier, Part II, Prelude I.

Transcription by C. Czerny and A. Ruthardt, Leipzig: C. F. Paters.

EDITING MODES

The two basic editing modes are called insert
and overdub (Fig. 3). In the insert mode the score
is virtually spliced at the point determined by the
current position of the time cursor and new notes
are inserted between the spliced parts. Extraction
of a portion of the score is implemented as the
insertion of a segment of negative duration. In
both cases the overall duration of the composition
is affected. Thus, the insert mode can be thought

60

of as an equivalent of tape editing by splicing
[7]. Likewise, the overdub mode is analogous to
the magnetic tape procedure of building up a compo
sition one track at a time on a multitrack tape
recorder. The added notes are to be played con
currently with the notes previously specified.

The operation complementary to overdub is
called erase. The composer can either erase all
notes played by a given instrument within some time
Limits or can select the notes to be erased by

Q) -e- Q)
0 0
0 0
ti) ti)

(),,- .,
IQ ' IQ ,, • • -C ,,

0 I I I C , ,
I I

en I I I
--,- en

I I I I .. I I I I ..
0 I I 0 I ,ct--:- 0

I I I I I I I I
I I

I
I I I

yank I
I I I I I

&
I I I I

I I I I rep ace I I

I put: I I I
I

adjust I insert erase
(insert I I negative

I
I I I I

I mode) overdub I I :time
I

I I I I insert I I I I I I I I
Q)

________ ,..
I I I I I 11 I Q) .. I I I I I II adJust ..

0 I I I I I II 0 0 I _J I I ..L II I

ti)
I I I II I 0

I I
,

ti) I II ,
L I I u I ,

'O
I I I ,JI
I I

' I 'O Q) I --1 -,-- ...,...- Q) - -+- I I ----_ -'O -+- I I
I

, 'O
0 -l.. ...,_ !...- 0
E E

Fig. 3. INTERSCORE editing modes.

pointing
nate) and
a chord,
neously.

to them with the time cursor (x coordi
the keyboard Cy coordinate). By playing
several notes can be erased simulta-

The replace mode is used to change the pitch
or the instrument assigned to the selected note.

The adjust mode makes it possible to move the
beginning~e end of a note in time.

The remaining two modes: Yank and put are
patterned on similar operations found in text edi
tors [11]. Yank fetches a portion of the score,
played by the specified instrument, delimited by
two positions of the time cursor. Put, in essence,
places the yanked portion at another point in the
score. This can be done in several ways. First,
either the insert or the overdub mode must be
selected together with put in order to determine,
how the added notes shall be matched with the
existing portion of the score. Second, the yanked
fragment can be repetitively put, several times in
sequence, transposed by an interval specified with
the keyboard, and possibly with the instrument
changed.

ALL editing modes are illustrated in Fig. 3.

61

TIME MANAGEMENT

Time is the essential component of both the
process of the composition of a piece of music and
its performance. Therefore, the relationship bet
ween the composition time and the performance time
should be easily manageable by the composer. For
this purpose several time modes have been intro
duced into INTERSCORE.

The simplest relationship between the compo
sition time and the performance time is illustrated
in Fig. 4a. During the composition time the key
board is sampled and the score is updated in equal
intervals denoted by Dtc. During the performance
the score is read and data to the synthesizer are
passed in intervals Dtp. The ratio Dtp/Dtc con
trols the "playspeed:" If it is different from
one, the performance will be faster or slower with
respect to the composition. Absolute values of
intervals Dtc and Dtp control the "time resolution"
of the composition. For small values of these
intervals (milliseconds) the discretization of time
is negligible and the sequence of events entered
into the score is repeated with all nuances during
the performance (Fig. 4b). Large values of time
intervals (fractions of a second) Let smaller time
differences disappear. This can be used to elimi
nate some imprec1s1ons which may occur when
entering data from the keyboard (Fig. 4c). The

tp
G)

E -
CD
C
IQ

E ...
0 -...
G)
Q.

tp

'tJ
G) ...
G) -C
G)

en
G) -0
C

tp

tp tp

'tJ 'tJ
G) G)
G) G) - -

jj_=L.
C C
G) G)

II) II)
G) G) ····--···r-- -0 0 ··-•or-•

- Dtc a C b C
-i ! C ..

composition time tc notes played tc notes played tc

tp tp ,-.,.
A A - right, left pedal
R L pressed c!J - joystick positions

A ~ - right, left pedal

c!J released

··········--········:---.
c!i ·····••-C••···

f -·
! d e

notes played le • {\ ' {\ ' le
R R L L R

tp tp

A - key pressed A t- right, left pedal ~ - note of duration R
I\ -key released pressed ·n· entered

(Art:67%) (Art= 100¾)

--⇒tp_in

-===f Dtp_out

' {\ ' A& A

Fig. 4.

TIME
MODES

g h
' tc A AU A A AHA le A A A

R RRR L L RRRR 4 1 a.

Composition time - performance time relationship in INTERSCORE.
Explanation in the text.

no parameters controlled

autonomous~ time direction controlled with pedals

time direction and playspeed controlled
with a joystick

triggered from the organ-like keyboard
triggered ~triggered from the pedals

triggered from the alphanumeric keyboard

Fig. 5. INTERSCORE time modes.

62

A A
8 4.

f
le

.
I
tc

composer has to enter data in synchronization with
a metronome generated by the editor. Otherwise Low
time resolution may deteriorate rather than improve
the score (Fig. 4d).

Abstracting from their finite resolution, the
above modes define Linear mappings of the composi
tion time into the performance time. A modifica
tion introduces a piecewise Linear mapping. At any
moment the composer can stop the progress of time
or reverse its direction by using one of two
special pedals (Fig. 4e). While the composition
process is still very similar to real-time re
cording, errors can be instantly deleted before the
recording resumes.

When scrolling a score to access a particular
fragment, it is convenient to dynamically control
the playspeed in addition to the time direction.
The device used for this purpose in INTERSCORE is a
joystick. See Fig 4f. for an example.

In the modes described so far, time has pro
gressed autonomously. The external devices have
only controlled the actual value of parameter Dtp.
These autonomous time modes can be contrasted to
the triggered modes. In a triggered mode each
change of the performance time is directly caused
by an external signal. One possible source of this
signal is the organ-Like keyboard itself. In this
case time progresses when a key is being pressed or
released. The time intervals associated with the
pressed or released keys, Dtp in and Dtp_out, need
not be the same (Fig. 4g). If-

Dtp in>> Dtp out,
the entered notes will be performed Legato; if

Dtp in<< Dtp out
they will be performed staccato. Instead of con
trolling parameters Dtp in and Dtp out directly, it
seems more convenient to specify the overall dura
tion of a note:

Dtp = Dtp in+ Dtp out
and its "articulation" (or duty cycle):

Art= Dtp_in / Dtp.

Another source of triggering signals are
pedals used to increment or decrement performance
time by a predefined value (Fig. 4h). While the
organ-Like keyboard is active all the time, its
state affects the score only when a pedal is
pressed. Thus, the composer can try, for example,
a few possible chords before entering the final one
into the score. The duration of this chord will be
determined by the number of times the pedal is
pressed while the keys are down. Instead of pres
sing the pedal repeatedly, the composer can also
specify the duration of each note or pause by
entering appropriate values of the parameter Dtp
from the alphanumeric keyboard. A variant of this
approach makes use of symbols 1, 2, 2., to
denote the duration of the whole note, the half
note, the dotted half, etc. in a predefined tempo
and with a predefined articulation (Fig. 4i). This
mode is particularly convenient when entering a
score given in conventional music notation.

A summary of time modes provided by INTERSCORE
is shown in Fig. 5.

63

CONCLUDING REMARKS

Design and experimentation with INTERSCORE has
yielded some observations:

1. Scroll-bar notation is a convenient means
for visual communication between the composer and
the computer. The difficulty in perceiving the
exact pitch of each note (with no staff) is irrele
vant because of the audio feedback. Moreover, it
is easy and intuitive to find the pitch of a note
by matching it with the displaceable bars corre
sponding to the keys pressed on the keyboard. Due
to the audio feedback, precise positioning of the
time cursor (up to a single pixel) is trivial. The
visual and the audio feedback are complementary.

2. When a long score of a repetitive struc
ture is edited as a single file, the composer may
confuse similar parts of the score. It is there
fore preferable to build Long scores using separate
files, which are concatenated at the end of the
editing session.

3. Although the description of INTERSCORE was
given in terms of physical devices (joystick,
pedals etc.,), the software was written in a device
independent way, patterned on the methodology de
veloped in computer graphics [5]. Thus, only the
appropriate device drivers have to be rewritten
when replacing the joystick with a different val
uator, or pedals - by any other buttons. Appar
ently, the organ-like keyboard does not fit into
the existing classification and introduces a new
class of Logical input devices. The problem is,
however, that the main purpose of the device inde
pendent design (i.e. the possibility of simulating
various Logical devices using the available physi
cal devices) is questionable in highly interactive
musical applications. Substitutions of physical
devices (for instance, hand manipulated buttons for
pedals, Let alone a replacement for the organ-Like
keyboard) tend to deteriorate the man-machine in
terface to the point of uselessness, even if they
are perfectly feasible from the viewpoint of soft
ware design.

INTERSCORE has not yet been extensively tested
by musicians, therefore an objective evaluation is
not available. However, the main expectation re
lated to its creation seems to be fulfilled: Using
INTERSCORE it is easy to quickly create complex,
error-free scores. Moreover, if desired, nuances
of articulation giving a feeling of "real perform
ance" can be preserved in the editing process.

ACKNOWLEDGEMENT

This research was supported in part by grants
from the National Science and Engineering Research
Council of Canada.

REFERENCES

[1] M. Balaban, "The set of tonal-music-strings -
a structurally unambiguous representation for
tonal music pieces," Weizmann Institute of
Science Rep. CS81-28, 1981.

[2] W. Buxton, W. Reeves, R. Baecker, et al., "The
use of hierarchy and instance in a data struc
ture for computer music," Computer Music Jour
nal, vol. 2, no. 4, pp. 10-20, Dec. 1978.---

[3] W:-- Buxton, R. Sniderman, W. Reeves, et al.,
"The evolution of the SSSP score editing
tools," Computer Music Journal, vol. 3, no. 4,
pp. 14-24, Dec. 1979.

[4] P. Casella, AlphaPlus Tutorial Manual. Palo
Alto, CA: Syntauri Corp., 1982. ---

[5] J. D. Foley and A. van Dam, Fundamentals of
Interactive Computer Graphics. Reading, MA:
Addison-Wesley, 1982.

[6] S. Haynes, "The musician-machine interface in
digital sound synthesis," Computer Music Jour
~, vol. 4, no. 4, pp. 23-44, Dec. 1980.---

64

[7] H. S. Howe, Electronic Music Synthesis. New
York, NY: Norton 1975. ---

[8] R. J. J~gour, Metatrak II User's Manual. Palo
Alto, CA: Syntauri Corp.~1~---

[9] G. Krasner, "Machine tongues VIII: The design
of a Smalltalk music system," Computer Music
Journal, vol. 4, no. 4, pp. 4-14, Dec. 19S0:-

[10J M. V. Mathews and F. R. Moore, "GROOVE - A
program to compose, store, and edit functions
of time," Communications of the ACM, vol. 13,
no. 12, pp. 715-721, Dec.1970. -

[11] N. Meyrowitz and A. van Dam, "Interactive
editing systems: Part I and II," ACM Computing
Surveys, vol. 14, no. 3, pp. 321-415, Sep.
1982.

[12] Music System Operating Manual, Scotts Valley,
CA: Mountain Computer, 1981.

[13] K. Reynolds and R. Jigour, Composer's As
sistant User's Manual. Palo Alto, CA: Syntauri
Corp., 1~---

AN ASSESSMENT OF MICROCOMPUTER-BASED ART ACTIVITIES FOR SECONDARY ART PROGRAMS

Candace M. Naumowicz Zacher

Purdue University
Department of Instrumental Development

West Lafayette, Indiana

ABSTRACT

This study investigated the curriculum concerns for
microcomputer-based art activities for secondary
art programs. Art supervisors and computer art
"experts" were surveyed concerning their opinions
for content consideration. Although the partici
pants were generally receptive to microcomputers in
the art room, findings indicated several areas of
disagreement and indecision as well as a number of
impediments to the successful adoption of micro
computers into the art room.

A trend in education toward the acquisition of
skills in the myriad uses of microcomputers is evi
dent today as our society begins a shift to a
technologically-based society. Being an integral
part of the larger educational structure, art edu
cation will not likely be excluded from this
transition. The urgency and importance of the
problem is reflected in a statement by White 1 :

"It is imperative that the art education profession
not become an impotent pedagogical edification due
to our unwillingness to accept the responsibility
thrusted upon us ... caused by the impact of
computers on society and education." In other
words, art programs will be expected to provide
some type of effective art experience for students
on microcomputers.

Only recently has the role of the microcomputer in
the secondary art curriculum been critically
examined by art educators. 1 '

2
' 3 '

4 Little research
exists examining the new technology and its impli
cation for teaching art on the secondary level.
Most existing reports on microcomputers in the art
classroom focus on two factors: the present dis
crepancy and lack of concern for this new medium in
the curriculum, and the role microcomputers could
serve in the art program. Relatively little is
known, however, about what is presently being
offered on the microcomputer in art at the secon
dary level and what will be needed in the near
future.

Educational technology as a field has emphasized
the integration of new technology into educational
experiences. At the same time, educational tech
nology is concerned with the utilization of a
systems approach to the development of instruction
al delivery systems. Needs assessment procedures
are a device used in educational technology and

CH2087-5/84/0000/0065$01 .OO o 1984 IEEE
65

instructional development that could provide the
foundation for development of clearly identified
aims and goals for a secondary art curriculum in
microcomputer-based art activities.

The primary purpose of this descriptive study was
to determine by means of a needs assessment the
major components and skills that a secondary art
curriculum should include in order to facilitate
student involvement and competence with micro
computers in art. Writers who support the use of
systematic procedures for instructional develop
ment have suggested that needs assessment may
capitalize on pertinent information and thus facil
itate better decisions in the future development of
instruction in the use of microcomputers in art for
secondary art students.

The evaluation of all potential content areas for
microcomputer-based art activities is clearly a
critical matter for art education programs. Cer
tain factors may need to be considered by art edu
cators concerning microcomputer-based art content
and it would be advantageous to identify these
factors so that effective implementation and adop
tion of microcomputer-based art activities is
possible in secondary art programs.

A consensus in agreement of the content concerns
for microcomputer-based art activities would seem
to be a valid venture to undertake in art curricu
lum development. The procedures labeled "needs
assessment" promoted by Briggs 5 and Kaufman 6 sug
gest that instructional options be subjected to
some form of empirical analysis so that art edu
cators would be able to make decisions based on a
mutual sense of ~urpose and agreement. In addition
Eisner and Eiler also indicated the importance of
using methods to facilitate change in art so that
art educators would not resist change but "employ
critical procedures by which wise choices may be
made among competing proposals for change." With
few exceptions, such data collection and empirical
analysis have not been conducted.

A second issue in a needs assessment analysis was
to identify the present status of microcomputer use
in secondary art classrooms in order to establish
the need for the development of related goals. The
identification of this present status was secured
by investigating the current abilities of secondary
art teachers in microcomputer-based art activities.

A major question may be raised regarding how art
supervisors see the current abilities of art teach
ers in the use of microcomputers in the art class
room. Do art teachers have the knowledge of
microcomputer applications but not the actual
skills to use them? Are the microcomputer skills
they possess largely data management? In other
words, do they use microcomputers for record keep
ing and grading of students? Do the art teachers
have microcomputers in their schools to use in the
art room? Very little evidence is currently
available on the present status of microcomputer
use in the secondary art classroom.

In this study, the use of microcomputers in the
secondary art room was explored as a creative
medium and not as a tool for computer-assisted in
struction in secondary art programs. The study
assessed the current conditions for art teacher
preparation in microcomputer-based art activities
and the possible content areas to be included in a
secondary art program.

Method

Sampling

The study's population consisted of two separate
groups. One group consisted of all art super
visors, numbering 369, across the United States who
were listed in the American Art Directory, 1982. 8

The second group was designated as computer art
"experts." This group consisted of art educators
from higher education. Their selection was based
on the following factor: publication of one or
more articles on the topic of computer art or com
puters in art education or one or more courses
taught in computer art/graphics or computers in art
education.

The sample used in this study consisted of 137 art
supervisors and 24 computer art "experts." A
stratified random sample of art supervisors was
used. The stratification method was utilized in
order to reduce variability of the sample. A
possible source of error, it was felt, was randomly
selecting a sample heavily composed of states with
a greater number of art supervisors. This situa
tion could have influenced the internal validity of
the study. To offset this possible source of
error, a maximum of three randomly-selected art
supervisors were chosen from each state unless the
state had fewer than three supervisors listed.
When the first selection was completed, a further
random sample was conducted with the remaining
names to achieve the sample size of 137. A major
reason for using stratification was to increase the
likelihood of a representative sample of the total
population.

The justification for a sample size of 24 in the
group designated as "experts" was that there are
not enough art educators currently who have ex
perience in computer art that would allow for an
increase of the sample number. Those individuals
who do have the experience are primarily profes
sionals on the post-secondary level.

66

Objectives

The major objectives of the investigation were to
determine:

(1) the categories of microcomputer-based art
skills that are appropriate for secondary
art students to develop;

(2) the present abilities of secondary art teach
ers to provide microcomputer-based art
activities; and

(3) the present availability and use of micro
computers in art on the secondary level.

Procedures

Data were collected by means of a survey utilizing
a mixture of question types in order to secure the
most accurate as well as objective information in
quantitative form. The survey consisted of three
sections: (a) general background data, (b) par
ticipants' opinions concerning the potential of
specified content regarding use of microcomputers
in secondary art education, and (c) present status
of secondary art teachers and secondary schools in
regard to microcomputer-based art activities.

The reliability of the study was established by a
split-half reliability test based upon a pilot
study. Calculation of test reliability was con
ducted on the second section only because this
section addressed the primary concern of the study:
what topics should be considered for inclusion in a
secondary art class on microcomputer-based art
activities. In addition, it was the intention of
the other section to gather descriptive data which
were specific to the participant's situation and
did not lend to reliability testing.

After the survey was determined to be a reliable
instrument, the survey was distributed by mail to
the selected participants of the study. Partici
pants were asked to complete the survey and mail it
back to the investigator. A follow-up letter was
sent to nonrespondents to motivate them to complete
the survey. The total number of responses used in
the study was 97; 86 art supervisors and 11 com
puter art experts.

Data Analysis

Content Considerations

The results of the frequency distributions and the
means of the question, "Microcomputers and their
exploration as an art medium should be included in
a secondary art curriculum," are presented in Table
1. Since the combined percentages of agree and
strongly agree was 83%, it would appear that art
educators are receptive to the inclusion of micro
computer-based art activities in the secondary art
curriculum.

However, it was a major concern of this study to
identify more specific areas that art supervisors
and computer art experts felt should be included in
a secondary art curriculum in the use of microcom
puters. Eighteen content areas were chosen for the
survey after a review of the literature. Table 2
reports the results concerning these 18 curriculum

Table 1

Responses to "Microcomputers and their exploration
as an art medium should be included

in a secondary art curriculum"

CATEGORY LABEL FREQUENCY PERCENTAGE

Strongly Disagree 0 0.0%
Disagree 4 4.0%
Undecided 12 12.0%
Agree 47 48.0%
Strongly Agree 34 35.0%

N = 97 mean = 4.144

concerns for microcomputer-based art activities.
The data revealed that the areas that should be in
cluded in a secondary microcomputer-based art
curriculum as perceived by art supervisors and
computer art experts were: (a) the use of periph
eral devices; (b) the evaluation and criticism of
computer-generated images; (c) the creation of
computer-generated images; (d) the identification
of careers in computer graphics; (e) the appreci
ation of computer-generated images and the ability
to assess their use in the environment; (f) the
definition of computer art terms; and (g) the
selection of appropriate software for personal use.
The use of peripheral devices was seen as an im
portant facet of a microcomputer-based art curri
culum by 79 of the respondents (81%). Eighty-three
of the participants (86%) felt that the ability to
critically evaluate computer-generated images was
a salient competency for secondary art students.
In addition, 81 of the respondents (84%) thought
that the creation of computer-generated images was
a significant skill for students to exhibit.
Eighty participants (82%) from the survey agreed
that being able to identify suitable careers in
computer graphics was important for art students.

The area of assessing the implications of using
computer-generated images in our environment was
viewed by 86 of the participants (89%) as a content
area to emphasize. Being able to appreciate and
value computer-generated images was considered by
84 respondents (87%) to be a worthwhile ability to
possess. Seventy-nine participants (81%) of the
sample had the opinion that definitions of computer
art terms need to be included in microcomputer
based art activities. Finally, seventy-three re
spondents (75%) ranked the selection of graphic
software packages for personal use as a topic to
be included in a secondary microcomputer-based art
program.

The areas that art supervisors and computer art
experts felt should be of least importance or were
uncertain about for inclusion in a secondary
microcomputer art curriculum were: (a) computer
animation, (b) use of commercially-produced
graphic software programs, (c) three-dimensional
graphics (3D), (d) computer programming, (e) de
scriptions of hardware and software devices, and
(f} two-dimensional graphics (2D}. By combining
the strongly disagree and disagree categories, the
results of the data obtained were that 49 of the
participants (50%) felt computer animation should

67

not be included and 62 participants (64%) felt com
mercially-produced graphic software programs should
not be the major focus. Sixty-seven respondents
(69%) felt production of 3D graphics was either not
necessary or they were undecided.

Forty-eight respondents (50%) were unsure computer
programming was a necessary skill for art students.
The sample population appeared to be evenly divided
concerning the ability to describe hardware and
software devices (mean= 3.39) and the abilities to
produce 2D graphics (mean= 3.42).

The data also reveal that of the 81 individuals re
sponding favorably to the question, "Should stu
dents be able to produce computer-generated
images?", 57% felt they should be able to create
2D designs, 37% felt they should be able to produce
3D designs, and 32% felt the student should be able
to create computer animation (Table 3).

Table 3

Breakdown of Responses to Types of
Computer-Generated Images Students Should

Be Able to Produce By Participant's Response

CATEGORY LABEL FREQUENCY PERCENTAGE

2D graphics
3D graphics
Computer animation

Current Status

46
30
26

57%
37%
32%

The frequencies of responses of art supervisors
concerning the competency levels of art teachers
in microcomputer-based art activities are presented
in Table 4. It appeared that there was consistent
agreement concerning art teachers' current lack of
knowledge and skills in most of the competencies
listed. From this sample, it appeared that few
school systems have secondary art teachers who
possess strong microcomputer skills.

Table 5 presents the number of microcomputers per
secondary school while Table 6 reports the number
of secondary art teachers who offer some art
activities on microcomputers to their students.
Comparing these two tables, the results seem to
indicate that although 92% of the schools surveyed
do have microcomputers, only 27% of the secondary
art teachers provide art experiences on them.
These data indicated that the majority of schools
do have microcomputers available. The data also
reveal that of the secondary art teachers who do
provide art experience on microcomputers the range
is from one art teacher in an entire school system
to 10 in a school system. However, 63 art super
visors (73%) responded that none of their art
teachers provide microcomputer art experiences.

Problems That Need to Be Addressed in
Using Microcomputers in the Secondary
Art Classroom

A final open-ended question was provided in the
survey concerning immediate problems to be overcome.

Table 2

Summary of Frequencies and Means of Curriculum Concerns
for Microcomputer-Based Art Activities

STRONGLY STRONGLY
DISAGREE DISAGREE UNDECIDED AGREE AGREE MEAN

The use of peripheral devices (i.e., graphics 3 1 14 40 39 4.144
pad, light pen) with the microcomputer
should be a part of a secondary art
curriculum.

Art students should be able to evaluate and 3 3 8 58 25 4.021
criticize the quality of computer-generated
images.

Art students should be able to discuss the 1 13 25 46 12 3.567
historical developments of computer art and
identify the important artists in this field.

Secondary art students should develop the 0 5 11 49 32 4.133
skill to create and produce computer-
generated images.

Art students should be able to use the micro- 7 9 20 40 21 3.608
computer as a tool for all areas of art.

It is important for art students to be able to 1 7 9 54 26 4.000
identify suitable careers in computer-
generated imagery.

The ability to create animated sequences on 1 48 22 24 2 2.773
the microcomputer does have to be a skill
art students demonstrate.

Major focus for a secondary art curriculum 25 37 18 10 7 2.351
should be on the use of commercially
produced graphic software programs on the
microcomputer.

Secondary art students should be able to 0 5 6 53 23 4.072
assess the implications of using computer-
generated images in our environment.

The ability to produce 3D graphics on the 7 33 27 23 7 2.897
microcomputer is a necessary skill for
secondary art students.

Art students should be able to program the 2 24 22 32 17 3.392
microcomputer in order to effectively use
it as an art medium.

An appreciation of computer-generated images 0 4 9 61 23 4.062
in our environment and society is a topic
that needs to be included in a secondary
art curriculum.

The ability to recognize and describe the 0 9 17 54 17 3.814
characteristics of computer-generated
images is a skill art students need to
possess.

Descriptions of hardware/software devices 0 27 19 37 14 3.392
and their functions do have to be included
as art activities for students.

Static 2D designs in high/low resolution 2 15 34 32 14 3.423
graphics should be a skill exhibited by
secondary art students on a microcomputer.

Art students should be able to define and use 0 4 14 61 18 3.959
computer art terms.

The process of selecting appropriate software
packages (i.e., Koala pad, Graforth) for

2 2 20 62 11 3.804

personal artistic use should be a topic in
a secondary computer art course.

Microcomputers and their exploration as an 0 4 12 47 34 4.144
art medium should be included in a
secondart art curriculum.

68

Table 4

Frequency Ratings of Perceptions of Art Supervisors Concerning Art Teachers'
Competencies in Dealing with Microcomputers in Art

COMPETENCY

Computer art terms
History of computer art
Recognition of computer characteristics
Career vocations
Evaluation and selection of graphic software
Microcomputer visual problem solving
Drill and practice
Tutorial
2D design on microcomputer
3D design on microcomputer
Peripheral device usage -

Programming
Animation
N - 86

graphic tablet/pad
mouse (tracing stylus)
light pen
digitizer

Table 5

Number of Microcomputers per High School

CATEGORY LABEL

None
One
2-5
5-10
Over 10
Lab
No Answer

N = 86

Table 6

FREQUENCY

7
3

15
18
27
14
2

PERCENTAGE

8.0%
3.0%

17.0%
21.0%
31.0%
16.0%

2.0%

Number of Teachers in School System Who
Provide Microcomputer-Based Art Activities

CATEGORY LABEL FREQUENCY PERCENTAGE

0 63 73.0%
1 7 8.0%
2 5 6.0%
3 2 2.0%
5 3 3.0%
10 2 2.0%
No Answer 4 4.0%

N = 86

The problems that were identified were in six cate
gories (teacher training, funding, lack of good
software, curriculum development problems,
accessibility/availability of microcomputers and
space for microcomputers, and the role of the
microcomputer in art). Table 7 indicates the fre
quencies of responses concerning these categories.
Twenty-ei9ht of the participants indicated a con
cern for identifying the role the microcomputer

69

NONE WEAK FAIR GOOD EXCELLENT

16 51 12 3 0
35 43 10 0 0
18 57 13 5 0
31 42 12 3 0
39 42 5 2 0
43 40 5 0 0
39 42 6 1 0
43 38 7 1 0
37 40 9 2 0
50 43 5 0 0

38 39 8 2 1
45 36 6 1 0
44 38 5 1 0
50 34 4 0 0
48 36 4 0 0
52 32 4 0 0

Table 7

Problems Needing Attention in the Use of
Microcomputers in Secondary Art Classrooms

CATEGORY LABEL FREQUENCY

Teacher training 8
Funding 15
Lack of quality software 6
Curriculum development 16
Accessibility/availability 11
Role of microcomputer in art 28
No Answer 13

N = 97

should play in art. According to the participants,
the roles included: (a) the microcomputer used
only as a tool for other art media, (b) the micro
computer as a separate art medium, (c) the micro
computer used for CAI, and (d) the microcomputer
used for teacher management.

The next two highest categories of problems were
funding (15) and curriculum development (16). Once
the role of the microcomputer has been identified,
there appeared to be the need to address the prob
lem of developing appropriate activities for art
students. Many respondents felt art educators
should determine these activities but indicated
that presently most art teachers lack skills in
this area. This lack of skill training is re
flected in the identified problem of teacher train
ing {8). Secondary art teachers need to be
trained in microcomputer uses and skills in order
to make intelligent decisions on its inclusion in
the art program. Along with these concerns was the
knowledge that availability of funds was lacking
for curriculum development. Two reasons were often
identified for this lack of funding. One reason
was cutbacks in areas other than the basics, such

as art, would not allow for what respondents termed
"extras" such as microcomputers. The other reason
was general lack of awareness by administrators,
who provide the funds, of the serious exploration
of microcomputers in art and their creative po
tential.

General Discussion

The findings in this study led to the following
conclusions:

(1) Over three-fourths of the art supervisors and
computer art experts agreed that micro
computer-based art activities should be
included in the secondary art curriculum.
Specifically, they supported the inclusion
of the following topics in a microcomputer
based art curriculum:
• the use of peripheral devices;
• the evaluation and criticism of computer

generated images;
• the creation of computer-generated

images;
• the identification of careers in computer

graphics;
• the appreciation of computer images and

the ability to assess their use in the
environment;

• the definition of computer art terms; and
• the selection of appropriate software for

personal use.
Although participants were in agreement with
the general inclusion of microcomputers in
the art program, they disagreed with the
necessity of including the following micro
computer activities in the program:

• computer animation;
• the use of commercially-produced graphic

software programs;
• production of 3D graphics; and
• descriptions of hardware/software func-

tions.
In addition, they also were primarily un
decided on whether the following two areas
need to be included in microcomputer art
activities:

• computer programming, and
• production of 2D graphics.

(2) Art supervisors reported that the majority of
secondary art teachers lacked knowledge of
computer-generated images and skills in
art applications on the microcomputer.

(3) Over half of the school systems surveyed had
at least five microcomputers per school
with many having lab facilities. The art
supervisors, however, indicated that the
majority of their art teachers did not pro
vide any microcomputer art experiences.

(4) The major problems that needed to be overcome
so that the use of microcomputers could be
successful in the secondary art classroom,
in order of importance, were:
• Identify the role of microcomputers in

art;
• Curriculum development of appropriate

activities;

70

• Funding;
• Accessibility, space, and availability;

and
• Teacher training.

The results of this study suggest that secondary
art educators are receptive to and see the need for
the inclusion of microcomputers in the art class
room. This finding contradicts the earlier held
conception 1

'
2

'
9 that newer technology was viewed

by art educators with great apprehension and should
be avoided in the arts. There is evidence, how
ever, that agreement on certain content areas in
microcomputer-based art is lacking. Implications
from this stLKly suggest that problems of agreement
may be due primarily to lack of knowledge of and
skills with microcomputers.

The results are also consistent with the ideas of
writers 10

-
11

-
12 in that there appears to be an

absence of specific knowledge needed for the use of
microcomputers in the art classroom. The success
ful use of microcomputers in the art class requires
not only an awareness and understanding of the
creative potential and avenues for exploration with
a microcomputer but also an adequate ability to use
it. To what extent did the participants in this
study provide evidence of these levels of compe
tencies? An answer to this question is provided by
the competencies of the secondary art teachers and
experiential data. Both competencies and micro
computer experiences indicate weak levels of
abilities in the use and knowledge of microcompu
ter-based art. This means that the absence of
these skills in secondary art teachers will influ
ence the art activities that are planned and used
in their classroom. The most revealing comparison
of this fact is between the number of microcompu
ters per high school and the number of art teachers
offering microcomputer art activities. The
majority of art teachers clearly provide no ex
perience although microcomputers are available.

However, many of the areas that the respondents
felt should be included in microcomputer-based art
activities do not require the actual use of the
microcomputer. For example, the evaluation and
appreciation of computer art and the identification
of careers in computer graphics do not require
hands-on utilization of the microcomputer. Al
though there would be additional information needed
by art teachers to provide this content informa
tion, it would appear not to be as extensive as
actual experience in using the microcomputer. The
results suggest that art departments that do not
have microcomputers available or funds for their
inclusion could provide this type of content with
out the aid of a microcomputer. These solutions
could remedy some of the problems (funding and
availability) that participants felt needed to be
addressed before microcomputers were included in
the curriculum.

The findings of this study also illustrate that
computer art may simply be such a new area that in
consistencies do exist concerning appropriate con
tent for art curricula. The research lended sup
port to the contention that art educators lacked
understanding of microcomputer-based art in
general. An example may illustrate the importance

of acquiring specific skills in microcomputer-based
art by art educators. Discrepancies were apparent
in responses to the need for students to produce
computer-generated images. Although the general
consensus was that 3D graphics and computer anima
tion should not be included and that the role of
2D graphics was uncertain in a microcomputer art
program, the majority of individuals responded
favorably to the creation of computer-generated
images. These results are inconsistent with the
fact that the only types of images that can be
created on the microcomputer are 2D designs, 3D
images, and computer animated sequences. A
secondary explanation for these inconsistencies may
be in the structure of the survey itself. Indi
viduals may have interpreted survey questions
differently which could account for this fact as
well.

One important result of this research was the
participants' identification of areas that needed
to be overcome in order to implement microcomputer
based art activities in the secondary art program.
Data from the open-ended question revealed the need
and importance for educating school administrators
about the creative potential microcomputers have in
art. Without this awareness and subsequent support
by school officials, art educators will have dif
ficulty incorporating microcomputers into the art
curriculum.

Another complication to the use of microcomputers
in the art program suggested by the data seems to
be the lack of accessibility of microcomputers or
the space for them in the art room. In many cases,
the locations of microcomputers in high schools are
in the math and science areas. The open-ended
question revealed that art departments do not al
ways have access to them. Results also revealed
that art teachers would have difficulty providing
space for the equipment in their existing class
rooms. Perhaps secondary art educators should
consider the possibility of developing a mutually
agreeable user schedule for microcomputers in their
schools so that they (art teachers and students)
could gain access to them.

This study set out to investigate the content areas
that should be included in a secondary microcom
puter-based art curriculum. What should be clear,
however, is that inconsistencies and discrepancies
in the respondents' positions on several topics
existed, strongly lending support to the contention
that lack of agreement on topics may in fact be
merely lack of understanding of microcomputers in
art. This lack of understanding may be due to a
lack of tradition in a new area of art exploration.
Thus, art educators must begin to learn how to
create microcomputer-based art themselves. In this
way, familiarity with and understanding of the
medium will develop and the formulation of a tra
dition in microcomputer-based art will begin.

REFERENCES

[1] D. White, "Advanced technology, art and art
education: Reaching toward the third milleni
um," Atr,t, Edu.c.au,on, vol. 36, no. 3, pp. 8-10,
1983.

71

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[11]

[12]

S. Madeja, "The art curriculum," Atr,t, Educa
tion, vol. 33, no. 6, pp. 24-26, 1980.
L. Ettinger and M. Rayala, "Computers in art
education," The Computing Teac.heJt, pp. 24-28,
1982.
M. DiBlasio, "If and where to plug in the
computer: A conceptual framework for computer
assisted art instruction," S.tucuu in W
Educ.au,on, vol. 25, no. 1, pp. 39-47, 1983.
L. Briggs (ed.), In6bz.uc.tional Vuign: P!Un
uplu and Appuc.au,on-6. Englewood Cliffs,
NJ: Educational Technology Publications, 1977.
R. Kaufman, Neecv.i M¢e/2¢men.t: Conc.epv., and
Appuc.au,on-6. Englewood Cliffs, NJ: Educa
tional Technology Publications, 1979.
E. Eisner and D. Ecker, "Some historical de
velopments in art education," in G. Pappas
(Ed.), Conc.epv., in Atr,t, and Educ.au,on. Toronto
Canada: MacMillan Co., 1970 (pp. 12-25).
Jacques Cattell Press (Ed.), Amruc.an Atr,t,
V)Aecto~y. New York: R. R. Bowker Company,
1982.
V. Lanier, "Newer media and the teaching of
art," S.tucuu in Atr,t, Educ.au,on, vol. 5, no. 1,
pp. 10-19, 1963.
B. Jones, "Art, music and humanities," Joint
issue, Education Board, A¢¢Oc.,i,au,on 60~ Com
puting Mac.h,i,neJty, pp. 71-75, 1981.
A. Phelan, "The impact of technology and post
modern art on studio art education," Atr,t,
Educ.au,on, vol. 37, no. 2, pp. 30-36, 1984.
D. Greh, "Art education in the third wave,"
W Educ.au,on, vol. 37, no. 2, pp. 40-41,
1984.

Red Network: A Conceptual Art Piece Using Microcomputers

George K. Shortess

Department of Psychology CU#l7, Lehigh University
Bethlehem, Pa. 18015

Abstract

describe an installation using sound
producing microcomputers in a public place and
provide an evaluation of the reaction to the
piece as well as some comments on the use of
microcomputers in environmental/conceptual art.

Introduction

As discussed elsewhere my art work has
developed as ways of expressing the formal
features of the human nervous system (Shortess,
1983)~. Briefly I have used the properties of
the nervous system as the basis of my art in
much the same way as any artist uses the
features and ideas of his/her subject matter to
create images in whatever way they are defined
by the artist. In my particular approach, I am
not trying to create literal nervous systems but

interactive devices that behave in
some ways like nervous

systems.One effect of these pieces
is to create for the viewer the
idea that neural activity is an

essential part of the art
experience. For

these purposes the
interactive function or
behavior of the system
is more important than
the visual appearance
although that too is,

of course, part of the piece. But it has been
the ability of microcomputers to behave
interactively that has led me to use them in my
work.

In this sense then my work is a form of
conceptual art in that it is driven by ideas
about the nervous system and asks questions
about the nature of art and the role of neural
activity in understanding art ideas (see for
example, Kosuth, 1969)1. However, it is not
conceptual in the sense that there are physical
objects that outlast my creative act. On the

CH2087-5/84/0000/0072$01 .00 C 1984 IEEE
72

other hand they continue to generate ideas about
neura•l activity, as well as neural activity in
the viewer, for as long as the viewers and
pieces can interact. They are not so much
conceptual in the act of creation (as with much
of performance art), but they are conceptual to
the extent that they successfully ask questions
about the idea that the nervous system is the
essential art object.

Within this general context, I will
describe my installation piece, Red Network, and
provide some comments on a questionnaire that
evaluated the exhibition, as well as some
general comments on the use of computers in this
kind of art.

The Installation

This installation was part of
series of exhibitions on Art and
sponsored by the Lehigh University
that were in place from September
October 30, 1983 at the University.
in two separate buildings housed
exhibitions. There were three other
of interest, aside from Red Network:
1) an exhibition of offset prints in
Building A, 2) a survey of the
history of art and

Figure 1. Map of the
connecting pathway
between the two
buildings, A and M.
Scale

-.1""'0..,0~f e-e ... t-

a larger
Technology
Galleries

11 through
Ga 11 eri es
the main

components

--,---1--~
A

_1~r-1

technology cal led "The Aesthetics of
Technology: From the Crystal Palace
to the High Frontier" in Building M,
and 3) an exhibition of shells and
other natural forms cal led "Nature's
Technology" in Building Mas well.

Red Network provided a conceptual
link between the two buildings (see
Figure 1). For this installation I
placed on the floor in the lobbies of
both buildings aluminum covered boxes
from which extended heavy red cord
attached to the ceiling (see Figure
2). Al 1 boxes were 15 inches high and
occupied from 360 to 650 square inches
in various rectangular shapes. The
cord also extended outside along the
walkways connecting the two buildings,
a distance of over 1000 feet. Outside
the cord was placed in noncontinuous
sections supported by aluminum stakes
driven into the ground so that the
cord was about a foot above ground
level. At the ends of each section,
the cord followed the stake into the
ground and was anchored below the
ground level. This gave the
impression that the cord continued
underground between the above-ground
sections. As thP exhibit continued
(over a period ot six weeks), the
number of stakes was reduced, making
the connection more conceptual and
less literal. In each lobby a small
sound generating computer (a Commodore
VIC-20) was housed inside the aluminum
covered boxes. Pressure sensitive
pads were placed under the foot mats
inside the doors and connected to the
computers. As people entered and left
the buildings there were bursts of
sound from the boxes. Often a group
of people leaving at the same time
would produce sequences of the
bursts by the chance spacing of
their walking patterns. In
addition, by alternately
stepping on and off the
pads, one could

Figure 2. One of the aluminun covered
boxes with ~ord.

73

Figure 3. Schematic
floorplan of in
stallation in
Building M.
SW- Switch
SP- Audio Speaker
CO- Computer
AM- Amplifiers
Scale

2 feet

co
AM

deliberately create sequences of these bursts to
form unique sound patterns. These two locations
served as the two main nodes with the red cords,
as the connecting elements of the total network
structure, binding the two exhibition spaces
together.

The floor plan for the Building M node is
shown in Figure 3. The node in Building A was
similar except that there was only one pressure
sensitive pad and only one speaker, since the
available space was smaller. The joystick
inputs to the VIC-20, which is a pair of
switches, were simply connected to the pressure
switches placed out of sight under the regular
door mat runners in the entrances. The
connecting wire was run in an unobtrusive way
around the edges of the space. The program in
the computer kept looping and looking for a
change in the state of one of the switches.

When a change occurred in either switch a
subroutine was called that generated a sound
burst associated with the particular switch that
closed. Both switches produced eight notes in
succession. A typical sound burst for each
switch is shown in Figure 4. The tone for one

.I I J. J4

I J II
SW 2

r 1crrr1r c IJ 11

SW 1

Figure 4. Note sequences generated by the
sculptures

switch was lower than for the other. The tones
for each burst were always the same and were al 1
about 16 msec. in duration but the time
intervals between notes of the burst varied each
time the mat was depressed. The ranges of
intervals were from 20 msec. to 220 msec. for
switch 1 and from 20 msec. to 170 msec. for
switch 2. The same program, connected to switch
1 only, was used in Building A. The particular
sequence of intervals varied in a quasi-random
order as determined by the random number
generator of the computer. After the burst it
again evaluated the switch. If it remained
closed the program would not return to the main
loop. This required that the participants keep
moving around on the mat in order to continue to
generate sounds and provided a safeguard against
the sound going on continuously if a broken
switch remained closed, although the pressure
switches continued to operate throughout the
exhibit. In fact, there were no reliability
problems in the system at all. While the system
was looping and looking for a switch closure, it
would generate a single note of 16 msec.
duration and with the tonal value of high C.
The interval between occurrences of this single
note was between 0.6 sec. and 18 sec. This
served to indicate that the system had a will of
its own and was not simply driven by the traffic
through the buildings.

The Reactions

The reactions of viewers to the piece
included indifference, genuine liking and
disliking as well as an unsureness about the
work as "art." Some people, I am told, talked
to it when they would go by, others played on
the mats to create their own sound sequences
while others never noticed. However, the
computer-generated reactivity seemed to be the
most engaging part of the piece.

The outside stakes with the red cord
suffered various forms of nonverbal abuse. They

74

were bent, pulled out, pushed over and taken
away. During the daily maintenance I also
changed the exact placements and reduced the
total number of stakes over the period of the
installation partially in response to the abuse.

In addition some of the students got
involved with the work in a variety of public
ways. There was an editori a 1 in the campus
newspaper and towards the end of the show a
group of students built a sculpture on the lawn
in front of Building M, using pieces of the red
cord and stakes of Red Network together with a
supermarket shopping cart. It was dubbed "cart
art."

After the exhibitions were over, a
telephone survey of 110 students was carried out
to gauge the impact of the exhibitions for the
i;urpose of improving the exhibition program at
the University. can provide a complete
description of the results to anyone interested.
Here I wi 11 simply summarize them, particularly
as they pertain to Red Network. First there was
a problem in obtaining a random sample of the
Lehigh student population. The sample obtained
was overrepresentative of sophomores and
underrepresentative of seniors so that
uncritical generalizations to the general
student population cannot be made. Within that
limitation, however, the results from the sample
indicate that there were significant differences
in student awareness for the exhibitions. The
students were most aware of Red Network (65% of
the 110 students) while 20%, 28% and 39% of the
sample were aware of the other three
exhibitions. In addition there were 22 students
who were only aware of Red Network and not the
other three exhibits while for each of these
other exhibits 0, 4 and 6 students respectively
indicated awareness of but one of them. This
suggests that Red Network was more salient than
the other exhibitions. This is consistent with
the newspaper editorial and the "cart art" work
created by the students, since none of the other
exhibitions was responded to in these ways.
Whether this salience was due to the interactive
quality, the fact that it was located in several
areas of the campus or some other reason cannot
be determined. Future work may be able to
answer these questions about computer controlled
interactive art works. One other result
emerged. About half the students who were aware
of each of the exhibitions reported reacting
positively towards it while the other half was
either negative or indifferent. There were no
differences in this measure across exhibits.
Therefore the salience of Red Network did not
seem to result from an overriding liking of it,
although it should be emphasized that these
results are suggestive rather than conclusive.

Comments

I will not attempt an evaluation of the
overall success of the piece since I do not have
the data with which to do it. Certainly for
some vi ewers the piece did work wel 1. For

others it was something meaningless. As an
experiment it was clearly valuable to me as the
artist. It demonstrated possibilities for the
use of computers in nontraditional forms that
allow art, as an open concept, to develop in
ways that are at least improbable without the
computer. Its value, in addition to its
interactive ability, is that it behaves in
highly repeatable ways and the artist can
specify the rules by which the program works, or
change the rules and experiment with the
parameters of the program. The microcomputer is
also relatively inexpensive, is convenient, fits
into a small box and is portable. It is an art
form that does not depend on high cost and state
of the art equipment.

But when and how does one use a computer,
or any other medium for that matter? This seems
to me to be one of the most important parts of
the process of artistic expression and in the
final analysis each artist must answer these
questions for her/himself. However, there seems
to me to be a guiding principle that is often
lost when computers are involved. In the search
for higher resolution, more powerful machines
and, by some technical criterion, better and
improved systems, the technical often drives the
creation. For me the making of art should be
driven by the art ideas and not the technology,
unless of course that in itself is the idea.
The technological medium provides the limits of
the po~sibilities but does not provide ideas of
art. True, there may be interactions between
the medium and the artist that are helpful to
the artist in understanding the technology and
what it can do, but that is not artistic
creation. In the case of Red Network, I wanted
to make a statement about connections among a
group of art exhibits that reflected the
metaphor of the nervous system. In addition, I
wanted the piece to be placed in particular
public areas without a great deal of security
and areas that were not well laid out for
connecting a piece into major computer systems.
This seemed to be an ideal application of the
small VIC-20 microcomputer. But it was the idea
of the neural metaphor that came first and then
the search for the appropriate medium. It is
this principle that somtimes gets lost in the
rush to bigger and better machines.

From this it follows that since one of the
qualities of the machine is as a processor of
information, arts dealing with ideas about
information structures, information transmission
and other information processing activities find
computers a natural medium to use, al though
certainly not the only one. Since my art work
is dealing with ideas about the nervous system,
which is an information processing system among
other things, the computer can provide a means
to express the neural metaphor. In addition,
the computer is a powerful medium for looking at
the conceptual basis of art. By helping to move
art out of conventional molds, it is a way of
extending the definition of art. In the case of
Red Network, I have combined these two ideas by

75

asking about the relationship of art to neural
responses. In this context then, is the art
work the collection of boxes, red cord,
computers, wires, switches, etc? Or is it the
interaction that occurred while it was in place?
Or is it the idea that the essential art work is
a pattern of neural activity which exists in
some people's neural memory? Different people
will answer these questions in different ways
and I will not presume a correct answer. As the
artist, the exploration of the means of asking
such questions is the exciting activity of
creation. Microcomputers provide another way of
doing just that, but a way that is uniquely
suited to the task. In addition to these sound
sculpures I have been developing programs, using
graphics and text that are more language based.
They make statements, ask questions and require
viewer responses. This is another of the many
potential ways to use the computer medium to
express artistically, ideas about neural
function and the arts

References

1. Kosuth, J. Art after philosophy. Studio
International, 178, 134-137, 1969.

2. Shortess, G.K. Neural Art: Works based on
concepts of the nervous system. Leonardo,
16, 306-309, 1983.

COMPUTERS AND POETRY

Nora Wilson
4784 Crestline Ct SW
Wyoming, MI 49509

Walter Wright
School of the Arts

Virginia Commonwealth University
325 N Harrison St

Richmond, VA 23284-0001

In this paper we will discuss computers as a means
of presenting poetry and in our discussion address
the more general issue of aesthetics and computer
graphics,

INTRODUCTION

Nora writes poetry, She doesn't like computers,
Computer generated poetry doesn't impress her and,
frankly, it doesn't impress me either. My
specialty is computer graphics. Approximately 4
years ago I helped design an artists' work
station. One of the images I created on this
system inspired Nora to write Gretchen Prisoner of
Love. More images followed and soon we had our
first slide/tape show.

We thought about distributing our creative effort.
Traditionally poetry is distributed through the
print medium in books and literary journals.
Sometimes it is accompanied by illustrations or
photographs. We even have concrete poetry which is
its own illustration. Unfortunately, people would
rather watch TV than read a book of poetry. A
slide/tape show is not the most portable of media
and not everyone has a slide/tape synchronizer in
the den.

Why not make poetry available on TV? We tried
videotaping our creation but this ended in
frustration. The sound track was left off our copy
rendering it useless.

Why not translate Gretchen Prisoner of Love from
slide/tape to floppy disk? We tried putting it on
the computer and herein lies our tale.

AESTHETICS

Gretchen Prisoner of Love is a prose-poem. In the
original slide/tape version each of the 88 lines
of text corresponds to an image, The relationship
between text and image is one of text and context.
The image creates a context for interpreting the
text. In turn, the text gives meaning to the
image. This relationship raises the issue of
aesthetics.

"Aesthetic" comes from the Greek for "sense of
perception". Webster's defines aesthetic as that
which relates to sensuous cognition involving pure

CH2087-5/84/0000/0076$01 .00 C 1984 IEEE
76

feeling or sensation especially in contrast to
reasoning or rationalizing. "Aesthetics" seems to
have aquired a related but opposite meaning as a
set of rules for judging the worth of a piece of
art. This second definition opposes the first
because it emphasizes reasoning over feeling, And
herein lies the failure of "computer art".

In general, computer art appeals to the intellect
not the emotions. We hear something like, "That's
a nice piece of computer art because ••• ", rather
than, "That piece makes me feel, •• ". This
distinction is important. Computer art which
illicits the first response will never be anything
more than "a nice piece", but that which illicits
the second response has real potential. In
Gretchen Prisoner of Love we are attempting an
immediate sensous experience; we are attempting to
illicit the second response,

To put it another way, poetry appeals to the
emotions, this is a given, Computer graphics
appeals to the intellect, this is a mistake.

In order to avoid this pitfall, we needed a
presentation sufficiently complex so that it
defied immediate rationalization, We tried to do
this in several ways. An image can be made
complex; its relationship to other images in the
presentation can be made complex; and, finally,
the relationship between the images and the text
can be made complex, We have now returned "full
circle" to our discussion of text and context.
Let's wrap it up by paraphrasing Susanne Langer
art is the appropriate relationship between that
which contains (context) and that which is
contained (text).

WHAT YOU CAN DO WITH YOUR COMPUTERS

Now for Nora's two cents worth. Anyone who has
been paying attention the last few years knows the
computer has become a tremendous aid to writers,
Word processing makes editing and revising faster
and easier, and more and more books and articles
are composed and arranged on word processors,
There is another kind of writing however, that is
still best done by the slower method of pen on
paper: poetry and lyric prose.

In well-written poetry and prose-poetry, every
word is carefully considered, chosen and placed

for its meaning, impact, and relationship to the
whole. As the creative process unfolds, hours or
even days may pass before the right word or group
of words is found for a particular placement. If a
phrase comes to the writer in the middle of the
night, she does not get up and power up the
system, find the disks and programs she's using,
and insert the phrase. She writes it down in the
notebook next to her bed.

In the original slide/tape production of Gretchen,
the lines were written to accompany the images.
The reading, or sound track, was an important part
of the presentation. In the computer version,
different (though similar, when possible) images
were created to accompany the script, which, no
longer heard, has to be read off the screen. The
movement and placement of the words became an
important part of the visual images.

The computer as a means of presenting poetry and
images is probably not an obvious application of
the technology, but a computer disk is definitely
an appropriate vehicle for Gretchen's narrative."
Certainly there are worse things you could do with
your computers.

THE PRESENTATION

The original slide/tape format uses approximately
90 slides synched to a prerecorded audio cassette.
There is a line of text for each slide, an
inaudible pulse at the end of each line advances
the slide tray. Timing or pacing is determined by
the narration. The original images included real
photographs, digitized video images and computer
generated images with a resolution of 378 x 241 x
16 of 4096 colors.

And we wanted to do this on an APPLE!

The new computer format uses 32 images presented
with text on the APPLE's high resolution screen,
so-called, having a resolution of 280 x 192 x 6
colors. No real photographs, and the digitized
video images are limited to 4 levels of grey.
Timing is determined by programming.

The script was reorganized; lines of text were
grouped to correspond to avaliable images. In the
outline that follows, the images are numbered
1-32. The"&" indicates that the screen is cleared
and corresponding lines appear on a blank
screen.The"+" indicates that the last lines are
cleared before the new lines appear. Because there
are only 40 characters per line, some of the
original lines are broken. The"/" indicates a
pause inserted in order to control the speed at
which the line is read, that is, to control pacing
for variety and emphasis.

77

Here is the reorganized script-

1.

Gretchen/

2.

Prisoner of Love/

&

All my life I've struggled/
to find my owm identity./
Who am I?/

3.

When I cut through the fascade,/
through the layers I present/
to the outside world,/what is left?/

4. (text window)

s.

I am a woman./

+

More than anything,/! feel./

6.

Emotions/are the driving force/
in my life./And why not?/

&

Does anything else really matter?/

7.

We all go through our daily routines/
doing what we need to uo/
to get by in the world./

+

We think our activities are important./
We believe we have chosen our paths,/
set our own goals./

8.

We believe we are masters/
of our own fate/because no one/
wants to believe/in a random universe./

&

But do we really make our own decisions?/
Do we really have a choice?/
Perhaps not./

9.

Our life form has evolved/
to its present state/
because our bodies carry/

+

genetic material/whose sole purpose/
is to reproduce itself./

10.

Is that why/I can only identify myself/
in relation to another./

11.

Lowell is a cad./
He takes shameless advantage/
of my love./But I can't give him up./

&

I tried to fight it./
I told myself/
it's useless,/

12.

He'll/only/break/your/heart-/

13.

cut/it/into/pieces./

14.

But he drew me/
to him like/
a magnet,/

+

calling for me/
in my dreams-/

+

GRETCHEN/ (repeat 4 times)

+

I couldn't resist./

15.

Lost in his arms,/nothing else mattered./
His kisses were /like magic,/

16.

his touch/like none I'd known before-/
so gentle,/yet so strong./

&

How can I describe/
what happened in my mind/
when we touched-/

78

17.

the images/so strange,/colors/so vivid,/

18.

shapes and patterns so real,/
beyond the realm of illusion./

14.

Oh Lowell,/
will you never care for me/
as I care for you?/

19.

It's not not that Lowell is cold/
or unfeeling./He loves his work./

20.

He spends most of his time/
at the computer,/devoting his life/
to information processing./

21.

And this he does/in the name of art-/
because he's also devoted to art./

&

He says,/

+

"Because of the dichotomy/
between art and science,/
artists should take over/
the technology."/

+

Oh I know he's right./

22.

Think of how technical minds/
have misused technology./

23.

How science has abused humanity/
and endangered the future/of our planet./

24.

But Lowell is into/
computer augmented creativity./

+

There are worse things/
a computer scientist can do./

&

Too bad/
computers bore me/
comatose,/

25.

My mind goes plaid/whenever he talks/
about the system output/
of his algorithmic strategy,/

14.

Can't he see/
what he's doing/
to me?/

+

There must be a way/
to make him notice./

+

A way to get him/
to leave his machine,/

&

I needed a/PRIORITY INTERRUPT./

26.

I tried to make him jealous./
I went out with other men,/
It didn't faze him,/

27.

I flirted blatantly with his co-workers,/
He was pleased/
I found his friends so charming./

&

"I want you to be free," he said,/
And I want to be free,/
but is it possible/

28.

Could sheer will ever harness the energy/
of sociobiologically influenced/
electrochemical synapses/

29.

in a woman born in scorpio sun/
with capricorn rising?/

30.

I do what I need to do/
in my daily routine./
I have chosen my path,/set my goals./

79

&

But do I make my own decisions?/
Do I have a choice?/

31.

Will I always be/possessed by/passion,/
enslaved by/lust,/a prisoner/of love?/

32. I (final image, no text)

&

Written by/
Nora Wilson/
Programmed by/
Walter Wright/

&

A Lofty Thoughts Production/
Copyright 1984./

STRUCTURE AND COMPLEXITY

Now for Walter's two cents worth. As I worked with
Nora's script I became aware of subtleties
previously missed, a craftiness lurking between
the lines. On the surface Gretchen Prisoner of
Love is a simple tale of unrequited love, There
are two principal actors: Gretchen who is a woman,
and Lowell who is a cad, Gretchen identifies
herself in relation to, hopefully, Lowell, He on
the other hand seeks fulfillment in his work. But
there's more than romance here.

There is the conflict between natural systems such
as biology (Gretchen is something of an amateur
sociobiologist), and man-made systems or
technologies: between feelings and the machine,
And there is the conflict between art and science.
So we have several conflicts interwoven in the
script. Each a simple confrontation of opposites;
but together a complex structure which
approximates reality. For example, Gretchen and
Lowell may not be seeing eye to eye but, at least,
they're both for art as opposed to (mis)applied
science.

The writer weaves together a number of simple
themes to produce a complex structure, Nora has
done this not only on the level of plot, but with
voice, grammar, and syntax. Here is Gretchen (the
amateur sociobologist) pondering her predicament:

"Our life form has evolved to its present state
because our bodies carry genetic material whose
sole purpose is to reproduce itself. Is that why I
can only identify myself in relationship to
another?"

Or, consider this gem:

" ••• shapes and patterns so real, beyond the realm
of illusion."

.... ; ..

Figure 1 Titles

The visual artist must also weave together a
number of simple themes to produce a complex
structure in support, or sometimes in opposition,
to the text. I used three types of images
corresponding to the three voices used in the
text; real (digitized video) images corresponding
to the narrative voice; illustrative in response
to the use of cliches; and abstract images in
response to the more poetic passages.

Figure 3 Gretchen

Figure 5 Lowell

80

Figure 2 A Broken Heart

The title- "Gretchen/Prisoner of Love"- is an
example of illustration, Figure 1. The title is
spelled out directly, an obvious one to one
correspondence. Further, the phrase "Prisoner of
Love" is imprisoned inside "Gretchen"; indicating
that the prison isn't outside Gretchen, the prison
is Gretchen. Another example of illustration is
the breaking heart, Figure 2.

Figure 4 Gretchen and Lowell

Figure 6 Gretchen Thinking

Figure 7 Emotions

Figure 9 A Random Universe

Real images, Figures 3-6, are used to introduce
Gretchen- "Who am I?"- (and there she is) and
Lowell who first appears in a composite image-
" ••• in relation to another."- a visual pun, and
then on his own (the cad). There is one particular
image of Gretchen, she's in the lower half of the
frame, used at three points in the script where
the narrative·becomes highly introspective, Her
thoughts appear cartoon-like above her head. And
at one point Lowell's voice appears (in inverse
type) to summon her away. Here we have something
like counterpoint; the real images become a
cliche.

Abstract images, Figures 7-10, are used to convey
feelings and concepts. The first pure abstract
appears with the line- "Emotions are the driving
force in my life" • A knife-like triangular
(negative) shape cuts the picture and overlaps the
previous image of the body. It points to the text
for added emphasis. Another type of abstract is
used with the phrase- " ••• our daily routines ••• "
and appears again with- " ••• my daily routine." In
this image groups of orderly horizontal and
vertical lines are torn apart into areas of

81

Figure 8 Our Daily Routines

··--~

:'.\\,.

Figure 10 In The Name of Art

contrasting color indicating the usual outcome of
well laid plans. Some abstract images are (or
contain) visual puns; for example the image which
accompanies the phrase- " ••• a random universe. 11

-

is made from random pieces of images used
elsewhere in the presentation, and with- " ••• in
the name of art ••• "- is an image containing, what
appear to be, little framed canvasses.

Many images are combinations of these three basic
types- real, illustrative and abstract. The
statement- "I am a woman."- resulted in a
composite image made from two real images, Figure
11. The dominant figure is assertive like the
statement; the second figure appears to be
emerging from tears in the first and changes the
original assertation to a question- "I am which
woman?". These same two figures are combined again
near the end of the presenation; they are in
better balance. The final image, Figure 12,
combines illustration, realism, and abstraction.
Gretchen, as she first appearred, is combined with
the unbroken heart, however, she is still a
prisoner as suggested by the vertical bars which
break up the image. She is still a prisoner of
love.

Figure 11 I Am a Woman

OK, I've suggested ways in which these three types
of images were woven together to form a complex
structure which supports through correspondence
and opposition the equally complex structure of
the text. This structure is one of expression; and
expression is only one dimension of visual
imagery. Just as the writer (bless her heart)
works with grammar and syntax, so does the visual
artist. Composition is a second means of
structuring visual imagery, a second dimension.
Again taking the three types of images- real,
illustrative and abstract- let's look at the order
in which they occur in the presenatation.

Group 1: the titles constitute a single
illustration, followed by one real image, four
abstract images, and another illustration. This
group of seven images introduce Gretchen and the
concept of genetic determinism.

A bridge: two realistic images serve to introduce
Lowell and form a bridge to the second major
grouping of images.

Group 2: again this group starts with an
illustration- the breaking heart- followed by one
real image, four abstract images, and the same
real image repeated. In this group of seven images
Gretchen driven, we suppose, by genetic
determinism pours out her heart.

Group 3: immediately we launch into the third and
last major group of images. Four abstract images,
one real image, one abstract image, four real
images, and four abstract images. This group is
obviously different; there are fourteen images
twice as many as groups 1 and 2; the order of
subgroups established in 1 and 2 is reversed. We
are introduced, in the first subgroup of four
images, to the themes- feelings versus the machine
and art versus science. In the second subgroup of
four images Gretchen confronts Lowell directly,
attempting to lure him from his machine. This is
stage two of the standard "hollywood plot" which
has three stages- crisis/ conflict/ resolution.
But there is no resolution, in the last subgroup
of four images we have a recapitulation of the
original romantic conflict; and the question-

82

Figure 12 A Prisoner of Love

"Will I always be ••• a prisoner of love?"- is left
unanswered.

A summary: the final image combines illustration,
realism, and abstraction. The unanswered question
reverberates through this image.

Let's look at the order of images in its simplest
forms- "I" repesents an illustration, "R" a real
image, "A" an abstraction, and"/" divides the
major groupings-

IRAAAAI/RR/IRAAAAR/AAAARARRRRAAAA/I

And as numbers-

1141/2/1141/41144/l

OK, here we are at the opposite end of the
structuring continuum- from expressive to
mechanical; informal to formal; or, as Gretchen
might put it, from feelings to the machine. The
question we must ask now is-

Is this a suitable structure, an appropriate
container (context) for that which is contained
(text) ?

And, of course, I think it is. Here's why. The
major groupings of images correspond directly to
the development of themes within the plot, as
outlined above. The ubiquitous rule of threes is
basic to the "western aesthetic". Parts 1 and 2
are identical, in a formal sense, leading us to
predict Part 3. But no, Part 3 inverts our
expectations; elaborating and extending the
structure of Parts 1 and 2. Literature, hollywood
films, and pop music- just to mention a few
diverse examples- use similar means of structuring
and form(al) development. Not wishing to belabor
what is meant to be but one example of
structuring, I have a final observation. The
number sequence above, if transposed into musical
notes and intervals in a minor scale, would make a
nice lament •••

The next several sections are technical in nature,
They describe the hardware and software used in
bringing Gretchen Prisoner of Love to the computer
screen. We will look at assembly language
utilities, higher level language programs, and
other graphic systems used in producing and
orchestrating text and images, These are the
building blocks for the presentation system.
Discussing them not only satisfies a programmer's
compulsiveness but will help to define the term
ttcomplexity tt

GRAPHIC UTILITIES

VCUtilities is a package of assembly language
graphics routines developed for an advanced
computer graphics class at Virginia Commonwealth
University, School of The Arts. It includes -

UD

SAD

&

- calculate line address,

- calculate screen address,

- fast clear.

% - zap phase bits, all black bytes cleared,

S!

P!

X!

V!

HL

VL

R!

A!

T!

- clear screen to 1 of 32 color patterns.

- draw a pixel,

- draw a pixel in XOR mode,

- draw a vector,

- draw a horizontal line,

- draw a vertical line,

- draw a rectangle,

- draw a filled rectangle.

- text drawing in XOR mode.

Figure 13 Vertical stripes on the current screen.

83

I< - digitize a video image.

S> - save image from current screen to
alternate screen,

S< - load image from alternate screen to
current screen.

P> - pack current screen to buffer.

P< - unpack buffer to current screen,

My APPLE has a 294K Synetix RAM card and a
MicroWorks video digitizer. The RAM card gives me
32 alternate high resolution screens, This is
handy because I program in TransFORTH which leaves
only 1 screen on the APPLE, My version of
VCUtilities uses the 1 available screen on the
APPLE as the current screen and the additional 32
screens on the RAM card as alternate screens.
Images are loaded from alternate screen in
REPLACE, XOR, OR or AND modes, Consider for a
moment two images, vertical stripes on the current
screen and horizontal stripes on an alternate
screen. Figures 13-17 shows the current screen
before and after loading the alternate screen
using the 4 logic modes,

I

I

The XOR mode is used in text drawing because it
allows text to appear over any background and
because text can be erased by redrawing.
Understanding these 4 logic modes is important to
any graphics programmer because they contribute in
large part to the unique character of computer
generated images. More later.

VCUtilities includes packing and unpacking
routines. Packed images take up less space in
memory and on the disk. All 32 images used in
Gretchen are stored on the back side of the
program disk. Finally, I should mention that
VCUtilities was developed using the ALD II system
written by Paul Lutus. And while we're on the
subject, Paul Lutus also wrote the TransFORTH
language used to develop the presentation system
that made Gretchen possible.

Figure 14 Horizontal stripes loaded in REPLACE
mode.

l

!

l

l

Figure 15 Horizontal stripes loaded in XOR mode,

Figure 17 Horizontal stripes loaded in AND mode,

GRAPHIC PROGRAMS

First a brief explanation of the FORTH language,
FORTH routines are called words and each word is
added, in turn, to the system library. New words
are defin~d using words already in the library. A
FORTH system is built up or extended for each
application, Therefore each application is its own
FORTH system with its own library of specialized
words. FORTH uses a data stack, parameters used by
a word are placed on this stack before the word is
invoked, For example, the following line of code

2 2 +

adds two and two. The syntax is called Reverse
Polish Notation, the parameters are 11211 and 11 211

and the word is"+" The result 11411 is placed
back on the stack.

The words or programs described below were added
to the TransFORTH library to make the special
graphics system used in producing Gretchen, These
additonal words or programs include-

HGR - display high resolution page 2.

84

■■■■■••······ •••••••••••••
■■■■■■■■■■■■■
■■■■■■■■■■■■■ •••••••••••••
■■■■■■■■■■■■■ •••••••••••••
■■■■■■■■■■■■■
■■■■■■■■■■■■■

Figure 16 Horizontal stripes loaded in OR mode,

C! - set color pattern, takes 1 number (0-31
) from the stack.

& - fast clear.

% - zap phase bits, all black bytes cleared.

S! - clear screen to 1 of 32 color patterns,

DATA - set xy coordinates.

P! - draw a pixel, takes 2 numbers (XO,YO)
from the stack,

X! - draw a pixel in XOR mode, as above.

V! - draw a vector, takes 4 numbers (
Xl,Yl,X2,Y2) from the stack,

R! - draw a rectangle, as above, where Xl,Yl
define the upper left corner and X2,Y2 define the
lower right.

A! - draw a filled rectangle, as above.

T! - text drawing in XOR mode, takes 2
numbers (Column,YO) from the stack and retrieves
a line of text from the TransFORTH buffer PAD.

I< - digitize a video image.

L! - set logic mode, takes 1 number (0-3)
from the stack.

S> - save image from current screen to
alternate screen, takes 1 number (0-31) from the
stack.

S< - load image from alternate screen to
current screen, as above,

D> - save current screen to disk, asks for
file name and adds the prefix "PAC." indicating a
packed image,

D< - load current screen from disk, asks for
file name as above.

@ - wait, takes 1 number from the stack
which determines the delay until next word
executed,

In addition to the routines listed above, words
were developed to create and manipulate images.
These additional words are used to pack images
created using other graphic systems, to transform
images, to collage images together, and to move
groups of images between disk and the 32 alternate
screens. None of these words are compiled with the
system, rather they are stored on disk to be used
as required. Briefly, they are-

PACK.KOALA - takes images created with
Microillustrator, packs them and stores them on
disk.

PACK.CEEMAC - takes images created with CEEMAC,
packs them and stores them on disk.

INVERT% - flips the phase bits, changes green to
orange and violet to blue.

INVERT flips all bits, inverts the image.

- an integer random function, takes 1
number from the stack and places a random number
back on the stack.

TP - "Torn Paper" creates a mask useful in
collaging images together. There are 4 additional
words TPO, TPl, TP2 and TP3 corresponding to the 4
logic modes.

VB - "Vertical Bars" creates a mask as above.
Again 4 additional words VBO, VBl, VB2 and VB3
correspond to the 4 logic modes.

SQ - "SQuares" creates a mask as above. Again
4 additional words SQO, SQl, SQ2 and SQ3
correspond to the 4 logic modes.

Figure 19 Vertical Bars mask.

85

TSAVE - saves alternate screens to disk, takes 2
numbers from the stack indicating the first and
last screens to be saved.

TLOAD
above.

- loads alternate screens from disk as

Computer generated images achieve a unique
character through the use of masks. Complex images
are built by collaging together several basic
images in cqmbiniation with masks using the 4
logic modes mentioned earlier. Photographers and
filmmakers are more familiar with the term
"matting" and videomakers with the term "keying".
Essentially, we're talking about the same thing.
Figures 18-22 show various masks produced by the
Torn Paper, Vertical Bars, and SQuares words.

Figure 18 Torn Paper ~ask.

Figure 20 SQuares mask.

Figure 22 Combination of Vertical Bars and
SQuares.

GRAPHIC SYSTEMS

Besides the VCUtilities graphics system, both
CEEMAC and Microillustrator were used to create
images for Gretchen.

CEEMAC is a system for visual composition. The
user writes a score which results in a dynamic
visual display of dots, straight lines, curves,
and predefined shapes. The user can interact with
this display in "real time" and can direct the
composition according to his/her whim. An animator
friend of mine calls this "metaprogramming"; the
user defines the rules which structure the image
but doesn't define a particular image. Alternating
between "execution" and "editing" the user refines

□□m • •• D ~ D DO HD~ ■□~~~ D
••• DOM~ □□ ~n~o
□~~□ ~ ~□~□ D ~
□□■■ o o uu~ou~
~□□□□--= --□~~ = □mmmmmm□mmmm □□□mmmm □
~□□om □ □ ~□□moa
111111 Oillll!lll!ll Dll!lllltl!!!OOOll!l!l!IHI!
D 111111 D llll!l lll!li D l!!l!i l!l!i! 1111110 l!!lii l!llll DD ••••• □ • □□•

□-□- □• - -□--□ 111111 llllll □ llllll□ !lllllllllllllllll 111111 D
oommomm mmmmmmmm□o □□

~□ ~ -□ • □ □ mm mm mm mm mm □ 111111
II II Ill

Figure 23 CEEMAC Image

86

Figure 21 Combination of Torn Paper and Vertical
Bars.

the rules until satisfying images result. These
images can be "frozen" and saved on disk. CEEMAC
was written by Brooke Boering and is available
from Vagabondo Enterprises, 135 Stephen Rd, Los
Aptos, CA 95003. Figures 23-24 are images from one
such CEEMAC score.

Microillustrator is a "paint system" which comes
with the Koala Pad. It allows the user to draw
freehand or with simple shapes. There are 8
brushes available and the user can select from a
pallette of 18 colors. A fill routine and a
magnify routine are included. Images can be saved
and loaded from disk. I use this system to create
original images and to 'clean up' digitized video
images. Figures 25-26 were created with
Microillustrator.

Figure 24 CEEMAC Image

Figure 25 Microillustrator Image

Each of these graphics systems- my own TRansF0RTif
system, CEEMAC, and Microillustrator- produce
unique identifiable images. My own system can
digitize a video image and produces geometric and
mathematically derived images. CEEMAC images are
also geometric but are more fluid and more random
than my own. Microillustrator produces those
cartoon-like graphics tablet images that easily
identified as "computer graphics". Many of the
images in the presentation collage or combine

Figure 27 Shapes So Strange combines two Koala Pad
images.

Figure 29 Computer Augmented Creativity uses
images from CEEMAC and my own system.

87

Figure 26 Microillustrator Image

images from the same system or images from
different systems, Figures 27-30.

These images are the result of overlaying simple
images; sometimes of similar types (complementary)
and sometimes different (contrasting). The
juxtapositons which result create visual tensions
which are resolved structurally using balance and
proportion, design techniques familiar to all
graphic artists.

Figure 28 Shapes and Patterns collages images form
CEEMAC and my own system.

Figure 30 Possessed by Passion combines digitized
and geometric images.

COMPLEXITY AND ART

In art then, as in life, complexity is produced by
overlaying simple images or patterns, resulting in
tensions and, therefore, changing the way in which
the elements which make up the images or patterns
are perceived. And, we hope, changes the viewer in
some small way as well. We have all experienced
disruptions to our daily routines which produce
tensions and demand change, either in our routines
or in ourselves. When things become too much, we
seek to relieve the tensions, to restore harmony,
to return to a simpler way life. The same can be
said of art. The complex rhythms and conflicting
melodies introduced into a piece of music must be
resolved by the composer. The tensions produced by
contrasting color and form must be resolved by the
painter. No, I don't mean resolution as in
conflict/ crisis/ resolution, the hollywood plot;
I mean resolution as in dynamic balance. Nora does
not provide a solution to Gretchen's problem; this
problem may be insoluble; this is real life. The
painter and the composer do not resolve conflicts
between elements by keeping the good ones and

88

eliminating the bad; but by creating dynamic
balance, a structure in which conflicting elements
not only co-exist but co-exist to each other's
benefit. Complexity, therefore, is an important
attribute of the structure which organizes a work
of art.

CONCLUSION

This past summer, We installed Gretchen Prisoner
of Love in a group show at Virginia Commonwealth
University's Anderson Gallery in Richmond. The
presentation was programmed in TransFORTH, using
the routines outlined above, and ran on an Apple
Ile. The images were stored on my Synetix RAM
card, for fast recall, and appeared simultaneously
on three monitors. The program cycled
continuously, during gallery hours, for two weeks
and drew a small but appreciative audience.

In an effort to achieve broader distribution, I
have reprogrammed the presentation in assembler to
run on any 48K Apple II. Gretchen Prisoner of Love
is available at minimal cost; it can be copied
free of charge.

DIGITAL SAMPLING AND FFT ANALYSIS OF ACOUSTIC SOURCES1
A MICRO-CCNPUTER IMPLEMENTATION

Jesse Klapholz

Klapholz Technologies
3730 Lankenau Road

Philadelphia, Pa. 19131

ABSTRACT:
An FFT spectrum analyzer,

implemented as a hardware plug-in card
for the Apple][computer, with its
associated software, is described. The
FFT process is explained, and a brief
bacKround of acoustical analysis is
given. Several applications of the
hardware/software in musical acoustics
are presented.

0 INTRODUCTI ll'I:
Audio and acoustical analyzers are

no strangers to the musical instrument
world, nor is digital synthesis. How
ever, what is new is a highly sophisti
cated hardware/software digitally-based
analyzer system for the Apple][compu
ter. Until a few years ago, computer
ized FFT analyzer systems were available
only to large research organizations.
This paper will describe how the IQS
401-1 FFT Spectrum Analyzer system can
now be affordably used by acousticians,
sound engineers, musicians, musical
instrument designers, and/or builders.

The system will be shown to be useful in
both analytical and digital
sampling/manipulation applications of
any analog signal(s).

1 BACKRO~D1
The famous German physicist Hermann

von Helmholtz (1821-1894) invented per
haps the most classic analyzer; this was
used in experiments forming many
theories on which modern acoustics and
phsycoacoustics are based. Even before
the era of electronic Fourier spectrum
analyzers, Helmholtz used a large set of
his acoustic resonators to verify the
existence of harmonics in complex tones.
By holding successively smaller (i.e.
higher frequency) resonators to his ear
with a musical note playing into the
resonators large opening, Helmholtz
heard an increase in the amp! itude of

CH2087-5/84/0000/0089$01 .00 C 1984 IEEE
89

any frequency that was present in the
harmonic structure of the instrument.
Thus, he could roughly determine the
Fourier spectrum of the note.

The invention of the vacuum tube in
1915 marked the beginning of modern
analysis advancing the field from mecha
nical analyzers to electronic machines.
The sol id-state and computer era pro
vided the means to advance the implemen
tation of Helmholtz's and Fourier's
theories, and brought them into our
laboratories and studios.

The FFT technique is based upon
Fourier's theorem which states that any
periodic function (of frequency f) can
be expanded as a 1 inear combination of
the ,sine and cosine functions of fre
quencies f, 2f, 3f,.... Therefore, once
one set of values is Known, the other
may be computed, i.e. transform time
domain values to frequency domain values
and visa versa. The Fourier transform
technique became popular in the 60's
when researchers developed a mathemati
cal shortcut, the FFT <Fast Fourier·
Transform), minimizing the computation
time.

The technique of the FFT starts
with a digitized signal waveform, which
we can consider to be a 1 ist of numbers.
We multiply the numbers on this 1 ist by
those on other 1 ists representing digi
tized sine and cosine waves. In doing
so, we use multiplication to transform
the time-oriented 1 ist made from the
original signal into a second 1 ist of
numbers, one for each of the frequencies
we have analyzed. All of this 'number
crunching' is carried out by a micro
computer, and the resultant 1 ist of
numbers is then displayed on a CRT in
the form of a graph.

2 THE FFT ANALYSIS SYSTEM:
The IQS 401-1 FFT Spectrum Analyzer

is an extremely powerful Apple][based

system that allows complete analysis
using the Fast Fourier method. This
laboratory grade instrumentation system
affor·dabl y pr·ov ides a 11 the tools neces
sary, both hardware and software, to
accomplish FFT analysis of physical
systems or analyze arbitrary signals for
power spectrum, phase, or group delay
char·ac ter i st i cs. System facilities pro
vi de for test signal generation and the
acquisition, analysis, storage, and
plotting of real-time wave forms and
spectra in either the time or frequency
domain or· three-dimensionally in both
domains simultaneously . System soft
ware featur·es extr·eme versat i Ii ty and
ease-of-use while clear presentation of
data is provided by its high-resolution
graphics.

2.1 THE HARDWARE: The basic system
architecture is outlined in figure 1.
The preamp (figure ~lb) is gain
controlled by a DAC used as a digitally
programmed attenuator, via software
operation. In the feed-forward compensa
tion mode, the preamp has an extended
gain bandwidth-factor of+/- 0.2 Db 5Hz
to 40KHz.

The next stage consists of the
anti-alias low pass filter, which is
programmable in order to accommodate
multiple sample rates, and has a 100
Db/octave rolloff. The output of the
filter routes to the sample and hold
amplifier, where digital data is strobed
out onto the data bus via an ADC (audio
to digital converter).

The test signal generator circuit
consists of a DAC (digital to audio
converter) that can receive instructions
dir·ectly from sofhJare. This allows
simple software driver routines to
create a wide variety of waveforms for
many applications. For example, it can
be used to provide impulses that are
software controllable in amp! itude and
width for impulse testing. Another
application is to 'play back' waveforms
at any speed from memory which may have
been previously sampled, brought off
disc, or synthesized by inverse FFT.
Such waveforms could consist of ~gated
sine tone bursts, pre-recorded sounds,
sections of speech, etc.

Referring to the system block
diagram in figure 1, the digital portion
is represented by the lower 2/3 of the
diagram. It provides interface, memory,
timing and logic control functions. The
SYSTEM CONTROL LOGIC block determines

90

how each module interacts with one

another and 1 inks the overall system to
the Apple II bus structure.

In order to maximize efficiency,
many of the most often used machine code
subroutines (including the FFT program)
ar·e p I aced in read on 1 y memory (ROM).
Three ROM sockets <ROM BANK 1-3) are
incorporated in the hardvJare. A single 4
Kilobyte ROM is installed in the present
ver·sion, thus allowing future expansion
for additional signal processing
functions.

2.2 THE SOFTWARE: Written in BASIC, the
control program can be easily modified
< or a new ver·s ion writ ten from scratch)
to accomp 1 i sh spec i a 1 i zed tasks. For
instance, establishing whether or not an
electric piano conforms to an accepted
standard curve might require a sequence
of steps from the original control
program. Maximizing the use of software
plays a major role in the control of
system costs; this is one feature that
makes the IQS an economical package.

two basic modes of
the ACQUISITION

There are
control program,
and the ANALYSIS MODE. Al 1 of

the
MODE

the
commands ar·e invoked by a single key
stroke, such as A= AMPLIFICATION, V =
tJOLUME, P = PLOT etc. Pressing a single
Key such as 'S' would bring up the
'sampling rate menu' onto the screen.
There are eight different choices of
sampling rates available; these are
shown in figure 2 . When the samr 1 i ng
rate is selected, the ANTI-ALIAS filter
and test pulse signal width are set. All
of the major commands are shown in
figure 3.

3 DATA ACQUISITI(l,,1:
Upon 'booting up' (loading the

control program into the computer) the
IQS software, some of the variables are
i n a ' def au 1 t ·' sett i n g; i . e • , they w i 1 1
be set to predetermined values unless
you elect to change them. These are the
(A)mplification of input, (C)hange
number of averages, < S) amp 1 e rate, and
(V)olume of test signal commands.

Any analog signal may be analyzed
regardless of its waveshape <sine, co
sine, square, etc.). It may be voice,
low frequency vibration, the brain's
alpha waves, musical instruments, or any
an a 1 og s i gn a 1 •

Pressing the space bar w i 11 in i -
tiate a test pulse and then acquire one
sampling of 4,096 points. While data is
being sampled, the levels and time posi-

tioning of the analog input are dis

played as a waveform on the monitor,
similar to an oscilloscope display. The
'return Key• can be pressed at this time
to display the first 256 points of time
data on the monitor. At this point you
may save the waveform to disc, or pro
ceed with data processing.

4 DATA ANALYSIS & MANIPULATICJ',I:
If c,ne desires to use some signal

conditioning, rather than only using the
'raw' input data, DC offset can be
removed from the signal. It can also be
digitally filtered, resampled to improve
the low frequency resolution, the spec
trum may be smoothed out, the signal may
be windowed (weighted), etc.

At any point during a measurement
session, any waveform or graphics dis
play may be stored to disc for future
use. Similarly, any waveform or display
may be sent to a graphics printer or
plotter. With a waveform in memory or
one retrieved from disc files, FFT's can
now be computed. There are four differ
ent lengths of FFTs: 128, 256, 512 or
1,024 points. The time length will be
dependent upon the selected sampling
rate and how many points in the FFT.
Once an FFT has been computed and the
power spectrum di sp 1 ayed, the phase
response and group delay may also be
computed and displayed.

All FFT analysis, since it is a
mathematical process, is performed in
1 inear frequency scales. The addition of
a movable cursor allows for an exact
readout of both frequency and level. The
advantage of using 1 inear frequency
scales is that one can easily determine
the bandwidths of notches or peaKs in
the spectrum. Since we all respond
logarithmically to linear physical
changes of external stimuli, viewing
spectra 1 information in the frequency
domain in log scales is essential.
Therefore, di sp 1 ay i ng spectra 1 i nforma
t ion in log frequency scales is accom
plished through a built-in graphics
subroutine which can be executed in a
matter of seconds with the (L)og
command.

Music and natural sounds have more
than just steady state conditions.
Primarily, they a.re attacK, steady
state, and decay, and they are charac
terized by pitch, duration, articula
tion, loudness, timbre, etc. A very
useful feature of microproccessed FFT
spectrum analysis is that any part of
the captured waveform can be analyzed,

91

i.e. the initial attacK/transient, the

steady state, and the decay tail or any
combination of these.

Data may be presented as a funda
mental frequency and its harmonics, and
may also show how all of these compon
ents taKe place in time. This frequency
domain information is a direct recipro
cal of a time domain waveform. Through
FFT anal>'sis we can view sampled sounds
'jumping' from one domain to the other,
gathering information that can be used
for investigative purposes, fine tuning
of instrument construction, or building
up 'wave shape tables' for digital
synthesis of natural sounds. All of
these features become invaluable tools
for 'before' and 'after' pictures,
various comparisons between stored-on
disc information and device(s) under
test, etc.

5 APPLI CATI CJ',IS:
Before commencement of any analy

sis, the device(s) being tested should
be clearly understood in terms of how
they operate and interact with their
environment. Now that the basics of the
FFT analyzer have been presented, some
practical applications shall be consid
ered.

The FFT and its companion, the
inverse FFT, find extensive use in the
production of electronic music. Using
the IQS IQSynth WavepaK I software, one
is able to perform waveform sampling,
storage, sythesis, and comprehensive
editing of sampled and created sounds.

With a reference microphone
connected to the analyzer, a sample of a
musical instrument waveform may be digi
tally recorded. The wave sample can
then be played bacK through the 401-1 or
polyphonically through any synthesizer
using a 256 by 256 waveform table. If
it is desirable to alter the harmonic
structure, one can view the waveform in
the frequency domain, and edit the over
tone structure Cup to the 128th
harmonic, both odd and even). Perform
ing the inverse FFT of the spectrum will
yield a new time domain waveform, which
may be played bacK or archivally stored
for use in future musical performances,
etc.

As with the above process, through
the editing functions, one may start
with a blanK frequency screen and plot
his/her own fundamental/harmonic spec
trum structure, then perform the inverse
FFT 'creating' a new waveform.

Conversely, the amplitude and time

values of any waveform may be modified.

To display energy information as a
function of frequency and time, the
traditional 'waterfall' display is used.
The 401-1 does this with a Spectral
Decay contour program. Figures 4 and 5
are examples of spectral decay contours
taken from the waveform data acquired
from a loudspeaker's response to the
pulse 'played back' through the 401-1
analyzer. The major differences between
the two displays are a result of the
'windowing' (weighting) used in figure
5. Figure 4 used a "rectangular" window
(flat or unity weighting>, and the FFT's
in figure 5 were computed with a cosine
function window. As can be seen, figure
5 is much easier to analyze, i.e. pick
out resonances and so on.

When an FFT is computed, it is
looking at a 'window' of the time domain
data, that is, a 'slice' of the contin
uous 'periodic' waveform. The FFT joins
the beginning and end of this slice of
time, forming an assumed periodic func
tion. Tapering the ends of this slice of
time by various 'windowing' functions
can thus reduce errors that would
normally be introduced by joining ends
that are continuous (since, after
windowing, both the beginning and end
would now have zero energy). Further,
selecting various windowing functions
al 1 ows control over the trade off
between frequency and time resolution.

Once the time domain data is
gathered, these or other programs may be
run to display the information in many
different views, giving us much more
insight than was previously possible.

A new program, TimeSpectrum r.
allows us to view frequency/time changes
of physical systems in a unique and
unprecedented way. The TimeSpectrum dis
play eliminates the distortions normally
encountered when isometrically display
ing a three dimensional plot in a two
di mens i ona 1 graphics medium.
TimeSpectrum does this by showing the
energy amplitude with a greyscale inten
sity; the more energy, the darker the
display point becomes. The frequency and
time scales are now shown in the x and y
axis without distortion, and 'clumps' of
frequency defined 'energy packets', dis
placed in time now form a crystal clear
picture.

yzed
Figure 6 is the loudspeaker

in figures 4 and 5, the
anal

darker

92

areas of the display correspond to the

peaks in amplitude of the spectral decay
plot. Comparing the identical data in
these two plots, one can easily see the
build-up, steady-state and decay charac
teristics of the d.u.t. (device under
test) all in one plot. This observation
can be made without having to resort to
the 'front' and 'rear' view of the more
conventional 'waterfall' plot.

Figure 7 is a 'voiceprint' plot;
three discrete 'energy-packets' can
easily be seen displaced in time as a
function of frequency. It is also inter
esting to observe 1n figure 7 the
'repetitiveness' of these 'energy
packets'.

Figure 8 and 9 are plots of the
same note played identically on two
different pianos. The strong 'ridge' in
figure 9 is the actual note being
played, showing a piano with a much
better 'voicing'. This application of
Time Spectrum demonstrates the enormous
amount of information attainable for
analysis of musical instruments.

6 Sl.tt1ARY:
The IQS 401-1 FFT Spectrum Analyzer

hardware plug-in card for the Apple][
computer, with its associated software
was described. The FFT process was
explained, as well as a brief backround
of acoustical analysis. Several exam-
ples of analytical and digital
sampling/manipulation applications of
analog signal(s) were presented. The
system was shown to be useful to acous
ticians, sound engineers, musicians,
musical instrument designers, and/or
builders.

7 CCNCLUSICN:
Once the basic techniques of FFT

analysis are mastered, the applications
are endless. In this paper, we have
touched upon only basic techniques.
Based on early practice, the application
of computer technology has led us to a
whole new view of electro-acoustic
analysis. The current state of the art
has given us 'cameras' to take
'pictures' of electro-acoustical
phenomena more efficiently, accurately,
and affordably than older methods.

8 ACl<NCXJLEDGMENT:
The author wishes to thank Walter

Holland and William Elder of IQS Inc.
for their input and constant support.

(Al

181

*Default

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

FIGURE 1.

SELECT SAMPLING RATES AND
CORRESPONDING HF CUTOFF

60.0 kHz
46.5 kHz
23.2 kHz
9.3 kHz

4.65 kHz
2.32 kHz
l.0kHz
0.2 kHz

FIGURE 2.

93

30.0 kHz
23.24 kHz*
11.6 kHz
4.65 kHz
2.32 kHz
1.16 kHz
0.5 kHz
0.1 kHz

IQS 401 QUICK REFERENCE GUIDI! ..
ACQUISmON MODI!

CONTROL OPERATION

SPACE = SAMPLE data (4096 points)

E

B

A

C

D
p

s
V

= ERASE screen

= BLANKllfG or waveform (toggles)

= AMPLIFICATION

= CHANGE t or averages - in powen or 2

= DELAY be!ore sampling (1 = 0.6 msec)

= PLOT screen to printer w/Grappler

= SAMPLE RATE

= VOLUME or test signal

=INITIATE-collect 6: average data (2048 points)

ANALYSIS MODE

CONTROL OPERATION

RETURN = READY/DISPLAY FIRST 256 points or time data

1 = 128 point FFT

2 = 2 56 point FFT

3

4

SPACE

D

B

Q

= 512 point FFT

= 1024 point FFT

= RETURN to ACQUISmON MODE

= DIFFERENCE - current less stored spectrum

= PHASE and then GROUP DELAY

= CONVOLVE - current with stored spectrum

= SPECTRUM DECAY Pf.OT Crom current waveform

OP11ONS:

<Creq. scale> 1 = LOG scale

2 = LINEAR scale

<size or FFT> 1 = 256 point

2 = 512 point

<I or spectra> 32

50

<delta points> 1 -80

<vert. reduct> 3 - 4 ror 32 spectra

5 - 7 !or 50 spectra

<start point> 0- 2048

IQS 401 QUICK REFERENCE GUIDI!
...

ANALYSIS MODI!, Cont'd

DATA MANIPULATION

H = SHIFT data left

o = OUT DC - removes DC from time data

R

s
T

u
w
y

X
y

ON,

= RESAMPLE

= SKIP 256 points in time data

= TRUNCATE time data

= NEWSTART- select new start in data

=WINDOW-cos wgt to rim 256 points

= DIGIT AL FILTER - moving avg. smooth

= EXCHANGE spectrum in temp. storage

= DIGITAL FILTER - moving avg. smooth

= SMOOTH spectrum

DISPLAY MANIPULATION

L = LOG display

p = PLOT screen to printer w /Grappler

RIGHT => = VIEW right half or 1024 point FFT

LEFT <= = VIEW left halt or l 024 point FFT

DISC STORAGE AND RETRIEVAL

ACQUISmON MODE:

G
N

= GRAPHICS SA VE
= FILE RETRIEVE 6: RETURN TO AN AL YSIS

ANALYSIS MODE:

G = GRAPHICS SAVE
K = WAVEFORM SAVE

TO EXIT PROGRAM - you must be in Analysis Mode, then
press Control Key and E simultaneously.

Rev. 9/82

FIGURE 3,

94

SPECTRAL DECAY OF FULL RANGE LOUDSPEAKER USING

RECTANGULAR WINDOW

FIGURE 4.

SPECTRAL DECAY OF FULL RANGE LOUSPEAKER USING

COSINE WINDOW

kllohertz

FIGURE 5.

95

TH&7 WI lc!:9 OR2-479:a>L3

............
:::·::t·:.

FIGURE 6.

lS-43-4

: ;il{ii~iiii
~l~~Hif
~~!Ii~ift

=·:=·::t:tt·:

TH 175 -4c:S WI c:56 OR 1ae DL 16 15-4:3

'""{~,,~1
.. ~

:~~:=

FIGURE 7.

96

]I

u
,:;

IA
cl ...

FIGURE 8.

FIGURE 9.

97

,,,,

./::)}\(:;:
''
'••

1 Q.S ir,c

IQ.S ir,c

Data Compression of Computer Music

Michael Keith
D46 Abbington Drive

Hightstown, NJ 08520

Introduction

This paper will discuss the application of data compressi~n
techniques to the storage and manipulation of digital music
data in a computer. The goal of this endeavor is to take
music files from an existing microcomputer music system
(e.g., ALF, MMI, Mountain Computer) and compress them
into smaller files with the following properties:

(1) Compressed files are significantly smaller than the ori
ginal (on the order of three times smaller is desirable), and

(2) The compressed files can be decompressed very quickly
(a few tenths of a second is desirable). This allows programs
to play compressed music files with essentially no apparent
delay to the user.

Unfortunately, these are conflicting goals; in general, to
achieve greater compression requires a more complicated
algorithm which yields a slower decompression program.
We will show, however, that it is possible to achieve signifi
cant compression, by presenting an algorithm with a
compression factor of 3.3 (for ALF-format music) that also
satisfies property (2).

First Steps

The initial motivation for this research was the monumental
work by W. F. McGee of Ontario, who entered all 371 four
part chorales of J. S. Bach into the ALF music system on the
Apple II (using the ALF music editor program). These pieces
were entered in an efficient way (using subroutines for
repeats, etc.), but still require 5 Apple diskettes to store all
the music.

The immediate challenge which presented itself was to try
and fit all 371 chorales on a single Apple diskette. Although
this might seem to require a compression factor of about 5,
in fact less is required, because there is some overhead
storage space used up by each separate file on an Apple
diskette. After compression, we can store, say, 10 chorales
per file (rather than one per file) and save a lot of this over
head. We will see shortly an estimate of the compression
needed to accomplish this task.

The basis of all data compression algorithms is to exploit the
statistics of the data. For example, in compression of
digitally-encoded pictures (bit-maps), adjacent pixels are
often identical in value. Therefore, run-length encoding,
which encodes runs of identical pixels by storing the value
and number of identical pixels, can be used to compress
data possessing this type of statistics.

CH2087-5/84/0000/0098$01 .oo o 1984 IEEE
98

In order to exploit the statistics, we first have to obtain the
statistics, by analysis of the data. In Figure 1 we give a par
tial listing of one of the Bach chorales (number 14), printed
by a program that "disassembles" ALF songs. Hex values
are shown in the left column, and the meaning of each code
is shown in the right column. The first byte of a song
denotes the number of voices. The next 2•(number of
voices) bytes are pointers to the start of the data for each
voice. Following this are 3-byte groups encoding the actual
music data. At the end of the file is one byte giving the sug
gested playing speed, and finally 160 bytes (four 40-
character lines) encoding the title of the song.

As a basis for computing compression factors, we need to
know the total number of bytes in all 371 chorales. Analysis
of the chorales produced the following information:

Lengths of the Chorales

Largest
Smallest
Average
Total

3794 bytes (Number 205)
683 bytes (Number 130)
1146 bytes
425K

Note that the capacity of an Apple JI diskette is 560 sectors
= 140K bytes. Thus we need a compression factor of about 3
to fit all the chorales on one diskette. Actually, since some
file-storage overhead is unavoidable, a compression of about
3.3 is required. This will be our design goal.

Now let us begin compressing. Referring to Figure l, the
first thing we realize is that the last 161 bytes (suggested
speed and title) are not used when playing_ a song (only when
editing). Since we are only concerned with preserving the
information necessary to play the music, we can throw these
161 bytes away.

We also observe that there are two fundmentally different
types of data triples: those encoding notes and rests, and
those encoding commands (such as TEMPO, TIME, CALL,
etc.) The commands can always be distinguished from
notes because their first byte is always Cl through FF hex.
In addition, we see that the statistics of the commands are
significantly different from the statistics of the notes. So we
decide that our encoding will have two "modes" - one for
encoding commands and one for encoding notes, with some
as yet unspecified means of switching modes. We will call
these two modes "byte mode" and "bit mode", since it turns
out that commands are most conveniently encoded in bytes
and notes are best encoded as a bit stream.

FILE CHORALE 14

04
35 01 EO 01 94 02 51 03

FE FE FE RESERVED
FE FE FE RESERVED
FE FE FE RESERVED
FC 81 00 KEY
SC FO 00 NOTE: G -3 TIME: 4
SC FO 00 NOTE: G -3 TIME: 4
SA FO 00 NOTE: F#-3 TIME: 4
56 FO 00 NOTE: E -3 TIME: 4
52 FO 00 NOTE: D -3 TIME: 4
SC FO 00 NOTE: G -3 TIME: 4
60 FO 00 NOTE: A -4 TIME: 4
64 FO 00 NOTE: B -4 TIME: 4
60 FO 00 NOTE: A -4 TIME: 4
64 78 00 NOTE: B -4 TIME: 2
66 3C 00 NOTE: C -4 TIME: 1
6A 3C 00 NOTE: D -4 TIME: 1
66 FO 00 NOTE: C -4 TIME: 4
64 FO 00 NOTE: B -4 TIME: 4
60 78 00 NOTE: A -4 TIHE: 2
64 78 00 NOTE: B -4 TIME: 2
66 FO 00 NOTE: C -4 TIME: 4
64 FO 00 NOTE: B -4 TIME: 4
60 EO 01 NOTE: A -4 TIME: 8
SC DO 02 NOTE: G -3 TIME: 12
CA OA 00 RETURN

---- (3 more similar subroutines) ----
CB 22 04 CHANNEL
FC 81 00 KEY
FD 04 04 TIME
FB FO 00 QUARTER
Cl 14 00 GAP
C2 00 FE TRANSPOSE
C3 00 20 ATTACK
C4 19 00 DECAY
cs DB D6 VOLUME
C6 00 00 SUSTAIN
C7 DC 05 RELEASE
co FO 00 NOTE: <REST> TIME: 4
co FO 00 NOTE: <REST> TIME: 4
co FO 00 NOTE: <REST> TIME: 4

Figure 1: A "disassembled" listing af the ALF music data far
one of the Bach chorales (number 14).

For reference, the average size of 1146 bytes per chorale
can be analyzed further as follows:

Category Average No. Bytes

Notes 748
Commands 237
Speed + Tille 161

Total 1146

Having disposed of the 161 title bytes, we will now discuss
compression of each of the other two categories.

Compression of Commands (Byte Mode)

In byte mode, we notice the following three things that yield
compression:

99

,-J OA 00 CALL
C9 OA 00 CALL
SC FO 00 NOTE: G -3 TIME: 4
60 FO 00 NOTE: A -4 TIHE: 4
64 FO 00 NOTE! B -4 TIME: 4
SC FO 00 NOTE: 8 -3 TIHE: 4
SC FO 00 NOTE: G -3 TIME: 4
60 FO 00 NOTE: A -4 TIHE: 4
64 FO 00 NOTE: B -4 TIME: 4
SC FO 00 NOTE: G -3 TIHE: 4
56 FO 00 NOTE: E -3 TIHE: 4
60 68 01 NOTE! A -4 TIME: 6
SC 78 00 NOTE: G -3 TIME: 2
5A FO 00 NOTE: F#-3 TIHE: 4
SC 78 00 NOTE: G -3 TIME: 2
SA 78 00 NOTE: F#-3 TIHE: 2
56 EO 01 NOTE: E -3 TIME: 8
52 FO 00 NOTE! D -3 TIHE: 4
52 FO 00 NOTE: D -3 TIME: 4
SC FO 00 NOTE: G -3 TIHE: 4
SA FO 00 NOTE: F#-3 TIME: 4
56 FO 00 NOTE:, E -3 TIME: 4
52 FO 00 NOTE: D -3 TIME: 4
SC FO 00 NOTE: G -3 TIME: 4
60 FO 00 NOTE: A -4 TIME: 4
64 FO 00 NOTE: B -4 TIME: 4
60 FO 00 NOTE: A -4 TIME: 4
6A 68 01 NOTE: D -4 TIME: 6
66 78 00 NOTE: C -4 TIME: 2
64 FO 00 NOTE: B -4 TIHE: 4
60 78 00 NOTE: A -4 TIME: 2
64 78 00 NOTE: B -4 TIME: 2
66 FO 00 NOTE: C -4 TIME: 4
64 FO 00 NOTE: B -4 TIME: 4
60 EO 01 NOTE: A -4 TIME: 8
SC DO 02 NOTE: G -3 TIME: 12
co FO 00 NOTE: <REST> TIME: 4
co FO 00 NOTE: <REST> TIME: 4
co FO 00 NOTE: <REST> TIME: 4
co FO 00 NOTE: <REST> TIME: 4
co FO 00 NOTE: <REST> TIME: 4
CB 00 00 STOP

------ (3 more similar parts> ------
FF 00 00 END

FF SUGGESTED SPEED

CHORALE 14
0 HERRE GOTT, DEIN GOETTLICH WORT
JS BACH
31 AUG 1983

(1) Triples containing three FE's (of which there are many)
can be encoded by a single byte. These FE's are reserved
bytes which I believe are used by the ALF real-time software
as variable holders.

(2) Quarter, Time and Key commands (FB, FC, and FD hex)
are not needed when playing a song (only when editing). So
we can encode each of these by one byte which will be
decompressed into a 3-byte NOP instruction. The NOP's are
necessary to keep the length of the decompressed song the
same as the original, which is essential since CALLs use rela
tive addresses to point to subroutines.

(3) The 21-byte sequences beginning with a Cl are always
the same. We can encode these 21 bytes by a single byte
which will be decompressed into these fixed 21 bytes. This
sequence appears once for each part, and so yields a signifi
cant savings.

All other bytes in byte mode will be transferred directly
(with no compression).

To be more specific, we use the following byte values to
encode these compression sequences:

Byte Value Interpretation

0 21-byte Cl sequence
1 FE FEFE
2 Switch to bit mode
3 End of data marker
4 FC FC FC (NOP, replaces FB, FC, FD commands)

On the average, the combination of deleting the last 161
bytes plus the byte mode compression saves about 300
bytes per song. In other words, the approximately 400
bytes in the original are reduced to about 100.

Compression of Notes (Bit Mode)

Since the amount of command and title information is
essentially a constant (and significantly smaller than the
amount of note information) the compression of the actual
notes and rests of the music is clearly the most crucial in
obtaining good overall size reduction. In ALF music, any tri
plet with a first byte of CO or less represents a note. The
first byte of each triplet represents the pitch (actually, only
the high-order 7 bits are significant) and the second two
bytes represent duration (from 1 to 64K units of time).

This can be improved immediately by realizing that there
are never more than 16 different durations of notes in a sin
gle chorale. We could thus encode note durations by storing
a table of the 16 (or less) durations used in the piece, and
then encoding the duration of each note by storing a pointer
into the duration table. This would require only 4 bits per
note. In combination with the 7 pitch bits, this gives a total
of 11 bits, as compared to 24 bits (3 bytes) in the original
ALF data. This of course means that the compressed data in
bit mode will be a bit stream which will not be aligned with
byte boundaries. Note also that even though byte mode
compressed data is always composed of bytes, it may also
not be aligned on byte boundariei=:, due to the fact that bit
and byte mode are freely mixed. In general, only at the
beginning of the compressed file are things aligned on byte
boundaries.

The combination of all the compressions so far yields an
average compressed length of 442 bytes, for a compression
factor of 2.6. Although this compression is substantial, it is
still not enough to fit all the chorales on one diskette. We
are forced to look for an even better scheme.

Looking at the data of Figure 1 again, we notice the following
fact: most of the notes in the chorale are close to the
preceding note (usually differing by only a few half steps). If
we arrange our duration table properly, it also seems likely
that the duration pointer for each note will also be close to
the one for the preceding note. For example, after a quar
ter note, an eighth note, half note, or another quarter note
is more likely than a thirty-second note. This leads us to
examine the statistics of the first-differences of the notes;
that is, the difference between each note and its predeces
sor.

100

F
r
e
q
u
e
n
C

y

-10 0 10

Duration Difference
F(gure ~: Distribution of the first differences of the dura
twn po1,nters for the notes in a subset of the Bach chorales.
Note the predominance of the values 0, + 1, and-1.

F
r
e
q
u
e
n
C

y

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

Pitch Difference REST

Figure 3: Distribution of the first differences of pitch.

Figures 2 and 3 show the distributions of the first differ
ences for both the pitch and duration of the notes in the
Bach chorales. These statistics were compiled from a sub
set of the 371, but we can safely extrapolate the results.
The duration table used for this analysis was composed by
the following rule: take all durations not equal to a six
teenth, eighth, quarter, half, or whole note, sort them, and
then tack the aforementioned five durations on the end
This has the advantage of keeping the common (non-dotted)
durations adjacent.

These graphs confirm our susp1c1on that the first differ
ences are not evenly distributed, being weighted in favor of
the smaller absolute values. Such a distribution can be effi
ciently encoded by a variable-length code. Such a code uses
shorter codes (fewer bits) for the common values and longer
codes for the rarer values, with the codes chosen so that no
code has a bit pattern equal to the high-order bits of a
longer code. This is necessary for decoding to be possible.

Since the duration values of 0, +1, and -1 are very common,
we will encode these with the two-bit codes 00, 01, and 11.
Note that these are precisely the two's-complement values
(to two bits) for these numbers. Larger duration values will
be encoded by the code lOddddd, where ddddd is the two's
complement value for the duration value. We call this a
"2+5" code, since it uses two bit groups for short codes and
2+5 bit groups for long codes. Note that, although it is not
apparent from the Figure 2 (since it reflects only a subset of
the 371 chorales), there are some very rare occurrences of
differences greater than B in absolute value. This is why a
2+5 code must be used rather than a 2+4.

For pitches, two bits is not sufficient to handle the common
cases, so we will use 3 bits. Larger values will be encoded as
lOOpppp (values up to 4 bits), and even larger values will be
encoded as 1001000ppppppp. Thus for pitches we have a
"3+4+7" code.

Each note will be encoded duration first, then pitch. A few
special cases need to be handled. A duration value of -B will
switch to byte mode (and no pitch information will follow). A
pitch value of 7 will. denote a rest.

Putting this all together, when we compress all the chorales
we get an average size of 344 bytes, for a compression fac
tor of 3.33. We have actually implemented this algorithm
exactly as described, and have indeed' succeeded in fitting
all 371 chorales of J.S. Bach on a single diskette (albeit just
barely - we had to remove DOS from the diskette in order to
make them fit).

No. of Exceptional Durations
Duration 1

Duration K
(whole, half, etc. are implicitly
a part of the duration table)

Pitch of first note
Duration pointer for first note

No. of Voices
Pointer to voice 1 (2 bytes)

Pointer to voice N

<MUSIC DATA>
(See Text for Description)

Figure 4: Format of a com.pacted
datafile

IOI

Summary

The format of the entire compressed music file is shown in
Figure 4. Note that, since the encoding works with the first
differences of the note pitches and durations, we have to
store the pitch and duration of the first note, in order to get
the decoding algorithm started. The data is encoded using
the two-mode bit and byte compression scheme described
above, with the 2-4/3-4-7 code for notes.

The decoding algorithm is summarized in Figure 5. This
algorithm has been implemented in 6502 assembly
language, and does indeed satisfy our speed requirements;
decompression never takes more than a few tenths of a
second.

duration table = exceptional durations + I 1,2,4,8, 16!
copy #voices and voice pointers to output

last note = pitch of first note
jast dur = duration pointer of first note
mode= byte

ft] if (mode= byte)

!

byte = next 8 bits from input

if (byte= 0)
output 21-byte Cl sequence

if {byte= 1)
output FE FE FE

if (byte= 2)
mode= bit

if (byte= 3)
quit t• end of data • /

if (byte= 4)
output FC FC FC (= nap)

if (byte· > 192)
copy it and next 2 bytes to output

else ;• mode must be bit •;
I

!

dur = next 2 bits from input
if (dur = -2)

dur = next 5 bits
if (dur = -16)
I

I

mode= byte
goto [t]

note = next 3 bits
if (note = -4)

note = next 4 bits
if (note= 7)

note= 192 /• ALF value for rest•;
if (note = -8)

note = next 7 bits
if (note <> 192)
I

I

note= note•2 + last note
last note = note

dur = dur + last dur
last dur = dur

output "note" and 60•duration table[dur]

goto [t] /• repeat until end of data • /

Figure 6: The decompression algorithm,
This algorithm is best implemented in assembly
langua,ve d.ue to the s:peecl. requirements and. the
extensive bit manipulation.

Possible Extensions

The compression factor of 3.33 achieved thus far is still not
the best possible. In fact, the variable-length code used
above, which was chosen mainly for decoding simplicity, is
only one of a large number of possible encoding schemes.
The question of which one of a multitude of variable-length
codes is optimal was answered long ago [1]. Such a code is
called a Huffman code, after the discoverer of the algo
rithm for its construction.

Given the statistics in Figures 2 & 3, we computed a Huff
man code for encoding pitch and duration first-differences.
Although we have not implemented it, we calculate that this
code produces an average compressed chorale length of 304
bytes, for a compression factor of 3.77 and a total size of
113K. Each note requires only 5.26 bits of compressed data.

Even though these results were presented for a specific
music source format (ALF), the general techniques should
be applicable for any system. They should also work for
other types of music besides the Bach chorales, although
the compression factors will vary depending on the degree
of "well-behavedness" in the music.

I02

Yet further refinements are possible. Encoding of the
second-differences, at least for pitch, might yield further
compression, due to the commonness of scales in music, for
which the second differences are small.

Finally, note that all these are "dumb" compression
schemes. A "smart" compressor would recognize repeated
phrases, correlation between the voices, and other high
level concepts which could dramatically increase compres
sion still further. These possibilities are left for the mavens
of artificial intelligence.

Acknowledgements

The author would like to thank W. McGee of Ontario for the
music data that made this research possible, and R. Mercuri
for posing the original "fit-it-all-on-one-diskette" challenge.

References

[1] D. Huffman, Proc. IRE, 40 (1952), pp. 1098-1101.

Computer Musio and the Human Interfaoe:

"Imbedding Performanoe Knowledge at the Graphios Level"

Steve Levine

Software and Systems
P.O. Box 621 Snyder, New York 14226

Abstract

This paper presents an illustrated
discussion of the key considerations surrounding
the issue of "Built-in User Friendliness" with
respect to computer music systems. The central
theme will focus on the use of pointing device
input and color gra1>hics on a microcomputer to
control the composition and performance of music.
A comparitive study will be made of past, present
and future trends that contribute to the overall
awareness of the music community with respect to
technological approaches to this issue.

Scope

For the sake of clarity and space, this paper
will focus on performance control. Once we
develop an awareness of the required system, we
can begin to create a metaphor, using computer
graphics that will simplify our interaction with
the system.

Here come the "toys"

With the advent of highly available integrated
computer graphics and built-in music synthesis
systems on personal computers, the computer arts
hobbyist can now explore modes of abstraction
heretofore unaccessable. Inexpensive touch
tablets such as the "Koala-Pad" and "Chalkboard"
have made it quite affordable and simple to add
pointin9 input capability to graphic based
applications.

A typical home computer that has graphic and
sound capability can be purchased for less than
$1000.00 in most cases. This includes from at
least a 256Xl92 to 640X200 pixel graphic
resolution with up to 16 colors at once. This
was not possible when I started fooling with
computers. By going with any one of a half
dozen popular models, the average user is able to
purchase inexpensive add-ons such as memory,
interface cards and music synthesizers. Software
of many different catagories can also be aquired
for very nominal prices.

Mass Discovery

The effect of readily available low cost tools
such as these has had a profound evolutionary
effect on the proliferation of software and
hardware. Many more individuals are staying up
late and writing programs or building boards that

CH2087-5/84/0000/0103$01 ,00 © 1984 IEEE
l03

make music and art. We have accumulated a lot of
knowledge in recent years to feed the movement at
large.

User-Friendliation

Since there is more humanity involved in
developing user-interfaces there is bound to be
more user-friendly software awareness in the air.
I would not imply that this software will be
user-friendly by nature, but there is a good
chance that more of it wi1l be found.

Nice programs come about by programmer awareness
of the way in which people do things most
naturally. Machines have been, by and large.,
quite user hostile. This is due to severa,
factors, some bein~ economic ,others physical
constraints and Just plain ignorance. The
"average user" concept applies pretty much across
the board. What is desired is for a computer or
even a car for that matter, to anticipate in some
way, the operations that can be automated and
present the remaining variables in a form that is
comfortable to humans. This task requires some
study of the particular problem being solved by
the computer and the group of users that will
interact with the system.

Some basic archtypes

Let's consider some of the devices within the
context of this paperi first in a general realm
and then in the musica, realm and try to examine
their relationship to the user.

Knobs, Levers, Buttons and Switches

These objects have been with synthesizers since
the beginning, around 1950. Most electronic
composers felt that these were representative of
a fairly humanized control schema and were
willing to work with them. There were of
course,the mavericks who felt that there was
defi ni tl y a better way to control many things at
once. There was an implied accessability in
being able to reach out and change one parameter
out of a panel of a hundred. Many schemes have
been devised since the early days which attempt
to simplify the task of controlling many
variables in a performance session.

A knob, for instance, connects to a rotary
control which normally provides 300 degrees of

rotation. This rotation is translated into
continuous control signal and applied as a
varying parameter to some kind of music or sound
context. If there are 4 channels of sound and
there is one rotary control for each, then to mix
four music signal's loudness using these
controls, al 1 one must do is rotate the
respective knob for each channel whose loudness
needs to be changed. This action is very
straight forward when the correct legend in
printed on or near the knob in question.

Switches have similar demographics. If a switch
is designated to effect an action and it's
function is cl early marked, then again the user
must just select the switch and press it. A good
switch is one which has some kind of status
indicator associated with it's current state.
There are switch schemes in use that use a
momentary switch, one that is spri ng-1 oaded and
only makes contact as long as it is held down, to
cycle through several states, even though the
switch only has two states itself. With these ,
there is definitly a need for a status indicator.

Indicators

Simple indicators are used throughout all of
society. Warning li!{hts, beepers, buzzers and so
on. They prove the1r effectiveness when they
either succeed or fail to inform us in time to
take the appropriate action. A whistling teapot
tells us that the water is boi 1 i ng for our tea.
An alarm clock naggs us to wake up. Floor
indicators in an elevator show us which floor we
are zooming past and generally rings when we come
to the floor that was selected.

A good example of a volume indicator is when the
pumping gas into an automobile. The driver may
be running the engine while the passenger (in a
self-service station) pumps the gas. If the
amount of gas desired is not the same a full
tank, then the person pumping usually watches the
dollar amount on the rolling "This Sale" display
on the pump. At the same time the driver may be
watching how much (or little) gas he or she is
receiving. If it's the driver's money, then it
usually won't do him much good to try to estimate
the dollar amount based on the tank full
indicator. It would be best in this case to
simply say "it's at 3/4 full, that's enough."
There are many ways in which to indicate things,
some prefer a volume indication with no more than
1/4 full resolution. Others require graduations
on a finer scale, such as a numeric indicator
along with a volumic one. This is where the
situation requires a human factor analysis for
the particular task.

Graphic Metaphores

The number of variables of interest in a
situation such as ours urges the use of efficient
demographics. It may be possible for the
military to train soldiers to memorize the
function and position of a hundred controls or a
nuclear reactor operator for that matter. For
the musician or composer, these things tend to
compete for his or her creative time and
energies.

Using computer graphic techniques, it is possible
to create a set of "Icons" and 'glyphs', which

104

are just environment-specific symbols which
represent various functions and controls. These
Icons may be optimally designed to take full
advantage of the standard nomenclature used by
the synthesis community. They may al so be re
configurable to suit the individual needs of a
particular composer.

A good example of well desi9ned metaphores is
that which can be found 1n the Macintosh
computer, by Apple. The "MacPaint/MacDraw"
pro9rams make use of an icon set which represents
act1ons and devices commonly used by art1sts and
paste-up persons. For example, there is a little
spray-pa1nt can icon that represents air-brush
technique. For the non-artist ,first time user
of the package, this wi 11 not be obvious but it
will foster some immediate curiosity and
inevitable experimentation. After one try, it
will become obvious to the user what this symbol
means. For .the experienced artist, this should
represent something that they are intimately
familiar with, if only bt one level of
abstraction removed. There 1 s al so an eraser
symbol which when selected, causes the images
that are swept over it by mouse movements, to be
erased. A Tasso icon 1s used to effect a "cut
and paste" operation on sections of the image.

Again, these symbols may not make a lot of sense
to everyone, but with minimal familiarization
they become as recognizable as a hammer or
screwdriver in a tool box.

Based on this approach, it is apparent that we
can make the most efficient use of iconographic
representation if we consider the issue of
symbolic familiarity.

In the context of computer synthesis applications
, we may be creating a new dialect for symbolic
representation. This doesn't mean that we should
abandon familiar metaphores in the design of the
new ones. It will make it much easier to gain
acceptance by both the synthesis community and
new devotees.

Pointing

One metaphore that has gained wide acceptance by
computer users is the notion of "pointing". This
comes natura1 to anyone who has been asked to
select a teddy bear at a carnival, after knocking
over 3 cupie dolls with a baseball.

The notion is simple. There are several items on
a list in front of you. You are asked to select
some. You must indicate which ones you have
selected. You may not speak the choices. You
have a pointer symbol that is shaped like an
arrow which you may move with your hand. By
moving this arrow to the position of the items of
choice you may then select items by pressing a
"Yes, tlli s one please" button.

There are several implimentations of this
metaphore currently in use.

The Joystick

The joy_st_;ck is u~ed extensively in video games
to pos1t1on guns1~hts. They usuallr contain
buttons to "Fi re at the enemy sh1 ps. The
joystick however, is not the best.for picking
things on a graphic screen. It is made up of a 2
or 3 inch handle connected to 2 variable
resistor controls. When it is moved, it produces
a horizontal and vertical signal which can be
related to X and Y movements.

Digitizing Pads

Di gi ti zing pads come in a few different shapes
and sizes. There is the older more common "Bit
Pad" which uses a pen-1 ike stylus connected by a
wire to the main surface and related electronics.
This pen is used just like a pen; it is drawn
over the surface or just placed at specific
locations on the surface to effect pointing
operations. There is usually a spring loaded
switch in the pen body and tip that allows "Yes"
functions to be accomplished by just pressing the
pen down a bit harder than usual. An alternate
pointin~ instrument that 9oes with the bit-pad is
a "Puck' device. This is shaped like a round
puck that fits between the thumb and forefi n~er,
and is moved around on the surface by sliding.
There is a plastic protrusion which contains a
cross-hair as a reference for accurate placement
of the pointing apex.

Touch Pads

Another type of di giti zing pad is a "Touch-Pad" •
There are several of these available, but they
all work pretty much the same way. The user may
simulate the action of the digitizer pad by using
only a finger or a special wooden stylus which is
not connected to anything. It helps to use the
stylus if a greater resolution of choice is
desired. The finger works well for most music
synthesis applications. The touch pad surface is
made to represent the working area of the screen.
By placing the finger in different areas of the
pad, a pair of coordinates are generated just
like a joystick, but they are represented by a 2-
D flat device. There are ususally a cou~le of
buttons on the side of these uni ts to facilitate
"yes" functions.

Touch Screens

There is a device called a "Touch Screen" which
allows the user to use a bare finger to point
right at something on the video screen. This
uses special electric field effects to determine
the coordinates of the finger on the glass of the
screen. A set of squares or circles are first
drawn by the software. Then labels are written
inside the shapes. These become the choice
symbols that ypu point to. Instead of moving
some kind of pointing icon on the screen to the
button of interest, the finger against the
drawing of the box or circle causes the computer
program to know which area has been touched,
therefore lighting up the "button" image on the
screen. This is the quickest way to point to
something on a computer. Unfortunately, this is
rather expensive and turns out to be low
resolution in most cases.

Mice

The last pointing device I should mention is the
"Mouse". This is the pointer that is used with
the Macintosh computer. It is a puck-like device
that has a ball mounted on it's underside. The
mouse is rolled on a table or any surface that is
dry and free of debris. As the mouse is moved on
the table, a similar movement takes place on the
computer screen with the graphic pointing icon.
The mouse contains mechanical and electronic
devices within it's puck to generate do.ta
corresponding to 4 directions of movement;

105

up,down,left and right. With this information
coming to the computer as the puck is moved on
the work surface , a "heading up and to the left"
or "down to the right" kind of thing is derived
from the mouse.

The author prefers a touch pad of at least enough
resolution to cover the full screen points. It
is also very nice to add pressure sensitive
devices beneath the pad in order to get a "Yes"
from pushing down real hard on the surface.

Graphic Considerations

I will now discuss some of the computer dependant
considerations we must explore when implimenting
a graphic based human interface for music.

The first thing that comes to mind when
considering a particular graphic environment is
that of display resolution. This is a measure of
how many dots may be contro 11 ed by the computer
display interface. These dots are usually
referred to as "Pixels" , meaning picture
elements. This parameter is a function of
hardware, specifically memory. Of related
importance is the number of simultaneous
displayable colors. Again, this is a function
of memory.

In order to represent musical symbols
comfortable, that is with adequate resolution to
discern between similar symbols, we need at least
512X200 pixels. It is nice to have at least 8
different simultaneous displayable colors to
choose from.

Black and white with some 9rey scale control can
be used as wel 1. The Macintosh screen is very
good in this respect, as it has 512X342, which is
better than 512X200.

A second issue is display speed. This is almost
as important as the former attributes. We all
would like to have fairly speedy computer
displays and computers for that matter. In the
case of our music application, we may at times,
require the display to scroll or update some
graphic information while it is in the midst of a
sxnthesis operation. We definitly don't want the
display operations to slow up the main processor
when it is sending information to the synthi!

An acceptable display speed should be based on
the requirements of the interactive portion of
the software. For example; if there are a number
of controls represented on the display and you go
to position the pointing icon over one of these,
the icon should move smoothly in conjunction with
the pointing device movement. Certain actions
such as screen clear, line and circle draws etc.
should be reasonably fast, no more than a half
second at most. A good measure of display speed
is how fast it takes to redraw the entire screen
with geometric symbols being generated in
software.

Graphic Software

I prefer to write graphic programs in a high
level language sucn as Pascal or 'C'. I use
basic onl.}' to experiment with ideas, not to
produce efficient, well-structured frograms.
Assembler is used to write the low leve routines
that are extremely time sensitive. I should

point out that most video games are written
entirely in assembler for the simple reason that
they have to be hand optimized for memory usage
and speed. Some of the fanciest utilities are
imb~dded in these assembler written games, which
cant be done with a higher level language. The
amount of movement on the screen is very crucial
in games, an area where a substantial amount of
graphic expertise is required.

Many personal computers contain Rom subroutines
for performing primitive graphic functions.
These routines can be accessed from th~ basic
interpreter or from some compiled languages.

Language Constraints

As was mentioned just above, graphic operations
have to be coded as efficiently as possible in
order to avoid uncomfortable delars in the update
of the screen. The most time critical areas are
those which take place with respect to an input
action. A good example in our application is
that of envelope function display. Refer to
figure 1.

When the line drawing of the figure is being
changed, there shouldn't be a noticeable delay in
the time between drawing segments. The value of
the envelope segment being worked on has to be
shown in the little window as well. This may
turn out to be a function of the most primitive
operation in the computer roms, such as the line
routine. Most personal computer manufacturers
impliment this in such a fashion as to keep it in
a standard form that will connect other programs
to it the same way each time. Most of the time
this is not the most compact and fast way to
accomplish it. If we want to optimize this line
drawing function for instance, we could write our
own in assembler or 'C', Pascal etc. Doing it in
Basic will most likely use the built in system
routine that we just spoke of. For those of you
that wish to impliment their own line and circle
drawin9 algorithms, along with a host of other
pri mi ti ves for graphics, see the reference
Foley Van Dam, [1982] Chapter 11. for an
excel fent tu tori al on interactive computer
graphics.

In most cases, there are function libraries that
are written for popular compilers that include
efficient algorithms of this sort. The advantage
of writing them yourself is that they can be
optimized to suit your application.

Structured Programming

Another issue that comes heavily into play is
that of interactive development. This becomes
obvious when you attempt to write software for a
graphic application and the time in between
gettin9 a changed piece of code going and the
last piece of running code becomes quite long.
Here is where interpreted Basic beomes tempting.
This is fine for just playing around and testing
algorithms, but when it comes to finished
programs, Basic falls on it's face in most
cases. The high level structured languages such
as 'C' or Pascal, Fortran etc. provide advanced
and 1>owerful data structures to sl)eci fy and
organize your tasks in a clear way. If one takes
the time to learn one of these languages. code
eventually starts looking like the orfginal
algorithm and flowcharts become uneccessary.
Programs become extremely readable, easy to fix
and find bugs in and they become very
Transportable.

106

This last item is of great importance in
computers in music and arts. After all, there
aren't a lot of companies supporting these kind
of efforts and most computer music and art
software is being developed by individuals! So,
wouldn't it be nice if these efforts could be
pooled? As I stated earlier in this paper, we
got this far from the grass-roots movement
anyhow. Program portabi 1 i ty is the way that we
can share our work with other enthusiasts.

The Syste~ Approach

When I speak of systems with respect to computer
music, I naturally accept the fact that we need
an adequate environment in which to work.
First, the computer must have moderately quick
disk drives. I cannot be satisfied with serial
(9600 bps) drives, such as on the Commodore 64 or
Atari. These machines are great for music
experimentation but due to many hardware
constraints, they remain in the semi-serious
real m for me.

A decent system should have more than 64k of
memory. The reason is that there has to be some
way_to ~llow.most, if not all of the program to
reside in main memory at once. In addition to
the program, there has to be room for some data,
such as notes and graphic screens to be
displayed at different times. Some micros have
the provision for storing a whole floppy disk
worth of data in memory, in order to simulate a
disk. This permits extrememly quick file
input/output and allows the program to be very
large, without experiencing the delay of loading
from disk. (overlays).

As I pointed out before, program speed is
important to music development. The most crucial
aspect of working with a computer to develop
music is to be able to hear and see the changes
that the user makes, as soon as possible after
they are entered into the computer. This closes
the loop between conceiving the piece and hearing
it, which leads inevitably to changing it again,
and so on. This phenomenon applies to computer
graphics just as importantly.

The Operating System

The operating system is also important. We would
like it if there were features built in to the
0/S that enabled our programs to execute with
ease, rather than having to create strange code
that takes the p 1 ace of the normal operating
system features. An example of this is the
ability to call the system with a function number
and request it to perform some kind of input or
output operation, without us having to write it
ourselves. If we want to hang a Bit-Pad or a
mouse on the computer, we don't want to hack up
an assembly routine just to address the
individual serial port. It would be much cleaner
and easier if there were built-in ,device
i ndependant system calls or standard device
drivers that handled the low-level I/0. This
would allow the transporting and adapting of our
programs without having to worry about the
primitive details.

Other 0/S considerations are, of course
standardization. At the moment, Appl e-II's have
the easiest, most portable I/0 configuration
around. All you have to do is stick a serial
card in a certain slot, such as slot #1, then you
can refer to it by typing "PR#l" and forget it
forever! At the moment, IBM-PC's have the most

well structured and documented O/S in the micro
world. Cheap cards can be purchased which pop
right in and perform some function. The binding
to the O/S is very straight foward. A P.erson can
write their own device driver or high-level
program without worrying if it will work on
someone elses machine. There is plenty of
information around to assist the do-it-your
selfer. The Macintosh has some catching up to do
before this can be said about it.

One last consideration of the system, is that of
availability. If one is to take a serious
di re ct ion with computer music development, then
it would be nice if this were a poular enough
computer that there were plenty of cheap software
and hardware availble for it. There are only a
handfull of companies that are developing o~
offering music systems or cards. Most of tliese
are only able to focus on the personal computers
that have sold well. This isn't bad, though.
The high volume of sales drives the music system
r>rices down, making it easier for you to spring
for that extra add-on above the cost of the
computer.

Think ha rd and do some i nves ti ga ti on before you
decide on the P.C. of your choice.

Music Application

After discussing some key issues with regard to
our subject, we can now take a close look at
using computer graphics to represent performance
knowledge.

It should be pointed out that the system being
described refers to a hypothetical software and
hardware arrangement. The concepts appl'/ to
analog and digital synthesizers interface via
the Musical Instrument Digital Interface {MIDI)
and built-in digital synthesizers, which are
available for some of the popular personal
computers.

In order to adopt a methodology which is suited
to several situations {other than performance) we
must consider what modes of commonality each of
these will share. The best place to begin is at
the topmost level of the "hypothetical computer
music system". Refer to figure 2.

As you can glean from the figure ,we have a few
function levels that may want to effect or
communicate with each other.

The "Score" level can have many meanings. Willi am
Buxton from the University of Toronto Computer
Science Research Group, who has been responsible
for many developments in the area of the human
interface, has stated simply that "A score is a
score is a score ". What is being said here
is that in musical performance, all of the
parameters concern, ng the composer that
contribute to the final sound output can be
organized into some kind of score file. Scores
that have many items in it, such as the waveform
sJ)ecs, envelopes, performance parameters such as
vibrato, glissandi and the like and the music
notation itself are not uncommon in some computer
music pieces. If every parameter can be written
with respect to it's occurance in time during the
playing of the piece, then why not place it all
in the score when composing the final phase of
the work?

107

The way in which I have chosen to relate the
different functions at the editing or top level
is with a separate operation for each. So, the
Score editor handles music notation entry and
modification, the voicer handles sound analysis
and specification, with preview and the player
handles performance. This is not to say that
data won't be relayed between the three
functions.

The commonality of the three top-level functions
is seen in two ways;
First, the editors may be invoked at any time in
another editors 1 i fe. You may be editing a score
and you desire to edit a voice, all that is
required is to invoke the voicer and edit voices
while the score editor remains in it's last
state, semi-visible on the screen, to be returned
to at a later ti me.
Second some variables parameters that are
derived from one editor may be fed to another to
provide some kind of function. Obviously, the
score editor may be limited in the type of data
it can provide to the other editors. Conversely,
using the voicer one may create an ascending
staircase function that can be plugged into a
compostion alogorithm which generates an
ascending series of notes based on a rule which
determines the intervallic spacing. Also, the
play editor, which relates more to the real-time
aspect of performance, would be more than happy
to associate such a starcase with some live
parameter that effectively sweeps pitch. A live
control from the play editor could be used to
"perform" a function into the voicer or an
enveloP.e can be developed with the voicer that is
shown in the score following the onset of a note.

With this approach, we can flexibly associate
parameters between functi~ns without having a
total merging of the three editors. In this way
we retain a separate but powerful heirarchy which
has been found to be effective for newcomers to
computer music.

An approach to defining the interconnection
scheme for the various edit functions and their
parameters may be derived in the following way;

- Segment the system as was done in the
generic block diagram
(or to your preference)

- Define the list of parameters that wi 11
be associated with each segment and their
individual limits, uses etc.

- Propose a relation strategy for these
parameters by introducing them to each
other, i e; Live Pitch, meet Envelope
function {will that work or not?) Timbre
Control, meet Note Score {'llfah).

Once the interconnect scheme has been outlined,
we develop scaling and ranging black-boxes that
can be used to massage the variables when they
are going to be used accross editors. This may be
needed when, for instance, the values coming from
one generator are too large or quick for another
funcion input. This is essentially a simple form
of si9nal processing, not unlike the metaphore of
patching analog synthesizers.

Windowing

The term "Window" should be familiar to anyone
who has seen the Macintosh. It uses a system of
"pull-down" windol'!s or screen se9ment_s that
contain separate obJects of information, i~ text
or graphic form, _that can represent a funct, on. or
job that is running at the moment while the ~ob
that is covered by the new window is st, 11
continuing underneath. This may not seem
straightforward at first, but consider the next
example as pertaining to our music application.

Suppose we have score editor and it's purpose is
to allow us to write a musical passage with
conventional music notation. See figure 3.

What if we have developed a certain amount of the
score and while still in the score editor, we
now desire to hear an instrument in order to make
up our minds about the next score entry. It
would be like fine-tuning the work in progress,
as wego along. Wouldn't it be nice if we could
just pull down a totally different editor menu
for making instruments, while still being able to
see and effect what was going on in the score
editor? This sounds pretty high tech, doesn't
it? I should point out that this type of
function, known as "Window Management" is
becoming quite _commonplacE;, It makes a ~orld of
difference for the user interface portion of a
system.

Figure 4 illustrates pull-down multiple windows.
The commonality I spoke about should begin to
surface from a using standpoint. Clearly, there
are several combinations of routings for the
different system functions when developing or
performing some music. This shows itself in the
score where the envelope, which is normally an
amplitude vs. time function is being changed by
the envelope editor. Although the old envelope
is not shown here, it represents the shape of the
envelope in the second ba~ of the scor~ •. T~e way
that this would be used is by the def,ni tion of
the envelope in the envelope editor, the tagging
of the finished one and the placement of it into
the score.

Windows are not entirely necessary. If they are
available in the computer you are working with,
then use them. A very useful system can get
along without them as well. Many of the digital

syntheizers that use 9raphics, adopt a "Page
Turning" concept. This is done by setting up
several individual screens where the editing work
will take place and allowing the user to request
a new page or return to an old one at will. Once
the page is turned, the new page becomes the
scene of focus. The old page may be returned to
with the previous work left intact.
One other thing that is bothersome is the ti me

that often ~nsues between pa9e turning. This
method fails to leave something on the screen
while the next editor is being overlaid1 such as
in windowing, so the interest is hela and it
doesn't seem like a long Compile or something.

The Recording Studio Metaphor

Let us examine a recordin9 studio situation that
we would like to computerize. In this discussion
we wi 11 combine the synthesis , composition and
record/p 1 aybac k functions together into one
system. We will try to define the areas which
lend themselves to graphic modeling and then
devise a philosophy for codifiyi ng them.

l08

In our simple home recording studio we have these
devices;

8 channel computer interfaced digital synthi
o timbre control
o note pitch
o amplitude control

Personal computer
o Black and white window graphics
o Floppy disks
o 128k memory
o touch pad

Figure 5, the system diagram shows the various
components.

The next block diagram, figure 6, shows software
already created.

Using this configuration ,what wil 1 we want to
accomplish in our recording studio?

The Tape Recorder

First, there has to be a "Tape Recorder". This
can be a software function that allows us to
record the work that we create, into memory and
then floppy disk. There is a fast forward and
rewind that allows random access to certain
positions on the tape. We would like to record
different types of information next to each other
on separate tracks. These are parallel areas on
the tape that contain sound or control
information that is recorded or played-back
together in time. On a real tape recorder, you
can edit the sound on the tape by "Splicing"
pieces of tape containing the sound portion that
r,ou wish to join with another. You can also
'Punch-in" which is just recording at a precise
ti me and position on the tape and "Punch-out" or
stopping at the exact moment that the time window
ends. These functions are simply file
operations.

The Mixer

Next, we would 1 ike to have some sort of mixer.
This device normally allows the musician/producer
to add together several sound tracks coming from
tape, live instruments or voice into a multi
channel output such as stereo or quad. The mixer
is primarily used to set the individual amplitude
levels of instruments. In this way, ,you can
"Mix" the 1 evel s down into a composite using your
taste for combining them.

The Synthesizer

As stated above, the synthi has a certain amount
of controllable parameters such as pitch, timbre
and amplitude. Each of these have several sub
parameters that are used to perform or compose
with. These sub-parameters are derived by
supplying time, frequency and amplitude varying
functions to the var, able sections. Some of the
sub-parameters are;

- Vibrato depth
- Vibrato SP.eed
- Timbre X (+/- 2048}
- Timbre Y (+/- 2048}
- Timbre Z (+/- 2048}
- Ampl itud€£nvelopeBreakpoint

(rate, value}
- Portamento speed

- Glissando speed
- Glissando interval

These parameters exist for each channel of the 8
voice synthesizer.

The heuristic device

Earlier in this paper we discussed the psychology
of symbolic fam1l1arity. This is very important
when devising a methodology for iconographic
design. In our recording studio metaphor, there
has to be a general understanding of the devices
,controls and movements involved in making music
this way.
Most of what is known about recording and

synthesizing has been aquired by professionals
who make music for a living. There are many
individuals who also design instruments and
recording equipment who have to be aware of the
professional heuristics that come into play when
a non-technical person interacts with a machine.
Some of the components of the modern studio
require quite a verbose manual that is normally
not that simple to get through.

Is "Less" beautiful?

The current wave of inexpensive electronic
instruments are making use of low panel real
estate, or in other words al most no front-panel
controls. Many manufacturers are providing just
1 or 2 controls and a stacked selector /mode
switch scheme. This requires that the musician
keep a good copy of the operational aspects of
the system in their head. Most of these
instruments have one very small (2 - 16 digit)
display, one or two slider controls and many
cheap membrane-type switches, like the ones on
new microwave ovens. some include a printed
road-map of the patch possibilities of the synth,
in order to simulate a menu-driven system. This
is not as bad as it sounds. This scheme allows
manufacturers to make instruments at a much lower
cost then before. They can eliminate much of the
expensive and un-reliable hardware that is
associated with knobs,buttons, and faders etc.
This keeps the cost down to where the average
person can afford one. These instruments are
usable but are more prone to error.

Do it like the 'Pro's' ------
If the system is going to be easy to learn
modify and work with, then it has to take into
consideration how a musical piece is made. How
do we know this before we have a system to try it
on? As I said earlier, much of the producing
knowledge already exists. If we adhere to some
of the time-honored traditions of the
professional recording business, we will have an
easier time building in this performance
knowledge.

The following is a short list of operations for
the creation of a musical piece;

1 - Write musical phrases (score)
2 - Make a simple instrument (voicer)
3 - Play the phrase with the simple instrument

(play)
4 - Revise the phrases
5 - Make more instruments
6 - Try multi-part playing
7 - Revise the instruments (add effects)
8 - Mix /Play the levels of the different

instruments/parts

109

9 - Record on multi-track (in the computer)
10 - Edit tracks , Punch-in/out
11 - Do final mix down

Using the basic operations as a guide, we can
study the things that require built-in knowledge.

A detailed discussion of the score editor is
beyond the scope of this paper, therefore we will
confine ourselves to voicer and player. Many
good examples of score editing have been
developed in recent years. There is a fine paper
by Mercuri ,R [1981] and Buxton,W [1979] cmj{3,4)
The evolution of the SSSp score editing tools]

Voicer Smarts

To incorporate some knowledge about vo1c1ng a
synthesizer into our "Voicer" software we have to
consider what important functions are necessary.
The voicer screen shown in figure ?,contains only
a small portion of what can be implinrented. Our
voice making editor should allow us to create
arbitrary functions consisting of line segments.
It should also allow us to graft together
different types of waveforms such as the top 4
waveforms in the figure • Not only would we l 1 ke
to paste and cut, we would also like to
manipulate them once they are on the screen. How
about a bending function? What would we do with
it? Suppose you have an envelope function such
as the 5th function down on the left. Amplitude
is represented in the vertical {Y) axis and time
in the horizontal (X). (see figure 8)

If the function was actually a pipecleaner and we
grabbed it at the middle of the top line as in
the next figure then bent it down towards the
bottom, it would turn out looking like figure 9.

The "Bend" function is a rubber-banding line
routine that knows how to draw a triangle using
the new coordinate that you point as the apex
and redraws the two sides everytime you move the
apex a little. This saves the step of having to
erase and redraw the lines by hand. This example
is a very simple one, but represents the kind of
things that can be acne using built-in graphic
functions.

Response Curve Editing

Another kind of operation that provides a very
useful function is that of response curve
editing. This makes it possible to create a
function that wi 11 be used as the response for a
control input. For each value that is read from
a joystick or fader control, the response curve
is used to treat the value according to the shape
of the curve.

Using the Voicer editor, you can draw a response
curve and patch it to the joystick in the Play
editor. When you move the joystick, the response
curve that is patched in will be used as a
"Filter", in other words, Joystick movements in
----> l X l ----> transformed values out.
This is essentially what a filter does. This can
be done with a simple table look-up operation.
The weight of the joystick value is used as an
address for the response curve, which is stored
in the table, the values in the response curve
table are then read out in place of the
joysticks.

An example of this is an inversion function. If
a line that goes from max to min value is put
into the table starting at the lowest location
~oing to the highest, then when a low value of
Joystick is used to look up the response curve,
then a high value will be read out, and so on.
(See figure 10)

Teaching the System about You

Most computer programs are not set up to learn
from it's users. P-rogrammers, on the other hand
, have been teaching computers how to do things
their way. There is an obvious distinction here.
On the one hand, programmers build-in algorithms
into their programs that usually perform a set of
operations according to a set of input data
usually provided by tlle user. On the other hand
an artificially intelligent, or "Expert System"
program is set up to remember inputted knowledge
which comes from the user and later make
deductions or inferences based on this set of
rules, when queried in more abstract ways than
usual.
In the music application, why not program the
computer to store and compress performance
expertise as we gain it?

This is, of course, not as involved as some of
the advanced efforts going on in A.I. (Artificial
Intelligence). We are only trying to sample
real-time performance input and modification
sequences as we perform in the Play editor.

The MIMIC function

If all the parameters on the screen are variable
when you go to perform with the system, at the
play level ,then why not store the progressing
movements of the faders, or the adding of a new
voice during the performance? Any of this can be
considered live once it has been set to some
timing. If you speed up the tempo the whole
stored performance should speed up, inlcuding
the fader movements etc.

Implimenting MIMIC is just a matter of using an
internal clock to synchronize and time tag the
events of interest. At the ti ck of each clock,
all the desired parameters are sampled from the
system and a history of their movements are taken
for a finite amount of time. This can get very
bulky , data wise, if it' is done for too long.
A way to reduce the parameter storage is to
simply store the deltas, or changes.

Many sequencers store keyboard and velocity
information which is played in by the musician.
Very few try to capture performance parameters as
in MIMIC.

Music objects and PLAY

Many diverse textures, sequences, timbres and
ryhthms can be derived from a modern digital
music synthesizer. With the addition of a real
ti me interactive graphics computer and some of
the components that we discussed above, a whole
world of new possibilities open up.

It is quite an experience to be able to
manipulate an enormous patch panel of synthi in's
and out's on a computer screen, each one having
some kind of immediate effect on the sound. The

IIO

great part, is that all of the best patches can
be stored, transferred and manipulated by the
computer.
When we work with highly detailed systems after a
while, we tend to organize things into macro
things. These macros are made up of combinations
of the smaller items which we find work well
together. There are of course, nearly endless
combinations of smaller things yielding more
macros.

Say we want to work with single small functions
such as the ones in figure 11.

When this thing is done we may want to call it
"Warble" for instance and save it as an "object".
We could just take the LFO and VCO combination
and call it "Warbl osc" or something. These two
sets of low-level functions are objects
themselves, but may be contained in larger
objects as well.

Other objects may be related to performance
methods. We can devise a particular play
sequence made up of inputs and their associated
response curves, routings and interconnect
conditioning.

Icons revisited

In dealing with object oriented structures, we
will have to design the ideal set of icons to
represent these objects. In order to get a
sufficient amount of iconographic data on the
screen, there has to be a compact philosophy
adopted.

How do we compress graphic information
sufficiently to contain it on the screen? At the
same ti me we would like to remember what these
symbols mean without having to look them up each
time.
First, I suggest a smaller window onto the larger
world. This is illustrated by figure 12.

With such a system, you may slide left or right,
up or down l>y moving into the
north/east/south/west box on the lower right hand
portion of the screen.

Second, the idea of families of symbols. When a
set of icons which represent various
manifestaions of the same family of objects take
on similar 9raphic attributes the_y become easier
to group, visually and contextually. This is the
key to icon design in a crowded situation.

Symbols do it

Figure 13 is a symbol breakdown showing the
different attributes that distinguish one member
of the family from another. Al so in the figure
is the different family types. The figure
relates to the PLAYER and VOICER screens.

The symbols shown in the last figure are ta~ged
with a s.Pecific function on the "Voicer' or
"P layer screens. In this way, the object
oriented editor can connect or corral these
together and ca 11 them a "Macro" object, give it
a new name or s_ymbol and store it on disk. They
now seem more like a set of building blocks with
pictures on the faces.

Figure 14 shows a typical arrangement of objects
and macro-objects in a performance situation.

Conclusions

This might appear to be a "patch editor" of
sorts, but is truly an "Object - Oriented" one at
best. By defining the inputs, outputs and limits
of these objects, they ma)' be treated as
subroutines from the computer's standpoint and
physical blocks from the user's.

Developing an object oriented editor which allows
graphic icons to be "patched" to~ether is not a
simple task. I have found that using some of the
methodoligies mentioned herein simplifies the
tedium of oesigning the data structures. It also
helps to study the important functions in terms
of their real-world analog application.
A very good discussion of this subject may be
found in Buxton,W, et al [1982] and Kowalski,
M.J. and Glassner, A [1982].

Once these objects are associated with functions,
they may be connected visually on the screen and
their effect can be experienced at once.

It is hopeful that synthesizer technology will
keep up with the rapid growth of software
knowledge which is increasing with leaps and
bounds.

Bibliography

Foley, J.D and Van Dam,A [1982], "Fundamentals of
Interactive Computer Graphics, Addison Wesley.
pp. 431-476

International MIDI association, 8426 Vine Valley
Drive, Sun Valley, California, 91352

Mercuri, R. [1981], "Manuscript: Music Notation
for the Apple II". IEEE Proceedings of the
Symposium on small computers in the arts. pp. 8

Buxton, w., et al, [1979], "The evolution of the
SSSP score editing tools", Computer Music
Journal, 3,4, pp. 14

Buxton, w., et al, [1982], "Objed and the design
of timbral resources". Computer Music Journal,
6,2 ,pp 32

Kowalski, M.J. and Glassner, A ,[1982] ,"The NYIT
digital sound editor", Computer Music Journal,
6,1 ,pp 66.

111

a
ra a a a a a

112

Player screen with icons

113

Teaching Programming to Musicians

Frances K. Dannenberg, Roger B. Dannenberg, Philip L. Miller

Computer Science Department, Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract
A new approach has been developed for teaching

programming to musicians. The approach uses personal
computers with music synthesis capabilities, and students
write programs in order to realize musical compositions.
Our curriculum emphasizes abstraction in programming
by the early introduction of high-level concepts and the
late introduction of programming language details. We
also emphasize abstraction by relating programming
concepts to musical concepts which are already familiar to
our students. We have successfully used this curriculum
to teach Pascal to children and we are presently using it in
a university-level course for composers.

We have developed a new methodology, designed
especially to teach programming to music students.
Students are challenged to produce artistic works through
programming skill, using personal computers with music
production capabilities. A key feature of our curriculum
is that it allows students to use their existing musical
knowledge as a basis for understanding computer
programming. We have used this approach successfully
to teach Pascal to children ranging in age from 9 to 16
years, and we are now using the curriculum as part of a
college-level computer music course.

This approach is unique in several ways: First, it is
designed specifically for artists. Programming is viewed

as a means of creative expression rather than an abstract
skill whose utility may be difficult to justify to an artist

CH2087-5/84/0000/0114$01 .00 C 1984 IEEE
114

Secondly, our approach is an inherently multi-media one.
We have found that "listening" to a program's execution
while reading the program is helpful in learning and
debugging. Finally, we build upon existing musical
knowledge. Musicians are familiar with the concepts of

sequence, repetition, conditional selection, and
procedural abstraction from the domain of music. We
make use of analogy to teach the corresponding

programming structures.

In Section 1, we present the origin and goals of this
project. Then, in Section 2, we describe some earlier
work and experience that guided our curriculum design.
In particular, we wanted to teach what we call the
abstractionist methodology. Section 3 then describes our
specific curriculum design for teaching programming to
musicians. Our experience with this curriculum is
discussed in Section 4, and we present our conclusions in
Section 5.

1. Background
We began with the goal of designing the curriculum for

a "Computer Arts Summer Program." The program was
to be held at the American Center in Paris, and was
aimed at 12- to 16-year-olds. We planned to include
computer music and computer programming instruction
and to provide every student with a personal computer in
the style of many "computer camps" held in the United
States. It was also decided to integrate the music
instruction as much as possible with computer
programming.

We considered two approaches to the use of computers
for music. First, we could present fixed, menu-oriented

programs for drawing, composing, and computer-aided

instruction. Rather than writing their own programs,

students would manipulate parameters in existing
programs. Alternatively, we could write interfaces to
graphics and sound synthesis devices so that students
could create music by writing their own computer

programs. We decided to concentrate on the latter
approach: that is, teaching students how to program in

order to produce music.

2. Previous Work
We know of no work that addresses the needs of

teaching programming to the musician in particular.
However, there is a wealth of literature concerning
programming methodology and pedagogy in general. Of
particular interest are papers by Perlis1, Dijkstra 2, and
Hoare3, which discuss the importance of various forms of
abstraction to programming. We call the general

approach advocated by these authors the abs1ractionist

methodology. Because of its importance to our
curriculum for teaching musicians, we describe it here in
some detail.

2.1. Abstractionist Methodology
We recognize three principal levels of programming

abstraction: the control structure level, the procedure
level, and the data structure level.

Abstract Control Structures. The most familiar level is
that of control structures4. This is essentially the
structured programming movement of the 1960s, with
do-while, if·then·else, etc. In contrast to the goto, which
may be used to create arbitrary flow of control, control

structures should have single points of entry and exit, and
they should indicate the programmer's intention, for
example, to iterate a sequence of statements.

Procedural Abstraction. The second level of abstraction
is abstraction at the procedural level. The idea is that
problems are too complex to be thought about all at once,
so we think about them hierarchically. To illustrate, we
will borrow from a textbook5. Consider the task of
grocery shopping. This high-level task can be divided

into smaller tasks (subtasks) in many ways. Let's say we
decide to decompose it into two subtasks: generating a

shopping list and buying all the items on the list.

We continue now with the subtask of generating a

shopping list. Likewise, it may be decomposed in a
variety of ways. Assume our solution is first to obtain a
pencil and paper, followed by examining the kitchen

cupboards for some idea of what is needed, and finally, to

consult the spouse for a contribution to the list.
Generating the shopping list could be done in other ways.
For example, one might simply delegate the task to one's
spouse, cook, maid, etc.

With our shopping list firmly in hand, we can consider
the subtask of generating the shopping list completed. We
now turn our attention to the other m~jor subtask, buying

the items on the list. This, of course, could also be done in
a variety of ways. Let's say we wish to do it in the
following manner: go to the grocery store; collect the
items on the list; pay the cashier; and, finally, return
home with the groceries.

This leaves out many details of the acquisition phase.
For example, we named a subtask collect items on list,

however, we have said nothing about how this is to be
accomplished. How are we going to search the store for
the items on the list? Are we going to use a shopping cart,

/ (_•_hop fo_r gro_ceries____,) ~

(generate shopping 1 ist) buy items on shopping list

/ ~ --'--- I
get pencil
and paper

examine

cupboards

consult

spouse
go to
store

collect
items

Figure 2· l: Figure Showing The Tree Structure Of
Problem Decomposition

115

pay
cashier

talcc home

groceries

or perhaps just a shopping basket? We named another
subtask of paying the cashier. This might be done with
cash. It might also be done with a personal check, or with

manufacturers' coupons, a charge card or some
combination of these methods.

We see that this technique generates a hierarchical
solution to the overall task. Although we've expanded

only two levels, it gives enough of the idea for you to see

how it is done. In programming, tasks are similarly

divided into components which are then written
separately.

Data Abstraction. Data abstraction is the business of
thinking of a problem as a set of objects and the
operations that are performed on those objects. Consider
a payroll system. The problem is to maintain information
on the employees of a company. The information that is
kept on each employee includes such items as name, rate
of pay, hours worked, whether or not the employee is
participating in the company's group insurance plan. We
can think of this information as an index card of
information. Because the company has a number of
employees, the index cards are arranged alphabetically

into a shoe-box of index cards. Thus the abstract
structure for the payroll problem is a shoe-box of index
cards.

The second aspect of data abstraction concerns the

operations on the structures. There must be a way to
thumb through the cards, searching for a particular one.

There must be way to copy information from a card and a

way to change the information that is on a card. A card

must be added when a new employee is hired. A card

must be removed when an employee is terminated.

In programming. the box of index cards would be
represented by a data-structure. It is desirable, in order to

reduce program complexity, to confine the details of this
data-structure to only a small part of the overall program.
This is accomplished by writing procedures for each of
the desired operations. If an operation is complex, it

might be implemented by a package of procedures.

116

We find these three levels of abstraction to be at the
core of good programming practice. They facilitate
design of software that is at once verifiable,
implementable, debuggable, and extendible. They dove
tail neatly with the ideas of information hiding and strong
typing. They represent current thought in software
engineering.

2.2. Abstractionist Pedagogy

Recently, a few educators have begun to adopt a
pedagogical style that is designed specifically to teach the
abstractionist methodology. This style does not have a

name in computer science, but we will call it the
abstractionist pedagogy. Among the people with whom

we are familiar, Bob Floyd is credited with the idea,
which has since been applied in several textbooks6• 7, 5, s.

Among the key features of the abstractionist pedagogy
are the early introduction of high-level concepts and the
late introduction of programming language details. This
encourages a hierarchical approach to problems,
beginning with the • highest level. Programming

instruction begins with the introduction of a handful of
pre-written procedures. The student writes his first
program simply by calling these procedures sequentially.
Next, the student is given a technique for writing new
procedures, built from sequences of the primitive

procedures mentioned above. Control structures are then
introduced, and finally, a full programming language is

presented to the student.

Standing head and shoulders above the rest in
successfully executing this pedagogy is Richard Pattis. In

the marvelous little book, Karel the Robot: A. Gentle
Introduction to Programming, students learn to
manipulate a robot, Karel, using primitive procedures

such as Move and TurnLefi. The robot is simulated on a
standard CRT. Tasks are designed for the student, such
as programming Karel to step over a hurdle or to escape a
maze. As the student learns more powerful techniques of
programming, successively more general and elegant
programs that control the robot are written.

We believe that this task domain, one that is visual and
tactile, is a good one for introducing programming
methods. Unlike the domain of numeric calculations (the
unfortunate standard fodder for beginning programmers)

the Robot world introduces no intellectual barriers to the
student. It provides an environment that is at once
intuitive and rich with analogies that can be exploited for
introducing and fixing the rudiments of sound
programming methodology. The book and the approach
are now being adopted in a number of high schools in the
U.S. and abroad, in part due to the positive
recommendations of the College Board's Advanced
Placement Computer Science Development Committee9,
10

2.3. Assumptions and Prejudice
We designed our curriculum for musicians with several

assumptions in mind:

• The first is that the abstractionist
methodology is sound and should be taught
to beginning programmers.

• The second assumption is that there is a best
way to teach this methodology. The
abstractionist pedagogy has been used
successfully at Carnegie-Mellon and
elsewhere in programming courses.

• The third assumption is that musicians can
learn the programming methodology. It is
sometimes held that the mathematically
oriented students (engineering and science)
are able to learn programming methodology,
while artists are either unable or much less
able to do so. It is clear, however, that some
musicians are excellent programmers. Some
are respected computer scientists. We
decided that the best approach was to assume
that for the purposes of programming,
mus1c1ans as beginning programming
students are no different from any other
group of beginners.

• The fourth assumption, as suggested in our
description of the course, is that the best way
to introduce the concepts of programming
methodology is to tie these concepts closely to
a knowledge base that is familiar. In
introducing a new concept, a successful
teaching method is often to explain it by its
analogy to some more familiar concept. In
our course, we apply this to teaching
programming abstraction, explaining
programming structures to students by
analogy to similar hierarchical organizations
in music, with which they are familiar.

117

Thus far, we have introduced a number of important
ideas. We have specified a programming methodology as

the correct one to teach. We have talked about how to
teach that methodology in terms of subject matter, texts,
and software. How this all manifests itself in terms of

teaching programming to musicians is the subject of the
next section.

3. The Abstractionist Approach in a
Musical Setting

When we began to design our programming course for
musicians, we looked for musical analogues to the
concepts we wanted to teach: sequential execution,
procedural abstraction, and control structure abstraction.
We were quite pleased to find musically meaningful
analogies for all of these concepts. Below, we describe
how each concept was presented to our
musician/programmers.

For the introduction of procedural and control
abstraction, we wanted to keep programs as simple as
possible, avoiding issues such as parameters,
input/output, and synthesizer interfaces. Taking Karel
the Robot8 as a model, we defined a set of parameterless
procedures to play the notes of an octave scale and to

produce silence1. A few more procedures were added to

produce sound effects, and an include file mechanism was
used to hide the definitions of all of these procedures.

The use of personal computers made it possible for each
student to have a machine that could edit, compile, and
execute programs using these procedures. Each machine
could also synthesize appropriate sounds.

3.1. Sequence/Melody
llle first programming lesson consists of a simple

melody and an explanation of how to translate the
melody into a program. For example, the following
melody:

1Toe procedures are PlayDo, PlayRe, PlayMl PlayFa. PlaySol
PlayLa. PlaySl PlayDo2 (an octave higher than PlayDo), and Rest.
The names of these procedures were chosen to avoid a clash between
the Pascal reserved word "do" and the solfcge syllabic "Do".

Melody

-$4 #J d J I J J J & II
would be translated to:

program Melody;
{include definition file here}
begin

end.

PlaySol;
PlayLa;
PlaySi;
PlayLa;
PlaySol;
PlayLa;
PlaySol;
Rest

Students are encouraged to compose their own melodies
and to program the computer to play them.

3.2. Procedures/Phrases
For the next lesson, an example is chosen that includes

several occurrences of a musical phrase. The example is
translated into Pascal, and it is observed that the program
contains a duplicated sub-sequence of commands.
Students are shown how to build a named procedure
from the sub-sequence. For example, the following
melody:

could be rendered as follows, using a procedure to

implement measures 1 and 3:

program Lesson2;
{include definition file here}

procedure DoSiLa;
begin

end;

PlayDo2;
PlaySi;
PlayLa

begin
DoSiLa;
PlaySi;
Rest;
Rest;
DoSiLa;
PlaySol

end.

118

3.3. Loops/Repetition
After programming a composition using procedures, we

tum to basic control constructs. The loop is the first
construct considered; its musical analogue is the repeat.

At this point, we consider only the for loop. The next
example illustrates the use of the for loop to program a
musical repeat:

Arpeggio i 3 times

program Arpeggio;
var i: integer;
{include definition file here}
begin

for i : = 1 to 3 do
begin {repeated measure}

PlayDo;
PlayMi;
PlaySol;
PlayMi

end;
PlayDo {the last note}

end.

For this lesson, Pascal requires a declaration for the
loop control variable. Since variables have not yet been
introduced, we avoid the issue by describing the
declaration as a "magic incantation" to be explained later.
A loop construct that implicitly declares its control
variable11 would be preferable for teaching purposes.

Perceptive students will realize that a musical repeat
can be implemented by programming the repeated music
as a procedure and calling it several times. An interesting
work to discuss at this point is Vexations, by Erik Satie,
which consists of a short musical statement to be repeated
840 times!

3.4. Conditionals/First and Second Endings
The next lesson concerns conditional execution. The

analogue in music is the first-and-second ending notation.

Consider the following example:

program Conditional;
var i: integer;
{include definition file here}
begin

end.

for i : = 1 to 2 do
begin

PlayDo2;
PlaySi;
PlayLa;
PlaySol;

end

if i = 1 then
begin {first ending}

PlayFa;
PlaySol;
PlayLa;

end
else

PlaySi

begin {second ending}
PlayDo2

end

Students should be encouraged to experiment with
conditionals in non-traditional musical structures. For
example, conditionals could be used to introduce
variations at several points in a repeated note sequence.

3.5. Parameters
Until now, no procedures have been parameterized.

This simplifies the presentation of control constructs and
procedures, but imposes rather severe limitations on the
variety of sounds that can be programmed. In the next
several lessons, students are taught how to call
parameterized procedures and how to declare them. By
this time in the course, students recognize the need for
more subtle control over sound, and welcome the
introduction of parameters.

Predefined procedures called Note and Rest are used to

introduce parameters. The Note procedure takes
arguments for frequency, amplitude, and duration; for
example Note(440, 100, 50). The Rest procedure has one
argument, duration; for example Rest(90).

119

Students are then taught how to define their own
parameterized procedures. At this point, they have the
programming skills necessary to create interesting pieces,

Advanced students will want more direct access to the
sound generation hardware than that provided by the
Note procedure. In our case, we use a fairly sophisticated
synthesizer interface capable of independent time-varying
frequency, amplitude, and waveform control over 16
oscillators. The synthesizer interface illustrates data
abstraction. Procedures are used to manipulate some
underlying structure (the synthesizer) in order to hide
irrelevant details of the structure. Students are
encouraged to develop their own data abstractions at the
next higher level in order to obtain a control interface
that is appropriate for their composition. For example, a
procedure named Gliss could be written in terms of
primitive frequency controls in order to implement a
musical glissando.

4. Results and Discussion
We taught a 15-day course, where students had a total

of 4 hours per day for instruction and access to
computers. Although the course was intended for 12- to
16-year-olds, the actual range was 9 to 16 years. All of the
students were able to develop programs that used
procedural abstraction, loops, and conditionals. For
example, one student, who had no previous computing
experience, wrote an 83-line program to perform a piece
with the structure ABA (see the appendix). The A section
was implemented as a procedure with an internal
structure of the form abaca. This was accomplished using
a for loop to iterate 3 times, with a conditional to insert b
after the first iteration, and c after the second iteration.
This program used a variation of the Note procedure to

give control over the rate of attack ,and decay of each
note.

4.1. Music as a Concrete Programming Task
As expected, students understood the programming

tasks immediately since they came from familiar
intellectual territory. This allowed students to
concentrate on the solutions to the problems rather than
trying to understand the problems themselves.

4.2. "Listening" to Program Behavior
As with the domain of Karel the Robot, which can be

simulated on a CRT, we found music to be attractive for
programming because it was possible to follow program
behavior quite closely. This was true in part because
program behavior was slowed to a musical pace. Also,
one could hear the result of each program step;
consequently, one did not often need to deduce a
program's behavior from its final output Rather, the
entire program execution was transparent, and problems
could be isolated without a painful debugging process.

In addition, we found that the music domain has
specific advantages over Karel. First, music is an ideal
medium for transmitting large amounts of information
about program behavior to our musicians. It is also
possible to read a program listing visually while
simultaneously following program execution aurally.
This was valuable in helping students to learn the
association between program statements and their actions.

4.3. Motivational Factors
Our students discovered that making music with

computers is also fun and exciting. As students
completed their assignments, they would perform their
pieces for the class, often receiving applause and
compliments. Students were highly motivated to finish
their assignments!

4.4. Extension to Other Domains
Based on our experience, we feel that other domains

could serve as an excellent basis for the abstractionist
pedagogical style. The style is appropriate for various
types of music synthesizers2 , but it might also be
considered for the new, low-cost speech-synthesis devices.
Another interesting domain is that of computer graphics.
The "turtle graphics" interface is an example of an
appropriate set of primitives12. In another application,
Harry Holland at Carnegie-Mellon University is using
our approach to teach Pascal to artists. His students use a
color graphics display and program in terms of primitives
like Box, Circle, and Line. Architectural drawing is
another possible domain. Finally, a mechanical robot is
being constructed at Carnegie-Mellon University, based
on Karel, to make the programming task more exciting.

2For this reason, we do not describe our lowest level synthesizer
interface in greater detail here.

120

At Carnegie-Mellon University, the programming
pedagogy is reinforced not only by the Pattis text and the
Miller and Miller text, but also by software that was
written with an eye to the abstractionist methodology.
GNOME software is built so that procedural and control
abstraction are the natural form of program construction.
Details of syntax and some details of semantics (e.g. the
order of procedure declaration) are issues for the
programming environment, not for the programmer.13

We are currently using the abstractionist pedagogy .as
part of a computer-music course for college students. In
this course, however, we introduce parameterized
procedures at the beginning so that students have more
music-making capabilities from the start

5. Conclusions
We have presented our view of the proper pedagogical

style for teaching the abstractionist methodology. The
approach has been used successfully at Carnegie-Mellon
University and elsewhere ..

It was gratifying to discover that the approach can be
adapted quite well to the musical domain and that
musicians can indeed learn to program with the
abstractionist methodology. In fact, music has specific
advantages, including familiarity with the domain,
program behavior that is audible, and a strong motivation
to "compose" programs.

It is interesting to compare our experience teaching
grade-school level students to that of teaching university
students. Our goal with the grade-school students was
primarily to teach programming, while in the university
course, programming skills are primarily a means of
realizing a composition. One conclusion is that there are
limits as to how far one can integrate the teaching of
music and programming. For example, the programming
tasks described in this paper have little musical value to a
university-level course in computer music, but the
programming concepts are an important foundation for
more sophisticated tasks. The problem is that a "toy"
domain like Karel the Robot is ideal for teaching
programming, but toy music domains are not attractive to
serious musicians. We believe part of this problem can be
solved by a better choice of synthesizer interface, and we
intend to experiment further in future courses.

The number of musician/programmers is small, but the
field of music has already felt their impact It will be
interesting to watch what musicians do with programming
skills as they become more widespread.

6. Acknowledgements
It our pleasure to acknowledge a number of people and

organizations whose contributions made this project a
success. Raj Reddy deserves credit for the concept of a
computer arts camp for children. Colette Wilkins was
indispensable in teaching as well as in a multitude of
other tasks essential to the success of the course. Judith
Pisar, Henry Pillsbury, Alex Mehdevi and the staff at the
American Center obtained equipment and handled
innumerable problems in preparation for the course.
Computer equipment was loaned to us by Atari France
and Apple. Carnegie-Mellon University's Summer
Studies funded the courseware development, which was
programmed by Linda Isaacson, Richard Sean Keegan,
Robert Rose, Peter Shell, and Mark Wilkins.

121

1.

2.

3.

4.

5.

6.

7.

8.

References

Perlis, Allan, "A First Course in Computer
Science," , 1965.

Dijkstra, E.W., Structured Programming,
Academic Press, 1972, ch. Notes on Structured
Programming.

Hoare, C.A.R., "Proof of a Program: FIND,"
CACM, Vol. 14, No. 1, January 1971,.

Dijkstra,E.W., "GOTO Statement Considered
Harmful," CACM, Vol. 11, No. 3, March 1968, .

Philip L. Miller and Lee W. Miller, Computer
Science, The First Course, Random House. 1985.

D. Cooper and M. Clancey, Oh Pascal. Norton,
1982.

Arthur Keller, A First Course in Computer
Programming Using Pascal, McGraw-Hill, 1982.

Pattis, R., Karel the Robot, A Gentle Introduction
to the Art of Programming, John Wiley and Sons,
1981.

9. The Advanced Placement Computer Science
Committee of the College Board, "Advanced
Placement Course Description: Computer
Science,", 1984.

10. The Advanced Placement Computer Science
Committee of the College Board, "Teacher's
Guide to Advanced Placement Courses in
Computer Science/' , 1984.

11. William Wulf, D. B. Russell, and A. Nico
Habermann, "Bliss: A Language for Systems
Programming," CACM, Vol. 14, No. U,
December 1971, .

12. Harold Abelson and Andrea diSessa, Turtle
Geometry: the computer as a medium for exploring
mathematics, MIT Press, 1980.

13. David B. Garlan and Philip L. Miller, "GNOME:
An Introductory Programming Environment
Based on a Family of Structure Editors,"
Proceedings of the ACM SIGSOFT/SJGPLAN
Software Engineering Symposium on Practical
Software Development Environments, ACM, May
1984, Published as SIGPLAN Notices 19(3) and
Software Engineering Notes 9(3).

Appendix

Listing of a Student Program

program Param;
var
{note: this is the interface include file:}
(*$ID2:INTER.DEF*)

procedure Note(Pitch, Attack, Decay,
Amplitude: integer);

const Voice = 0;
begin

WaitVoice(Voice);
FDelay(Pitch, 0, Voice);
ARamp(Attack, Amplitude, Voice);
ARamp(Decay, 0, Voice)

end;

procedure Bizarre;
var C: integer;
begin

for C : = 1 to 3 do
begin

Note(700, 100, 100, 100);
Note(750, 97, 97, 97);
Note(800, 94, 94, 94);
Note(850, 91, 91, 91);
Note(900, 88, 88, 88);
Note(950, 85, 85, 91);
Note(lO00, 100, 100, 90);
Note(l250, 90, 90, 100);
Note(l500, 100, 110, 100);
Note(2000, 90, 89, 79);

if C = 1 then
begin

end

Note(850, 75, 77, 75);
Note(825, 78, 77, 78);
Note(800, 76, 79, 78);
Note(4000, 70, 120, 110);
Note(4700, 120, 70, 110);
Note(800, 89, 70, 75);
Note(730, 95, 84, 77);
Note(888, 100, 110, 95);
Note(2540, 127, 71, 120);
Note(l 700, 120, 120, 90);
Note(990, 110, 127, 75);
Note(4000, 90, 89, 97);
Note(4500, 85, 90, 100);
Note(4700, 90, 110, 100);
Note(5000, 100, 75, 89);
Note(500, 120, 75, 100);
Note(700, 90, 90, 100);
Note(l000, 85, 90, 86);

122

end
end;

begin
Muslni;
Bizarre;

else if C = 2 then
begin

end

Note(5000, 100, 100, 90);
Note(9000, 127, 127, 90);
Note(8500, 127, 127, 90);
Note(8000, 127, 127, 90);
Note(7 500, 127, 127, 90);
Note(7000, 127, 127, 90);
Note(2700, 95, 90, 100);
Note(2000, 90, 99, 110);
Note(900, 85, 90, 90);
Note(700, 85, 80, 95);

Note(350, 65, 65, 70);
Note(325, 65, 65, 74);
Note(300, 65, 65, 77);
Note(375, 127, 127, 90);
Note(400, 120, 120, 95);
Note(385, 100, 100, 85);
Note(300, 95, 95, 85);
Note(250, 90, 87, 94);
Note(215, 70, 78, 66);
Note(207, 50, 56, 90);
Note(200, 80, 76, 88);
Note(l89, 79, 87, 85);
Note(206, 80, 75, 76);
Note(200, 76, 47, 69);
Bizarre;
ARamp(0, 0, 0)

end.

AM ART J!fASED MICROCOMPUTER LEARNIWG SYSTEM

CATHERINE G. DEL TITO

Presentation Graphics 703 S. 3rd St. Phila. 19147

Abstract-

Microcomputer learning outside of trad
itional classrooms and traditional
student grouns is essential in the
growth of a technology based culture
such as we are experiencing today. Com
puters reek of intimidation to the
average lay person. Somehow this must

"What are these boxes, that masriuerade as
tynewriters and contain cloned brain cells
of deceased geniuses? Why are they running
my bank, brainwashing my kids, beating me
at chess •••• " This is a question often heard
(in so many words) from the braver members
of that vast majority of humankind who see
the computer as an alien life force posi
tioning itself for takeover of the planet.
Wow do we assuage this fear, appease the
hostility, onen the mind, even better, open
the hearts of those who feel the enemy is us.

We took a simple anproach. Use the com
puter for that which separates us from the
from the other animals (and possibly the
alien life forces), art. Use the computer
to write poems, draw pictures, play songs
and maybe it will become a friend instead
of the enemy. The Computer Learning Center
of Cleveland did just that. Armed with 20
microcomputers (Apnle IIe, Ibm PC, Commodore
64, Trs-80 Mor.el III, Atari 800), assorted
peripherals, an energEl:ic director, and a
staff of artists, musicians and writers, we
set out to bridge the gap.

The physic.al constraints were next to
idyllic. A computer for every student.
One teacher for not more than 6 students so
as to approach individual attention. An
easily understandable set of books, Thinking,
Learning, Creating, as a core curriculum in
BASIC. An array of reference books for LOGO,
graphics, sprites, music and word processing.

Classes were one and a half hours each
week for 6 weeks. Each student was master
of his destiny. The teacher and student de
cided where to begin, depending upon the
student's background, ana where to head,
according to the student's interests. The
approach of the TLC books was straightfor
ward, DO THIS and see what hannens, THIS IS
WHY it happened, CAJ\! YOU MAKE IT DC THIS?
This apnroach fostered creativity in asking
the student to take a learned concept and

CH2087-5/84/0000/0123$01 .00 o 1984 IEEE
123

be altered, and forceful means are not
necessary. The Computer Learning Center
of Cleveland addressed this audience,
drawing students ages 6 to 66 to indiv
idualized learning situations using the
arts as the teaching medium.

use it, e.g. make the computer print a poem
you have composed. Because of the individ
ual anproach, it was hard to get lost; you
could go into reverse, back up, and try
again. If the student was familiar with
material, they could move on readily.

We had a f'ew rules. It behooved us
to discourage canned software in favor of
self-creation, though paint programs and
Music systems had their place. We outright
outlawed games unless keyed in by the stu~c
dent or obviously created by the student.
We also discouraged chewing on disks, kick
ing computers and asking the teacher ques
tions about intricate assembly language
routines. We did encour~ge any and all
semi-nlausible ideas. A group of students
worked on translating the board game Clue
into the computer. Page flipping on the
Apple was used to make dogs bark and King
Tut wink. Sound was used for the barks as
well as the theme from Star Wars.The fol
lowing "student profiles• highlight some
of the.work done. (I will refrain from ed
ucational analasis - the reader is free
on his own there)

Jamie (age 7) had only one small pro
blem, containing his enthusiasm. When he
had the turtle in Atari LOGO make a SQUI
HEL (an endlessly varying geometric spir
al), he would have to applaud. But when
he then had it change colors, he had to let
out a "Oh, wow, neato" so people would
come and look.

Jamey (age 15) had a favorite respon
se to any question, "I guess so". He
started by plotting a hot air balloon (in
Ba.sic) on an Apple. But balloons are sup
posed to fly. We simplified the balloon to
lines (vectors) which we translated to
hexidecimal numbers (even if he did not
fully understand them). We entered the
hex codes in a shape table and wrote a
nrogram in Basic that had the balloon lift

off the ground and fly around (using draw
and undraw of the sh~pe table). The balloon
looked pretty dumb on a blank screen so
Jamey used Micropainter to draw the Alps
for the background. Unfortunatel1 the
Apple resolution prevented a passenger in
the balloon so it was good that the B'asic
program was steering.

Kim (age 15) was one of those students
that try as you might to confound them, they
keep coming back for more. By her 7th ses
sion she had taken things into her own hands.
She took a basic plot routi.ne written by
one of the teachers for the IBM PC and dev
eloped it into a drawing program which enabl
ed one to plot lines, circles, fill areas,
select colors, erase areas, save pictures
and catalogue a disk. We showed Kim and her
work off Proudly to all visiting dignitaries.

Some of the best students were the par
ent/child duos where traditional roles be
came blurred. Parent and child became a
worthy team, taking turns asking the right
kinds of questions and taking their respect
ive guesses. Each brought a different per
spective to the learning that complimented
each other.

We pitted sutdents against each other
in battles of wit. We set 2 brothers to
work designing a quiz program to see who
could come up with the silliest answers.
We challenged 2 schoolmates to translate a
magazine program for their respective mach-

124

ines. We had tales of ghosts and Reagan
coming from the word processor. Yes, we had
fun, but not at the expense of those who
chose more conventional modes of learning.
The environment was created specifically
to accomodate the range of learning styles.

Enough of anecdotes. Summary please.
There is a cavernous gap between those of
us who pioneer technology and write papers
and those of us who do not understand why
the computer keeps getting their bills
wrong. Our plan was to cross that gap. It
worked. Kids came back for more (volun
tarily) and adults left unafraid of alien
beings. It makes good sense that learning
takes place when the mode of leaMing is
personal and human.

So, why you may ask, is this paper
written in the past tense? The learners
who came, for the most part conquered. But
how do we reach those huddled masses who
are if;Tloring the enemy COMPUTER and hoping
it will go away? How do we convince them
it is safe to give it a try? These questi0ns
we couldn't answer as easily. All the mar
keting analysts in the land of OZ didn't
seem to have the answer. The school is
merging with another center which teaches
business software using a similar indiv
idual approach. The original concept,
teaching microcomputer use with art as a
medium is very powerful. Now, how do-we
make it stay?

USING COMPUTERS TO WRITE AND TO TEACH
WRITING

Donna Mansfield

Much has been written about the use
of computers in art and music,
somewhat less attention has been
directed to the use of computers in
professional writing and the training
of writers. Books on "computers and
writing" tend to be about using a word
processor, or describe how a writer
can adapt to using a computer. This
paper will be about using computers
to write and teach writing, but it will
not be a tutorial on word processing.
Rather, it will be an attempt to make
some sense of the effect computers
have on an individual's writing style
and ultimately, on the product itself.

Some writers resist computers
because they see them as the ultimate
Twentieth Century e1pression of
gimcracky and believe that this
"souless" machine will interfere with
the magic of their art. Others have
taken to computers with the fervor of
the zealous convert; paper is no longer
a word in their vocabulary, hardcopy
is the term of choice.

Within this eiaggerated and e1treme
range are writers who use computers
regularly to write. For them, the
computer is a tool which helps them
to compose and construct documents.
Neither hated, nor loved, the
computer is merely an electronic
pencil

CH2087-5/84/0000/0125$01 .00 © 1984 IEEE
125

Writers in this group use the
computer in different ways. Some
cannot compose at the computer and
continue to write their outlines and
first drafts in longhand. For them, the
computer is an electronic typewriter,
but yet something more, because they
can revise and polish a draft into a
document without needing to retype
each version.

Others use the computer for
everything. They type the outline on
the computer, keep notes on it and
compose the first draft right at the
keyboard.

This reflects the different styles that
writers bring to their business. The
computer facilitates a variety of
styles, The writer can do little at the
keyboard, or everything at the
keyboard.

The ultimate question, of course, is
bow this tool arr ects the final product,
and there seems to be no definitive
answer to that. At this point there
seems to be a ''wish list" of what a
computer could do for a writer or
student of writing. This list includes
some of the most repeated current
"wishes":

-ensure that the writer produces
grammatically correct sentences

-organize documents better
-check style
-write more ·naturally'

We will examine each of these to try
to determine both how a computer
does this and how this affects the
writer and the product.

Chectiaa the writer's aram.m.ar
and spelliq

There are a number of programs that
check for basic grammatical problems
such as subject-predicate agreement,
spelling, punctuation and transistional
phrasing. These are certainly a
convenience for the student or the
writer who has mechanical problems,
but they will not cause a frog to write
like a prince. (Imagine running a
program like that on Fiooegao 's
/l'akeor C/ockFork Orange/.

However, there are some students and
would-be writers who believe that
mechanical problems with the
language prohibit them from putting
anything on paper. This group would
be greatly encouraged by the
presence of a non-judgemental critic.
The computer will help them become
aware of the particular problems they
have with the language so that they
can work on resolvng these
difficulties.

Many professional writers use spelling
and grammar checkers as a
proofreading aid, but this has little
effect on the ultimate product.

We can probably conclude that
programs like this are an aid to the
uncertain and reluctant writer and a
convenience for the professional.
They will enable the writer to at least
produce mechanically correct writing
and perhaps, to pinpoint the areas in
which he has difficulties with the
language.

Or1anir;i111 a Docum.eat Better

One of the biggest problems racing a
writer is how to organize his

126

document. Individual sentences and
paragraphs, as well as the entire
document must be well-organized for
the final product to be successful.

One traditional method for organizing
a paper has been to write important
quotes and points on index cards and
arrange and re-arrange them until a
coherent, logically argued point of
view is expressed. While this method
has some value, the writer is only
arranging subsets of prose, not entire
passages, this system is, in effect, a
relatively sophisticated outlining
procedure. The final document still
may or may not be well organized.

The computer shines at this point in
the writing process because the it
enables the writer to see several
different ways in which the material
can be organized. The computer
facilitates experimentation and also
allows the writer to evaluate the
different structures as he sees them in
print. Seeing differently organized
versions is obviously, quite different
(and better) than guessing what the
final document will look like.

The computer has real potential for
resolving and refining the
organizational problems of writers
and students. And because this is one
of the most important aspects of
writing, the computer here has some
very real benefit for the writer.

Yritia1 ·Naturally·

Starting a project is for most writers
and students the most difficult part of
the writing process. Bven professional
writers report that it is frightening to
took down at a blank piece of paper
knowing that within some deadline he
is supposed to produce a polished,
organized and clever document.

For students of writing, choosing a
topic is itself a slippery process.
"Choose a narrow enough topic to
write about", the teacher says. This
presupposes that the student bas been
able to think of anything at all, and is
probably despairing at the thought of
writing anything longer than two
paragraphs.

Pre-writing prograas

Some educators have designed
computer programs to help students
choose and refine a topic. These are
frequently called "Pre-writing"
programs. Most often they are
designed as dialogues. The student
answers general questions about bis
interests and then the dialogue
concentrates on one interest hoping
that the "discussion" will jog some
likely paper topic in the student's
mind. Once he has settled on a
general topic, the dialogue with the
computer helps him refine the topic
down to some manageable level.

Programs like this get the student
over the often insurmountable hump
of choosing a good topic. The dialogue
with the computer, it is hoped, will
crystallize random thoughts into a
likely topic.

Presently though, the dialogue in
many of these programs is so general
that it is hard to see how much help
they can really be. The student can
type whatever nonsense he chooses
into the machine and the computer
will still respond "Thank you, Johnny.
What interesting projects you have
chosen!" Perhaps, it is just that these
programs are at a very early stage of
development. With a little
refinement, programs like this can be
a real aid to the beginning writer.
And as for its effect on the final
product, well, there can be no final
product without a beginning.

127

Compose proaram.s

There are some writing theorists who
believe that some people are so
blocked by the initial process of
writing that they can't begin at all.
"Compose" programs have emerged as
a solution to that problem.

In this sort of program, the student
sits down at the computer and just
types out the first 100 words that
come into his head without worrying
about grammar, punctuation or
correct word choice. Out of this
"spilling your guts" is supposed to
come a topic and the first step toward
beginning a project.

While this is an interesting idea, there
are two obvious, immediate problems.
The first is that typing for some
people unfamiliar with keyboards of
any sort is often as frustrating as
beginning to write.

I taught a "Technical Writing" class
composed of mainly engineering
students. The class was part of a
research project to measure the effect
of using computers on the students·
feeling towards writing. The
investigator allowed the students a
choice of using the computer or not.
The investigator's hypothesis was that
the students' writing would improve
because they would prefer writing
with computers (to not using
computers). In fact, only two (out of
25) students used the computer; the
rest did assignments in longhand. I
believe that this was because the
students found it very difficult and
unpleasant to type. One could
conclude that the "spilling your guts"
method of writing was a good
beginning technique for writers, but
that it can be done just as well using a
pencil and paper as a computer. In
this case, working with an audience
who found it foreign and unpleasant
to type, using a computer may inhibit

and frustrate students more than it
frees them to write. It seems likely,
that once this group is e1perienced
and comfortable at a keyboard,
programs like this may greatly ease a
writer into his project.

The other problem with this method is
that some people cannot "spill their
guts" on paper. Their natural style is
to polish and write precisely, but then,
one might say that these people do
not need the help of a ""compose""
program to begin.

Conclusion

It may seem taken in toto, that the
computer has a limited effect on the
writer and his final product, but I
believe, in fact, that the computer is a
great tool for the writer because of
the fle1ibility it allows. A writer does
not have to change his style to use a
computer, but rather can use the
computer to enhance his already
established style. If a writer
composes quickly, right at the
keyboard, he can use the grammar
and spelling checkers to correct the
mechanical part of his first draft. If
he is worried about the organization,
he can cut and paste sections in a
variety of different ways until he
finds the one that does the job best.

For some of us, the best part of using
a computer is the speed and ease with
which you can revise and polish. You
simply do not have to begin at the
beginning everytime you want to
change something, you just change
that part and the rest of the document
stays the same.

Educators are still finding their way
with computers. Many of the
educational programs that are being
put on a computer today were
theorectically outdated five years ago,
but some people seem to feel they will

128

have new life if they are put on a
computer (or people will not recognize
the same, deadly drills in a new
format).

I believe that much of the future
success in using computers to write or
to teach writing will come with the
realization that the writer can use the
computer the way he wants it.
Spelling programs are nice, grammar
programs are nice, but what is
wonderful is that you can develop and
refine your style using a computer.
You do not have to adapt to someone
else's style. And there lies much of
the difficulty in writing anyway
. Some teachers believe there is a
right way to write (their's) and a
wrong way to write (your's). I am
not talking about grammar and
spelling, a writer must have these
internalized to succeed in his field.
But I am talking about how you
begin a project, whether to outline or
not, whether to polish all the way
through or only at the end. You can
do whatever is best for you when
you write with a computer, you can
do this with a pencil , too, but you
can do it so much faster and easier

with a computer. Fle1ibility, I
believe is the computer· greatest aid
to a writer.

Animating at Ohio State:
Thoughts on a Graduate Program in Computer Graphics.

William J. Kolomyjec, Ph.D, M.F.A.

Departments of Engineering Graphics and Art Education
The Ohio State University - Columbus, Ohio

Abstract

An evaluation of a state- of- the- art
graduate program in computer graphics/
animation in the Department of Art
Education, The Ohio State University by a
par·ticipating faculty member/ computer
artist. Observations are made concerning
computer· graphics/ animation gr·aduate
programs in general and two courses in the
OSU program specifically. Discussion is
intended to illuminate aspects of providing
computer graphics/ animation instruction at
the post- secondary level.

I n tr- odu c t i on

I was privileged to attend the first
two courses of a three course sequence in
computer- graphics/ animation offered by the
Department of Art Education, The Ohio State
University. These courses are the heart of
a graduate program in computer- gr·aphics/
animation. To add a historical
perspective: The program is the fruit of
much labor by Dr. Charles Csuri, long time
computer artist and arts educator-. Dr-.
Csuri has spent over twenty years in
academics working to make the Ohio State
program one of the finest programs of its
kind in the world. He is also a partner in
Cranston Csuri Productions, a major
commercial computer graphics/ animation
venture.

The academic home of the animation
'group' faculty is the Department of Art
Education but the computer graphics
facility, called The Computer Graphics
Reseach Group <CGRG), falls under- the
office of the Dean of the College of the
Arts. Graduates of the program receive MA
or Ph.D degrees in Art Education. Computer
Science and Engineering students are
affiliated with the program through their
research efforts with the CGRG and may
receive graduate degrees in Computer- and
Information Science <CIS). The program is
unique because both student types utilize
the facility and are constantly inter-acting

CH2087-5/84/0000/0129$01 .00 © 1984 IEEE
129

with each other-. The program is jointly
administered by Dr. Csuri and Dr. Thomas
Linehan. Dr-. Linehan is a professor of Art
Education and the associate director- of the
CGRG. As a testament to the demand and
reputation of this program, last year there
were over- 400 applicants to the Art
Education graduate program in computer
graphics/ animation, 12 wer·e admitted.

This article represents some of my
thoughts based on my experiences as an
observer and participant in the program.
Last academic year, 1983-84, I petitioned
for and was granted a joint (no salary)
appointment in the Department of Art
Education at Ohio State. Although I have a
full-time appointment in the Department of
Engineering Graphics at OSU, I have, for a
number- of years, been an active computer
artist (Kolomyjec 1976, 1981, Peterson
1983). Receiving the appointment in Art
Education has allowed me unique
participation in the program. It has
allowed me to make the transition in
computer art fr-om two dimensional 1o-tatic
imagery to three dimensional computer
graphics/ animation. I am indeed grateful
to my colleagues and friends Drs. Csur-i and
Linehan.

Gener-al Observations

Before I make specific observations
about computer graphics/ animation courses,
I would like to make several general
observations about the subject matter- and
the University. My first observation is
that computer graphics/ aroimation has its
own identity. It is a force that must be
recognized and reckoned with. Over· the
years it has grown as a synthesis from many
traditional programs at the University.
Computer graphics/ animation no longer
belongs exclusively to the sciences or- to
the arts, although those within it must
take care not to forget where its roots
1 ie.

Fifteen years ago you had to be an
engineer or scientist to gain access to the
medium. Today the medium can be found
outside of the technical milieu. More and
more computers are found in education and
art colleges. Granted, most of computing
in these areas is of the microcomputer
variety, nevertheless, I find this very
significant. In fact, using the CGRG as an
example, computer graphics/ animation is
the envy of students of engineering,
computer science and the arts. In many
ways, I feel this gr·aduate program
represents the next level of computer
aesthetic instruction at the post-secondary
level.

Two, ther·e are very few programs in
computer graphics/ animation to be found in
higher education. I doubt that nationwide
there are no more than five bonafide
programs (I know of three, and one is in
Canada). I would define a bonafide program
to be one that offers either an
undergraduate or graduate degree in
computer· graphics/ animation. As a
consequence, very little courseware exists.
Curriculum concerns such as educational
goals and objectives, and content of
instruction are still evolving. Of course,
this tends to frustrate University and
program administrators, which in turn slows
down program development.

Any institution, college or department
that is interested in providing instruction
of computer graphics/ animation will
ultimately have to deal with four major
issues: One, the immense cost of the
medium, i.e., hardware, software etc., and
the issue of where it belongs in the
framework of the institution. Second, when
these primary issues have been resolved and
programs are being put together, curricular
concerns ar·e a new frontier. Just look at
discipline areas, the ingredients of a
successful program, that are encompassed by
computer graphics/ animation: funding and
administration, computer science, various
forms of engineering, aesthetics,
conventional animation, film, video.
Putting together an academic program is a
nightmare of vested interests,
territoriality, and new thought in direct
confrontation with old ideals.

Three, there is a need for qualified
teachers. There are very few faculty who
have the skills, the experience and the
academic credentials to meet traditional
University requirements. Very few
individuals can be found (or even
identified) who embody the synthesis of
science, technology and art who are
qualified to teach computer graphics/
animation and have the qual ificatior,s to be
given graduate school appointments. Very
few qualified individuals are willing to
tolerate the hassles of University reward

130

systems, much less ignore the big money to
be made in this area outside academe. As a
consequence, I fear· very few quality
academic programs in computer· graphics/
animation will be forthcoming from higher·
education for a number of years.

Lastly, there is a wel 1-known need for·
standardization in computer gr·aphics and
teaching systems ought to be built to
conform to these general standards. The
personal computer can help a lot by
providing basic competencies in computer·
graphics. But, no or,e is in agreement
about what type of hardware is better or
what operating system is prefer,able. At
the next level, computer graphics/
animation media requirements go beyond
personal computers. The present trend
would seem to be: 32-bit processors,
megabytes of storage, Unix operating
systems, vector and raster- display
algorithms, mu 1 ti pl e bit frame buffer·s and
some kind of image r-ecor·di ng device, such
as a 16mm camera system with animation
motor-. Never· for·get that any
state-of-the-art computer- graphics/
animation system wi 11 r·equir·e support fr·om
systems pr·ogrammers and maintenance
con tr-acts.

The Courses

At the 1983 Symposium on Small
Computer·s in the Arts a paper was given
that presented information explaining the
hardware configuration, software and the
outline of a course to be given to a
beginning computer animation class around
the Digi ta! 11/23 microcomputer system
(Schweppe, 1983). Twelve enter·ing graduate
students and myself comprised the class.
Below is a summary of the syllabi of the
f i r·st two computer graphics/ animation
courses. It will serve to illuminate
discussion in the remainder- of the article.
The length of each course was ten weeks.

The First Course.

The content of the first course
consisted of: Introduction to Cranston
Center- and the computer facilites. Initial
discussion of the hardware, operating
system and the text editor. Data
construction and the use of data generation
software. Introduction to 'scn_assmblr,'
vector- and raster- scene description
software. Concepts related to three
dimensional primitives and their use.
Introduction to storyboards and animation
principles. Introduction to the 'C'
programming language. Use of 'C' to
produce 'scene files' for the scene
description software. Topics related to
pr·ogr-ammi ng animation.

The Second Course,

The content in the second course
consisted of: Readings in conventional
animation techniques. Intermediate and
advanced tutorials in the text editor and
the 'C' pr·ogrammi ng 1 anguage. Readings
involving three dimensional computer
graphics. Discussion of timing in
animation. Production of more elaborate
storyboards. Progr·amming penci 1 tests of
motion in vector. Hand-building complex
data. Wr· it i ng and producing 'comp! ete'
computer animated sequences. Oral
presentations of assigned reading in a
variety of areas related to computer
graph i cs/ an i mat i on .

Specific Observations

Let it be l{nown that I am c I ear· 1 y
biased, the two term experience I had was
truly wonderful and personally
self-actualizing. I do not wish to be
critical of the Computer Gr·aphics/
Animation Program in the Department of Art
Education at The Ohio State University.
Rather, I prefer to speak is a friendly
witness. Furthermore, I make these
specific observations in light of the
general observations stated earlier,

Observations related to the courses,

To say that the first course was
intensive and fast paced is a slight
understatement. The first task was to
1 earn the i di osyncrasi,• of the computer
system that was used in the cour·se, a PDP
11/23. Initial Ty, this meant learning the
Unix(TM) operating system and a text editor
called 'ed.' Later, we were introduced to
some C program uti 1 i ty softwar·e, fol I owed
by an introduction to the syntax of the
progr·amming language C. Since most
individuals met the two pr·ogramming cour·se
prer~quisites, as a whole, it went fairly

·we! I. · ttel p from C progr·ammi ng ex per· ts was
generally available.

Since three dimensional computer·
graphics is the br·and of computer gr·aphics/
animation taught at OSU (as opposed to two
dimensional paint system animation taught
elsewhere), the data building assignment is
essential. It is my observation that most
artists can •see" in three dimensional
space but very few know how to use the
formal graphical language of engineering
graphics. I think some individuals would
have benefited from a review of
orthographic projection, all would have
benefited from a presentation of the
fundamentals of des.cr-iptive geometr-y and
exer-cises in solving pr-oblems in three
space.

131

The fir-st course was not without
technical problems, but this is to be
expected in any developing cour-se (or
progr·am). Using state-of-the-art softwar-e
is both a blessing and a curse, Data
generation softwar-e is a great idea. It is
intended to eliminate the dr-udger-y of
hand-building data. However, since the
data generation software we wer-e asked to
use was under development it contained some
bugs. Complete segments would not work and
when data was produced, it would not work
in conjunction with other- software. Most
individual~ enjoyed using the softwar-e but
became fr-ustrated when it did not perform
pr-oper-ly. In all fairness to the program,
it is better to wor-k with exper-imental
tools than not to have any tools at all.

On the other· hand, we used some gr·eat,
r-eliable, software, software that was well
suppor-ted and maintained. Further-more,
systems pr-ogr-ammers were able to improve
and enhance software based on our
suggestions. A pr-ogram called scn_assmblr
is particular·ly notewor·thy. It was used to
gener-ate single fr-ames of three dimensional
vector- and raster imagery. (See Schweppe,
1983 for a description of scn_assmblr.)
Scene descriptions wer-e initially generated
in a "local mode" by the keyboar-d input of
a few commands, A beginning exercise of
gener-ating several scene descriptions in
this manner was an excellent way to become
familiar with the syntax and capabilities
of scn_assmbl r.

Scn_assmblr· is a wonder-ful piece of
software and it wor-ked ver-y well. No
individual student had any major problem
with using it, However, the power- of the
scn_assmblr pr-ogr-am (and the under·lying
power of Unix) lies in its ability to
execute scene files. Scene files wer-e the
output of C programs wr-itten to generate a
ser-ies of commands for· scn_assmblr-. (Scene
files were essentially "pr-intf" statements
of scn_assmblr commands.) Under the contr·ol
of a scene file, scn_assmblr could be
programmed to gener·ate an image and signal
the animation motor of a 16mm camera.
Thus; by providing these instr-uctions
repeatedly in our scene files we were able
to create our animations.

Once the mechanics of animation wer-e
understood, the process called animation
had to be addressed. This in itself is an
ar-t. Storyboarding is the procedure we
used to visually describe the intentions of
our- animations. By providing essential
keyframes, as in a comic str-ip, we planned
our ten second sequences.

Ten seconds is not a long time, at
twenty-four fr-ames per- second it amounts to
240 fr-ames of animation. Depending upon
the complexity of the scene a single frame
can take sever a 1 minutes to "render." In

our first animations we were limited to the
use of two "objects." Frames were rendered
in less than a minute of time. Thus a
typical 10 second animation would take
abc,ut 4 hours to film. However, most of us
quickly discovered the notion of
'trade-off' in our second animations. In
my own case, after I was able to get my C
pr·ogram to run, it was taking over 8
minutes per frame to render a scene. Since
the end of the term was approaching, we
were 1 imi ted to seven hour·s of fi Im time
per persor,, my prob! em was to somehow cut a
32 hour animation down to 7 hours. This
was a typical situation and here's how most
of us adjusted. First, you redesign your
three dimensional data (objects) to consist
of the fewest number of faces (polygons)
possible. Also, if you are only going to
see the object from one direction you
remove its back side (like the trick of
using a building facade in Hollywood
movies). The fewer polygons involved, the
faster the display algorithm can render a
scene. Next, you have to double or triple
c 1 i ck (record multi pl es) of a single scene.
Usir,g a combination of these techniques I
was able to cut my filming time down to a
little over 7 hour·s.

In the first course you have to learn
a lot to do a 1 ittle. Much of it is
discovery learning, that is learning by
doing. Also, information must be shared
between individuals, it is impossible for
the instructor· to anticipate every
situation and prepare each individual
student for it. However, good i nstr·uc ti on
is the key to the overall success of the
course. By an organized presentation of
essential materials (concepts and
principles) and supportive material
(reference articles and manuals) the
motivated students can be successful.

It was my opinion that the second
course was a little disappointing in that
it was not as well organized as the first.
This comment is not to be misconstrued as
negative, merely an observation. I prefer
to call it constructive cr·iticism. After· a
very well taught and thoughtful
pr· esen tat i on of mat er· i a 1 i n the f i rs t
course, the second course fell apart at
times. For a variety of reasons, it took
the first couple of weeks to rekindle
overall motivation.

The second course began by
superficially trying to reinforce concepts
learned in the first course. This attempt
should have been better organized. There
seemed to be a big gap between terms. I
feel some attempt should have beer, made to
exploit discoveries made the previous term.
A discussion or· review of each individual
animation from both an aesthetic as well as
technical point of view would have been

132

appropriate. I think programming
techniques themselves could have been
discussed. This could have been a valuable
experience, and it was lost.

In the second term a single animation
assignment was made. Each individual was
given free-reign (all things to be
considered) to produce a complete animatic,n
of unspecified length. Each student was to
conceive, storyboard, program pencil tests
in vector, provide a sound track for and
f i 1 m i n r· aster h i s/h er- an i mat i on . I have
mixed feelings about this, on one hand it's
wonderful to have all this creative
latitude, on the other hand, people
(especially creative people) tend to bite
off a bit more than they can chew. In the
final analysis, this approach worked well
for some and it was deadly for others,
namely those students whose programming
ability got in the way of their creative
undertal(ings.

Other aspects of the second course are
notewor·thy. Assigned r·eadings were an
important component. If nothing else, you
begin to appreciate the range, breadth and
diver·si ty of the know I edge areas that
computer gr·aphics/ animation encompasses.
Equally important were the class
discussions of those readings. Readings
wer·e assigned fr·om far·-r·angi ng areas; from
tr-a.di tional animation (wr·i ting by Thomas,
Johnston and Halas) to articles about other
computer· animation software (MUTAN, Gr amps,
ASAS etc). Also, the pr·oject involving the
design and constr·uction of a complex object
was a useful and practical experience for
many.

Observations not related to the courses.

If you want a quality graduate 'arts'
program then individuals selected to
participate in the progr·am must have
documented aesthetic skills. A careful
scrutiny of portfolios, as well as a
demonstrated ability to perform well in at
least two prer·equisite computer programming
classes forms the minimum standard of
acceptance. Good pr·ograms are made up of
good people. At OSU, it would be fair to
say that selection criteria is heavily
weighted (as it should be) in favor of the
individual who has demonstrated an
aesthetic sensibility. Much credit should
be given to the directors of the progr·am
for this emphasis. The virtue of this
phi 1 osophy was vi sua 11 y evident in the
quality of each student's work at the end
of each quarter·.

On the issue of an undergraduate
program. At Ohio State, the present
thinking about an undergraduate program in
computer aesthetics is that it is an
important but secondary concern. There is

a general concensus of thought that the
primary effort should be to develop a sound
gr·aduate pr·ogr·am. Once in pl ace the
graduate pr·ogram can play a major role in
the development of the under·gr·aduate
pr ogr· am . I fee 1 that th i s i s a 1 og i ca 1 1 y
sound approach, especially when you think
about the resources, particularly of the
human variety, that would be readily
available to the undergraduate program.
Mor·eover, it wou 1 d pr·ovi de the possi bi 1 i ty
as an income source for· graduate students,
and pr·ovide a training gr·ound for· future
pr·ofessor·s of computer aesthetics.

Other observations: When twelve
people are, at times, forced to use one
system due to any number of disastrous
situations, they'd better be able to get
along. This means. that the pr·ogram
administr·ator must go out of his/her own
way to facilitate a friendly working
envir·onment and maximize avenues of
communication. This c,f cour·se goes for·
persons delivering instruction and systems
people. Also, due to the variety of the
skills and backgrounds of the people
affiliated with the program, it is to be
expected that people need to find a common
language. Artists should not be isolated
from computer pr·ogrammers or systems people
and vice versa. Interaction should be
encouraged.

Some final comments about har·dwar·e and
f i 1 m unique to computer· graphics/
animation. Whether· the system is a stand
alone workstation or· a multi-user· system
with s.everal ter·minals, a comfor·table
number per workstation/ terminal is 5 or 6,
ten or· mor·e is toe, many. Individuals can
and should maintain their own files on a
regular basis. Hard disk cartridges,
floppies or tape should be purchased and
used by the students tc, back up their· own
files. Not all terminals need to be
graphics terminals. Entering, editing and
executing practice programs to learn
language syntax can be done on less
expensive alphanumeric terminals, if
possible on a system with non-gr·aphics
per·ipheral s.

Filming can tie up a s:,,stem for· days,
make sur~ the bulk of a class or group's
progr·amming is completed befor·e filming.
Timesharing systems can and do crash vJhi 1 e
someone is filming. This can often be
avoided by not doing program development
and editing on the same machine/ system
while it is being used for filming.
Filming r·equir·es camer·as with animation
motors which can be software activated.
Film requires sources for purchase of
materials and processing, as wel 1 as
editing and projection equipment.

133

Summar·y

Computer· gr·aph i cs/ animation has
emerged as a discipline area and rightly
deserves its own identity. Pr·esently,
there are but a few educational programs to
be found. In general, the major obstacles
that must be over·come by any group, college
or· institution ir,ter·ested in pr·oviding a
computer· gr·aph i cs/ ami nation program are:
cost, curriculum, finding capable faculty,
and an overall lack of computer graphics
standards in terms of both har·dwar·e and
sof twar·e.

The courses under development at The
Ohio State University are unique and serve
as a model to others interested in
developing computer graphics/ animation
pr·ograms. Their gr·adua te cour·ses i r,
computer graphics/ animation are intensive.
Course content initially focuses on the use
of hardware and software. Strong arguments
can be made for taking a three dimensional
approach but perhaps a stronger emphasis on
three dimensional concepts ought to be
inc 1 uded. As competencies ar·e acquired
more traditional instr·uction in programming
techniques and animation principles is
necessary. Quality instruction and
motivated students are essential to the
success of the program.

Computer graphics/ animation
instruction based on a microprocessor is
time consuming and requires inventiveness
on the students' par·t. Perhaps smaller·
assignments with more constraints would
have been better· in the cour·ses to optimize
overall use of the equipment and to provide
a more positive <successful) experience for
all students. A bibliography supported by
a library and a good sized quantity of
reference and resource material is an
essen ti a 1 i ngr·edi en t to the program.

In any developing program there will
be problems with the use of new tools but
the benefit far outweighs the consequences
of not having any tools. Having a parallel
research effort nearby makes all the
difference! Scn_assmblr is an excellent
piece of software for doing computer
gr·aphics/ animation. Unix<TM> and the C
programming language provide a workable
environment. Good organization and
technical support are essential to the
success of the program.

Due mainly to the issues of funding
and institutional politics there will
probably never be more than a few academic
center·s for the instruction of computer
graphics/ animation in the United States.
Deve 1 opmen t of pr· ogr· ams w i 1 1 be ham per ed by
the lack of qualified faculty more so than
by a lack of equipment. Although

associated hardware requirements go beyond
what is presently available in personal
computers, this probably will be less of a
pr·oblem with new developments in har·dwar·e
in the near future.

The graduate program in computer
graphics/ animation in the Depar·tment of
Art Education at The Ohio State University
is an important focal point of
post-secondary instructional activity. In
c.ompu ter aesthetics education it represents
t.he next level. The OSU graduate program
in computer graphics/ animation has been in
place but a couple of years. It is a
progr·am that strives to keep current with
an evolving technology. Thus, the
curriculum has to be flexible and
state-of-the-art. It is growing, but not
without growing pains. Yet, I have watched
it evolve into a better program every year.
I find the program fascinating and I am
grateful to be associated with such a fine
group.

134

References

Kolomyjec, W.J., "The Appeal of Computer
Gr·aphics," Artist and Computer, ed. Ruth
Leavitt. Harmony Press. New York. 1976.

Kolomyjec, W.J., "Thoughts on Computer
Aesthetics arid the Future Role of Smal 1
Computers,• Proceedings, First Symposium
on Small Computers in the Arts,
Philadelphia, PA. 1981,

Peterson, D., Genesis II: Creation and
Recreation with Computers. Reston Publ .,
Reston, VA. pp. 61-64.

Schweppe, M. "Developing a 3-Dimensional
Animation System for the Digital 11/23
Microcomputer System,• Proceedings, 3rd
Symposium on Small Computers in the Arts,
Ph i 1 ade 1 ph i a , PA. , 1983.

Author Index

Dannenberg, F.K. ••••••••••·••••••114
Dannenberg, R.B. ••····••··••••·••114
Del Tito, C.G. •••••••••••••••••••123
Holynski, M. ••••••••••••••••••••• 23
Kaprow, A.
Keith, M. 52

98
Kerlow, r.v 17
Klapholz, J. ••••••••·••••·······• 89
Kolomyjec, w.J ••••..••.•••••••••• 129
Leeman, R. • • • • . • . . • • . • • • • • • • • • • • . 4
Levine , s • • •••••••••••••••••••••• 1 0 3
Lewis, E. 23
Lucas, R. E. • 1

Mansfield, D. •••··•··•••••·•••··•125
McGinnis, J.J. •••••••••••··••·••• 50
Metros, S.E. ·•··•••·••··••••••••· 37
~iller, P.L. •••••••••••••••••••••114
Naumowicz Zacher, C.M. ·•••••••••• 65
Palyka, D.M. ••••••••••••••••••••• 7
Prusinkiewicz, P. •••••••••••••••• 58
Sachter, J.E. •••••••••••••••••••• 42
Shafran, J.K. •••·•••••·•••••·•••• 52
Shortess, G.K. ·•••••••··••••••••• 72
Wagner, A.
Wilson, N.
Wright, W.

.

135

29
76
76

--

PPOCEEDINGS Qlh, 111■pasi~• an s■all
1a■pu1ers 1n lhl! arls

1~X
'ALOG NO. 84CH20817-5

'LafilllT OF CONGRESS NO. !a4- 81880
80CETY 0aDER NO. 610

ffi~
I- ►
Jt-111
a.wUI ~uw
00([

, u111a.

