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Vf'JRODUCTLON 

We would like to introduce these Proceedings of the Fourth Annual 
Symposium on Small Computers in the Arts by relating just a bit of the 
history of the group that organizes it, the Small Computers in the Arts 
Network. This group is committed to the promotion of small computers in 
the arts through its monthly newsletter. SCAN. concerts. the Symposium, 
and informal meetings. 

This current group emerged out of an earlier one. the Personal 
Computer Arts Group which held its first computer arts actiVity, a 
computer music concert. in 1978. The group hoped to provide a forum for 
creative people interesting in using computers in the arts. 

Computer arts were once the province of engineers and ·-iechies ... but 
now is more widespread. Computer art and music have infiltrated the 
popular culture: computer graphics can be seen frequently on television. 
and synthesizers are an accepted part of today·s popular music. This 
Proceedings reflects the universal position or computers in the creative arts 
today. 

We have included articles on computer arts topics: hardware. interface 
issues, software and tool design, aesthetics, education. as well as 
descriptions of gallery and performance pieces. This broad range of 
interests in, and uses of, computers in the arts was what the organizers of 
the Symposium had hoped to encourage and stimulate from their very first 
meeting and we are pleased to present a collection of articles so 
representative of the current interests and applications of the computer in 
the arts. 

To contact the group, please write to: 
The Small Computers in the Arts Network 
B0119'.5-4 
Philadelphia, PA 1910 5 
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WHAr ARE GOOD COMPUTER PICTURES? 

Richard E. Lucas 

Masters Program/ Computer Graphics 

Art Education Department 

Ohio State University 

ABSTRACT 

Within the rapidly growing field of com
puter generated pictures there exist many 
schools of thought concerning an aesthetic 
evaluation of such imagery. Presently, and 
unfortunately, there are no generally rec
o~nized criteria for the qualitive evalua
tion of this art form. 

This paper offers the critic and layman 
alike a more cognizant vantage point from 
which to seek and identify those qualities 
I percieve are inherent to computer art. 

Once upon a time there was a man 
called Onk, He and his Cro-Magnon 
family lived in a cave in central Europe 
during the end of the last glacial 
period, One night, after a hard but 
fruitful day of hunting, Onk returned 
home with a fresh kill and began to draw 
a picture on the cave wall of what he 
had experienced during the hunt, When 
he had finished, Onk's family came 
forward and gazed intently at the 
figures Onk had made, 

Twelve thousand years later a young 
paleontologist named Jill came upon the 
cave during a spelunking expedition, 
Discovering the picture in the cave, 
Jill reached for her camera and 
proceeded to photograph it for further 
study at a later date, She eventually 
wrote a book on her adventures and 
included her photos with the text, 

One day Fred, a computer scientist, 
found the book in his local library and 
checked it out. Intrigued with the 
figures within the photographs, he set 
about designing a program that would 
generate the images by way of computer. 
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After many unsuccessful attempts, Fred 
finally arrived at a solution and made a 
picture on his print-out machine, He 
submitted the image, along with a paper 
he had written on the subject of 
computer pictures, to a national science 
magazine. The magazine published Fred's 
article as well as the picture he had 
generated on his computer. 

Some time afterward a copy of the 
magazine found its way into the hands of 
Margo, who was the curator of a highly 
respected art museum, Upon reading the 
article, Margo became fascinated with 
the technique and irony of Fred's 
picture. She persuaded the museum to 
purchase the original print-out and 
included it in the museum's very next 
exhibition of modern art. As it 
happened, Robert, an art critic for the 
city's newspaper, was invited to the 
opening of the show. Shocked upon 
viewing the print-out that had been 
purchased by Margo from Fred, who was 
inspired by Jill's photograph of Onk's 
drawing, Robert bellowed angrily, "Just 
WHAT in the name of art is the meaning 
of THIS?!", 

Thus is the question of art and 
computer and their relative significance 
within the grander scheme of aesthetic 
analysis, 

As early as 1937, Electronics 
magazine was printing examples of 
oscillographic design based on the 
principles of analytical geometry. 
While these images were generated by a 
somewhat different method than those 
later calculated by analog computers 
they still represent some of the 
earliest attempts at combining 
mathematics and electronic machines in a 
creative endeavor, For over three 
decades, the field of computer imagery 
has been growing, changing, and pushing 



its way into the already complicated 
domain of aesthetic pursuit. It has 
been treated by critics and scholars 
alike as a bastard child; abandoned at 
birth, an orphan of the arts, it 
continues to quest for its true 
identity. Now, on the brink of 
maturity, the computer image is making 
its strongest claim yet to its rightful 
heritage within the kingdom of art. 
Where and why this new method of 
creating images may find its niche in 
the world of aesthetics depends largely 
on our perception of it as a true art 
form. 

Historically, the final realization 
of any new art form reguires the general 
consensus of scholarly ~nalysis as well 
as passing the test of time, the 
ultimate proof of its lasting value. 
The passage of time, of course, takes 
care of itself and with its passing does 
a fairly thorough job of weeding out 
trends and fads. It is the matter of 
analysis, or more particularly, a system 
for evaluating that which delineates 
itself as computer art which represents 
the real issue at hand. By what 
criteria might computer generated 
pictures by assessed as being art in the 
first place, and, if art, then how may 
we appraise the merit of that art? I 
suggest that we begin on familiar ground 
with a criteria for establishing that a 
given image produced by way of computer 
is a definitive work of art. 

Generally, the issue of criteria 
for identifying art fuels much 
discussion and debate. For my purposes, 
however, I would like to offer a 
truncated definition of art that, while 
open to criticism, is my own and one I 
find suitable ■ "Art is that creation 
spawned from acquired knowledge combined 
with intuitive feeling, at once 
informative and emotional in import. 
Its roots lie deep in the imagination of 
man and its face is the intentional 
creation of man's own skilled hands. 
The only function of art is to provide 
an aesthetic experience; serving any 
other purpose distracts it from that 
intent and removes it from the domain of 
art." 

The term "aesthetic experience" in 
the aforementioned definition demands 
further clarification. For this I will 
rely upon a condensed version of an 
interpretation by Professor Harry s. 
Brody of the University of Illinois: 
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"The aesthetic experience is the 
understanding of a work of art 
which, in turn, gives value to 
experience everywhere. This ex
perience provides a clear intent 
of that art, and the intent pro
vides ever new experience of it, 
affecting the viewer with both 
anticipation and fulfillment. 
It is the perception of that 
design containing superior and 
subordinate elements within it, 
and the realization that each 
element makes a valuable contri
bution to the total design." 

As for the critical analysis of 
computer imagery, the basis for 
appropriate criteria rests firmly upon 
the established processes by which 
formal artistic endeavors are measured. 
However, it is necessary to expand the 
boundaries of presently-accepted 
analysis to include characteristics 
unique to computer art. The field of 
computer imagery encompasses a variety 
of applications most of which fall 
outside the purpose of art and are not 
my concern at this time. Therefore, I 
am speaking only about the computer 
picture created for the sake of artistic 
achievement and suggest that there are 
inherent properties of computer art, as 
art, that require some changes in the 
way we evaluate it. 

Critics generally rely upon a 
structured method for analyzing works of 
art that follows a set pattern of 
discussion. The four general categories 
of discourse include description, 
interpretation, evaluation, and theory. 
In the areas of description and 
interpretation, there are often 
overlapping arguments, matters of point 
relevant to both categories. It is 
within these two divisions that certain 
amendments should be affected to better 
evaluate computer art. 

I will try to explain what I mean 
in considering the unique qualities of 
this art form, qualities that justify 
special attention in the field of 
critical analysis. These new 
considerations, of which there are two, 
I will define as the "philosophy of 
approach" and the "application of 
technology." Regarding the first term, 
I am referring to the intellectual 
problem solving process by which the 
artist endeavors to create. Computer 
imagery, from a scientific viewpoint, is 
a creative use of mathematical theory, 
or more simply put, is the science of 
numbers applied to making pictures. In 



this field, the conceptual beginnings of 
an idea and the execution and 
realization of that idea are steeped in 
analytical reasoning involving the 
skillful use of algebra, trigonometry, 
calculus, and geometry. More than mere 
skills, these arithmetic philosophies 
influence the orientation of aesthetic 
sensibilities and, in my opinion, affect 
the artist's insight toward achieving a 
desired image. It is the nature of 
programming, I believe, that the 
creation of art by way of computer is 
inclined toward a unique level of 
conscious decision-making. It is this 
atypical creative process, the 
philosophy of approach, that must be 
investigated within the description and 
interpretation of computer art. 

The second term, "application of 
technology," also represents a condition 
exclusive to this field of art. I am 
referring to the state of hardware and 
the hardware industry responsible for 
providing the means by which this art 
form has grown. To quell any immediate 
protest agaitist this particular point, I 
would argue that there exists an acute 
distinction between the development of 
computer hardware and the development of 
such hardware as that of, say, the 
photographic or movie industry. While 
those two fields of endeavor have been 
supplied with a continuous flow of 
updated equipment to improve image 
quality, that flow represents a series 
of refinements related to long-standing 
principles of the physics of optics. 
Indeed, the situation changes when 
discussing the manner in which the 
computer hardware industry is 
developing. While many of the 
improvements in this field may be 
designated technological refinements, 
the technology itself is in a constant 
state of flux. There are and will 
continue to be quantum leaps in research 
providing the industry with 
revolutionary breakthroughs and 
generating entirely new concepts in the 
development of the hardware used to 
generate computer pictures. This 
seemingly endless transmutation of 
theory affects not only our perceptions 
of this technology but also the way in 
which we apply it to the creation of 
aesthetic imagery. As these fundamental 
changes influence this art form, so must 
it influence our description of and 
interpretation of it. The criteria for 
analysis should include an understanding 
of these changes if we are to fully 
understand the concepts behind the art 
itself. Our perceptions can only remain 
clear if our knowledge of the field is 
complete. 
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To what extent the aforementioned 
considerations influence the steps in 
which computer art is analyzed is the 
responsibility of the critic. I am only 
advising that these factors do play a 
role in the formation of criteria for 
analysis and should not be overlooked in 
the development of those criteria. I am 
not proposing sweeping changes in the 
established system for evaluating art to 
suit some lofty notion about computer 
imagery. Rather, I simply suggest that 
we stretch the boundaries of those 
criteria in specific areas to encompass 
what I feel are characteristics specific 
to the field of this art form. In all 
other respects, I am comfortable using 
the present means by which we assess and 
experience art. Ultimately, it is that 
aesthetic experience we receive from an 
artistic endeavor that determines its 
level of quality. 



ls Consistent Motion Necessary for Good Computer Animation 

Ruedy Leeman 

We can look to the visual media of 
photography, film and video to establish 
some criteria for the evaluation of 
computer generated images. Some 
criteria for good photography are 
interesting subject matter, pleasing 
composition, and color and lighting 
appropriate to the intent of the 
photographer. These are just a few 
criteria used to judge artistic 
photography. The criteria used to judge 
product, commercial, architectural, and 
other service type photography are 
related to the photograph's economic 
effectiveness. The three previously 
mentioned criteria would be used to 
judge service photography but would be 
relative to the customer's purpose 
rather than the photographer's purpose. 
The criteria for good film and video 
would include the criteria for 
photography, consistent motion, an 
interesting plot, supportive music, and 
a coherent visual concept. These 
mentioned criteria would be the basic 
criteria for judging the film and the 
video media. 

Since computer animation uses many 
of the formal features of photography, 
film, and video media, the criteria used 
to judge them are appropriate to judge 
computer generated animation. I believe 
consistent motion to be one of the most 
important criterion for judging computer 
generated animation therefore, I am 
limiting my discussion to the use of 
consistent motion to produce good 
computer generated animation. 

Consistent motion is an important 
criterion for judging the quality of 
computer animation since consistent 
motion will support the overall concept 
of the computer animation by being an 
integral part of the animation. Roget's 
thesaurus describes "consistent" as in 
keeping with one's expectations, logical 
agreement among things or parts, and to 
be compatible or in correspondence. 
This description of "consistent" can 
help define what is meant by "consistent 
motion" in a computer animation. 
Consistent motion is motion that is in 
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keeping with one's expectations, motion 
that has logical agreement among its 
parts within a time frame, and motion 
that is not disturbing or incompatible 
to the mind's eye. Simply stated it is 
motion that is consistent with the 
purpose of the animation. If smooth, 
realistic, or erratic motion are needed 
for the interpretation of the artist's 
concept and the motion is producing the 
correct clues to this interpretation, 
then the motion is consistent. If the 
motion lacks consistency relative to the 
visual concept of the computer 
animation, then the motion is not 
transporting the intended ideas of the 
artist and thus is not successful. For 
example, if a computer animation is to 
be set in the "real world", then the 
motion needs to be consistent with the 
physical rules of the "real world" if it 
is to remain believable to the viewer. 
If the animation is not set in the "real 
world," then the motion need not use the 
rules of the "real world," but a 
consistency of motion is needed to 
interpret the concept of the computer 
animation. To keep the movement 
compatible and believable to the eye in 
a computer animation, an object must not 
jump from one position to another 
position without a smooth transition 
between the two positions unless this 
inconsistency of motion is consistent 
with the visual concept of the computer 
animation. 

Various methods are available to 
establish a smooth transition of an 
object between two locations relative to 
time within a computer animation. This 
can be done by manipulating the object 
or by manipulating the position of the 
viewer. Assuming we manipulate the 
object, the artist can achieve a smooth 
transition between two time dependent 
locations of an object by looking at the 
established pathway before the first 
position and after the second position. 
If the path to the first position is a 
gradual curve and the path from the 
second position is very sharp, then the 
path between the two positions needs to 



begin with a gradual curve from the 
first position and interpolate into a 
sharp curve going through the second 
position, to establish consistent motion 
between the positions. The acceleration 
and deceleration of the object at the 
two positions should also be consistent 
with the acceleration or deceleration of 
the relative positions of the object. 
If the object is decelerating on its way 
to the first position and accelerating 
when leaving the second position, then 
the object needs to interpolate from 
decelerating to accelerating between the 
two positions of the object. The amount 
of curvature of the path and the degree 
of acceleration or deceleration are up 
to the artist as long as the 
acceleration-deceleration and path are 
continuous within a relative radius of 
the location of the object. In this 
way, consistent motion can be 
established by manipulating the object. 

Another method to establish 
consistent motion between two positions 
of an object is to change the position 
of the viewer, in other words, to cut to 
a different view during the position 
change of the object. The second view 
must be from a vantage point that 
displays the object from a completely 
different angle and relative distance to 
the viewer. The separate views indicate 
to the viewer that a change in position 
has taken place and permits the viewer 
to perceive the change without 
confusion. The importance of varying 
the two views can not be overstated. If 
the views are too similar, the object 
will tend to jump to the second position 
during the cut and the viewer will not 
accept the motion as real. 

Movement in a computer generated 
animation needs to simulate the movement 
of objects in the physical world, 
assuming the animation is set in the 
physical world. Not all motion in a 
computer animation, however, needs to 
use a physical formula for motion 
control to be accepted as good 
animation. The physical formula of 
motion can be a starting point for the 

simulation of movement in the "real 
world". The artist needs to be aware of 
the physical properties of objects in 
motion. For example, when an object is 
thrown in the air, it generally moves 
along a parabolic curve, slowing down as 
it reaches the top of the curve, the 
object then begins to accelerate as it 
proceeds downward along the parabolic 
curve. Other physical properties are 
available for harmonic or sine curve 
movement. Whether the artist uses the 
exact physical formula or an 
approximation of the formula to control 
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motion is not important. It is 
important for the viewer of the 
animation to accept the motion to be 
real and believable. In order to insure 
that the motion is real, the artist 
needs to be aware of how objects move in 
the physical world sos/he does not have 
objects doing absurd actions that would 
detract from the appeal and interest of 
the computer generated animation set in 
a real world situation. An animation 
with believable motion is a good vehicle 
to present the artist's concepts and 
ideas. 

Of course, the artist may find it 
necessary to completely break the rules 
of the physical world in his animation 
to illustrate some other imaginary 
world. The motion in the animation 
still needs to be consistent with the 
"imaginary world" the artist is trying 
to portray. For example, an artist 
might establish a world that has 
contradictory motions relative to the 
"real world". A ball could bounce 
higher after each striking of a surface, 
a small object could easily support a 
large object, or an object with short 
transport appendages could go faster for 
longer than an object witft long 
appendages. If the artist established 
this "imaginary world" then he would 
need to be consistent in the motion 
within this world or the artistic 
intentions of the animation would be off 
target. Only if the artist establishes 
a world that goes between an imaginary 
and real world can the motion be totally 

nonsensical to be considered consistent. 
An object within the confines of an 
"imaginary or real world" can possess 
certain powers of motion that are not 
consistent within that world but this 
power of motion can not fluctuate in the 
object if the object is to possess 
consistent motion. For example, 
"Superman" comes from another world, he 
can fly through the air and stop 
locomotives with a single hand. This 
gives the author of the story a 
superhuman vehicle for telling his 
story. If "Superman" was inconsistent 
in his super motion, the title of the 
show would be "The Great American Hero," 
rather then "Superman". To illustrate, 
if "Superman" was flying through the air 
to rescue a damsel in distress and his 
power of flight was intermittent then 
"Superman" would be inconsistent with 
his established character. The audience 
would be forced to view "Superman" as a 
clumsy funny guy like "The Great 
American Hero" rather than the do good 
save the world boy scout character 
previously established. The intent of 
the author's story would go from a light 
drama to comedy. In any case, the 
inconsistency of motion of "Superman" 



would cause the visual concept of the 
story to be something completely 
different from the intent of the author 
or artist. 

In conclusion, without consistent 
motion relative to an "imaginary world" 
or "real world," the concept of the 
artist is attempting to bring forth in a 
computer animation can get lost or 
completely misinterpreted. In general, 
for real world situations if the motion 
in a computer generated animation is not 
noticed, the motion is probably 
believable to the viewer and supportive 
to the plot and concept of the computer 
animation. When the motion is noticed, 
usually something is not believable 
about the movement and the animation at 
the very least is distracting to the 
viewers. With an computer generated 
animation set in an "imaginary world", 
the artist intent determines the degree 

of absurd and irrational 
necessary to transport the 
concepts and ideas. 

motion 
artist's 
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Computer / Art -- De-polarization and Unification 

by 

Duane M. Palyka 

Computer Graphics Lab 
New York Institute of Technology 
Old Westbury, New York 11568 

June, 1984 

ABSTRACT 

An unnatural duality has occurred in 
western society that separates individuals into 
the archetypal roles "artist" and "scientist". 
Computer graphics/art, besides being a 
showcase for this duality, can provide a means 
for resolving it. As an individual well 
grounded in both roles, the author details his 
attempts to integrate these roles in his own 
personality in order to produce unique art
work. 

No one can deny the separation of art 
and science in our western society. This dual
ity is also reflected within the individual (a 
microcosm of the macrocosm) as a right-brain 
/ left-brain polarization. This social separa
tion, emphasizing the scientific side as the 
dominant side, also separates the individual 
from his psyche-- his imagination, his intui
tion, human factors and humanitarian con
cerns relegated by left-brain thinkers to the 
realm of the "irrational". 

According to Jose Arguelles in his book 
The Transformative Vision, " ... the problem 
of specialization did not become globally criti
cal until the development of a mechanistic 
technology in Europe during the late Iron Age. 
Accompanying this development was the split 
of cerebral functions, leading to the creation of 
the two archetypal roles of artist and scientist 
. . . Insofar as each is rooted in only one side of 
the human brain-- the scientist in the left, the 
artist in the right-- each is an incomplete 
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being." 1 

As if separation of man into the "techni
cal" man and the "psyche" man was not 
enough, the former became attached to the 
money /power structure and the latter has had 
to negate his psychic basis in order to survive. 
"Thus, as the culture develops along profit
making lines that stress novelty, gadetry, and 
innovation for the sake of innovation, the 
artist consciously or unconsciously is swept 
along." 2 

Where does this leave the computer 
artist? Which side of his being forms his 
work? Is he an artist begging for tools from a 
technician, or is he a technician making left
brain images? Computer art is a showcase for 
this duality yet it also offers a rare opportun
ity to resolve it. My hope is that the indivi
dual can transcend society's definition of 
scientist and artist and function more freely as 
a human being. Blurring the social roles 
should make it psychologically easier for the 
individual to move between the left and right 
brain hemispheres. 

A passive solution to this problem is to 
dissolve the mechanism that blocks the two. 
In other words, get out of the way and allow it 
to happen. The ego is the mechanism that 
prevents the natural flow between hemi
spheres. Convert the inner parent/child or 
master /slave relationship to one of co
operation. On the one hand, the "rational" 
left-brain cannot do everything itself. And on 

1 Jose A. Argiielles, The Transformative Vision 
(Boulder: Shambbala., 1975), pp. 16-17. 

2Argiielles, p. 16. 



the other, when the artist swings the other 
way, there is usually equivalent resistance to 
getting involved with technical tasks such as 
programming. Perhaps future generations of 
artists who grow up programming computers 
and making computer art will have less rigid 
brain mappings than we have. Perhaps too, 
less rigid technical tools will replace program
ming and make the flow between hemispheres 
easier. In any case, we should really be 
interested in developing the whole man, not 
partials on either side. 

Currently computer graphics/art 
exemplifies this duality and dominance even 
further by tying the creation of images to 
commercial production, bringing with it the 
superficial gadetry and the "innovation for the 
sake of innovation" mentioned above. Under 
commercial emphasis, computer graphic tool 
development dominates and brings along with 
it competition and secrecy. The computers 
used now are expensive and the artist must 
create on the scientists' terms just to get 
access to the equipment. Furthermore, if the 
artist is not a programmer, he must depend 
upon the scientist to provide the software 
tools for him to realize his esthetic-- tools 
which the scientist thinks that the artist 
should have based upon what he sees as artis
tic tools of the past. 

One of the paradigms of computer 
graphics/art is the desire and competition to 
design tools for generating the most "realistic" 
images. This attitude revolves around the 
scientist's myopic view of art seen only from 
the technical side. An artist's work is a bal
ance of "psyche" and "techne", but it is the 
latter aspect that the scientist relates to and 
identifies with "art". "Both art and science 
rely on technique; the difference between them 
is in the degree of contact with psyche." 3 

From this viewpoint, the scientist-become
"artist" deals with spaces that have 
mathematically correct perspective with 
detailed and rigid object definitions. He 
becomes concerned with issues of how to make 
clouds, trees, and mountains look "accurate", 
without considering that this could be a sub
jective determination. It appears to him that 
the "jaggies", the staircasing effect inherent in 
digital images, serve no esthetic purpose but 
interfere with the technical (and, hence, 

3Argiielles, p. 94. 

8 

commercial) conception of visual reality. 
Thus, he forces art to be pulled further from 
the psyche and into the linear time/space 
left-brain domain. To be fair, it is a left
brain-based society which demands these tools 
and the scientist is fulfilling its needs for com
petitive commercial and military applications. 
It's frightening to think of videogames as 
being a training ground to kill people, but mil
itary simulators are computer graphics pro
ducts not unlike videogames. 

It's easy enough to point out deficiencies, 
but it is another matter to show positive alter
natives. My own work has been concerned 
with resolving these issues, and I would like to 
share with you my personal exploration 
towards right/left brain unification and 
art/psyche involvement. 

In all of my computer art work to date, I 
have done my own programming in order to 
merge my esthetics into the software. In the 
main body of art works I wish to discuss, I 
accept standard concepts of object-oriented 
computer graphics as my basis-- e.g., solids of 
revolution, polygon tilers, B-spline patches, 
and polygonal databases. Object-oriented 
computer graphics involves tools designed to 
build objects, not spaces. Spaces incorporat
ing objects made with these left-brain tools 
usually have the feeling that the elements fit 
together arbitrarily. This is more so in spaces 
constructed by engineers than by artists since 
artists are sometimes able to transcend the 
design limitations of the engineer's tools. In 
any case, a spatially-oriented computer graph
ics tool set would promote better holistic 
thinking-- a right-brain function in the right
brain realm of visual spaces. Later, I shall dis
cuss how spatial tool design relates to my 
work. 

Using these programming concepts, I 
proceeded to design and build instances of 
these tools with particular orientation towards 
my artistic sensibilities. For example, I accept 
the notion that programming accidents and 
complex interaction sometimes contribute to 
interesting visual effects that may relate to my 
esthetic. I try to be open to creative associa
tions. I then use these tools to build imagery 
based upon poetic mathematical concepts and 
my own psychic sense, which I describe as sur
realistic in its patterns of free association. 
Allowing mathematical/programming ideas to 
merge with visual ones, I attempt to find a 



unique form of personal right/left hemisphere 
expression-- an expression controlled and 
sometimes hampered by my initial premise or 
starting with traditional left-brained computer 
graphics tools. The final work still reflects a 
stiff, object--oriented space with 
mathematically-calculated light sources, shad
ing, and perspective. Frankly, the design or 
the original computer graphic tools is strong 
and it is hard to resist using them as a start-
ing point. It is much harder to design per
sonal tools or equivalent strength completely 
on my own. 

In describing my work, I concentrate on 
artistic esthetic ideas and artistic technical 
ideas that are unique to my work, and I 
minimize the description or general computer 
graphics tools, which can be found elsewhere. 
Consequently, if the reader is not familiar 
with general computer graphics tools, I refer 
him to Andrew Glassner's recently-published 
book Computer Graphics User's Guide and 
Judy Sachter's Master of Arts thesis for Ohio 
State University entitled "The Basic Concepts 
of Three-Dimensional Computer Graphics for 
Artists". Both are oriented towards the artist 
as user. Ms. Sachter's thesis hopefully will be 
coming out in book form in the near future. 

In thinking about three-dimensional 
computer graphics, one must deal with two 
related spaces: one is the two-dimensional 
visual space in which the work is seen, and the 
other is the multi-dimensional mathematical 
space that contains the numeric information 
and algorithmic schemes to generate the 
work. 4 The visual space, being projected from 
the mathematical space, can be thought of as 
a certain way of looking at the latter space. 
The rendering technique involved takes a 
snapshot from one point of view of a more 
complete and complicated space that really 
has many points of view. This relationship of 
spaces is similar to the esoteric idea that our 
own view of experiential reality is being pro
jected for us by a more fundamental and com
plete "greater reality"; and, as our conscious
ness grows, we are likely to experience more of 
the "greater reality" and develop greater 
understanding of how the lesser realities are 
projected from it and by it. Hence, in greater 
realization, we are able to free ourselves from 

4Judy E. Sachter, "The Basic Concepts of Three
Dimensional Computer Graphics for Artists" (unpublished 
M.A. thesis, The Ohio State University, 1984), p. 11. 
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individual lire patterns. 

Likewise, in computer graphics, the more 
we understand the mathematical reality 
behind the images, the more we are able to 
understand the projection of the individual 
images and to see them in a different light. 
Our added awareness frees us from old pat
terns or thinking about images. Similarly, 
once we see how software systems logically 
work, we can free ourselves from being stuck 
to one particular software system. Instead of 
jumping around the branches or a tree trying 
to familiarize ourselves with each new branch, 
we should ground ourselves in the roots and 
see where the branches come from. 

The artwork that I'm presenting has 
esthetic considerations that include more than 
"meets the eye". Although one can appreciate 
it on that level alone, if one reaches into the 
"greater reality" of the work, one gets more 
from it. This is like understanding the formal 
logical organization or Rembrandt's "Polish 
Rider" (The Frick Collection, N.Y., 1655) or 
the symbolic meaning within Robert Campin's 
masterpiece "The Annunciation" (The Metro
politan Museum of Art, N.Y., about 1425-28). 
Except for its deeper mathematical basis, this 
method of relating an artwork to its "greater 
reality" is merely an extension of what artists, 
art historians, and art lovers normally do with 
works of art. 

Figure 1. "Space Carrots". 



As in nature, my three-dimensional com
puter artwork has its evolutionary roots based 
in the "egg". Various parts of the work 
"Space Carrots" (see figure 1) are "mathemati
cal eggs" formed using the concept of "solid of 
revolution". Although the term "solid of revo
lution" may he inferred from the following 
text, please refer to Sachter for a better 
description.6 A vector that forms the radius of 
a circle in the "X-Z" mathematical plane 
grows larger as it moves downward in the "Y" 
direction towards the center of the form, and 
then grows gradually smaller again towards 
the bottom to form an egg. The varying 
radius, using the vertical egg-like curve to 
determine its length, changes as it lofts circles 
in the "XZ" plane. In mathematical space, 
the circles themselves are really nothing hut 
(x,y ,z) point calculations that are deposited 
equidistantly from each other at the edge of 
the radius which spins in a circular path. 
Looking at it from the top down, each set of 
equidistant points vaguely resembles a circle. 
To give our egg visual substance, we use our 
calculated points to attach h-spline patches to 
our etheric form much as a roofer would use 
nails to attach shingles to a curved house.6 

Even though the use of patches may 
seem to he over-kill to the technically
sophisticated reader for such simple "egg
carrots", they are indispensable for generating 
the green, amorphous forms in "Space Car
rots". These forms are generated simply by 
adding some restrained random numbers to 
the radius lengths that form the egg. 

Although I could generate a wide variety 
of interesting forms by varying my egg radii 
randomly, I decided to utilize solids of revolu-
tion for more con trolled sculpting effects. 7 

However, instead of using multiple curves to 
define the object, I used a table-lookup tech
nique similar to that used in texture mapping 
and hump mapping.8 In a frame buffer other 
than the rendering buffer, I drew an unusual 
picture of my face using conventional paint 
system techniques (see figure 2). The 
drawing's uniqueness comes from the fact that 

5sachter, p. 19. 
6Andrew S. Glassner, Computer Graphics User's 

Guide (Indianapolis: Howard W. Sams & Co., Inc., 1984), 
p. 130. 

7Sachter, p. 19. 

8Glassner, pp. 101-104. 
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Figure 2. "Face". 

during its execution I visualized the drawing 
as an unwrapped soup-can label to he wrapped 
around an egg. I used my imagination to visu
alize my head as an egg with shades of light 
and dark representing the spatial differences 
between my head and the egg. In the "null" 
case, if I had presented to my rendering a:Igo
rithm a totally gray drawing in place of 
"Face", it would have sculpted a faceless 
Humpty Dumpty. 

In generating the egg, each time the 
radius required a new length, instead of 
adding some random number to it the pro
gram would add to it a number from the 
frame buffer which contained the face draw
ing. If the number showed white in the "face 
drawing" buffer, the radius would move out 
the furthest, and if the number showed black, 
the radius would shrink towards the center of 
the egg.9 As you can see by the resultant 
"Egghead" picture (see figure 3), the experi
ment was not as successful as one would have 
hoped. My final result resembles what I look 
like in someone else's reality projection hut 
not what I look like in my own! Actually, the 
problems I encountered with this experiment 
stem from two sources: (1) my preconditioning 
as an artist in seeing light and shadows in 
figure drawing and (2) the grossness of the 
tools I'd developed to do the task. That 
taught me not to get caught up in the above-

9Glassner, p. 161. 



mentioned "realistic rendering" paradigm! 

Notice that I incorporated the Z-buffer 
into the lower half of the picture as part of 
the image. A Z-buffer is an extra frame buffer 
or two used to hold the picture's depth infor
mation in order to allow a programming 
mechanism to resolve depth overlap and inter
section on a pixel-by-pixel basis. This 
mechanism determines how much of the image 
gets projected from the multi-dimensional 
"greater reality" to the two-dimensional frame 
buffer space. 10 Actually, exotic uses of the Z
buffer adds another chance component to the 
scheme of things. Since I love to incorporate 
chance factors into my artwork, I use the Z
buffer extensively either visibly or behind the 
scenes throughout my work. 

"Warm-Cool One" (figure 4) is just such 
an example of one of my "behind-the-scenes" 
use of a Z-buffer. This picture was created 
using both the finished two-dimensional frame 
buffer image of "Space Carrots" and its saved 
Z-buffer. On a pixel-by-pixel basis, I used the 
following procedure to modify the image: (1) 
First, I separated the pixel's color component 
from its intensity component. This was fairly 
easy since using an 8-bit pixel, I defined the 
intensity to be the lower 5 bits and the color 
to be the upper 3 bits. Here, I had 8 different 
colors to work with and 32 different intensities 

Figure 3. "Egghead". 

10Glassner, p. 169. 
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Figure 4. "Warm-Cool One". 

for each color. (2) Then, I picked out the 
pixel's associated Z-buffer value from the same 
pixel position in the saved Z-buffer. (3) Using 
this value as an index into a red/green pepper
mint scheme which I had mapped onto "Z 
depth", I accordingly changed the pixel's color 
value. ( 4) Finally, keeping the old intensity 
with the new color, I put the new pixel into 
the old pixel's frame buffer position. 

This scheme actually started out as an 
attempt to make use of artistic warm/cool 
space to exaggerate depth cues-- a trick which 
makes a two-dimensional picture look more 
three-dimensional. Later pictures along this 
line were more successful but were less visu
ally interesting than this one. In my work, I 
have the general attitude that the visual 
image takes precedence over the concept 
behind it. 

Two of the most powerful tools designed 
for three-dimensional computer graphics are 
the "polygon tiler" ( or "polygon renderer") 
and the use of a three-dimensional points
polygon database to generate images. In the 
"greater reality", the points-polygon database 
contains numeric information on how to 
render a particular complex form, and the 
polygon tiler understands this format and 
renders a view of the form in the visual 
frame-buffer space. I shall keep the descrip
tion brief here and again refer the reader to 
longer descriptions in both the Sachter and 
Glassner books. 



I developed the polygon tiler which I 
used extensively in the next set of works to 
reflect my own esthetic interests. I actually 
used it for the first time back in "Space Car
rots". Notice, in "Space Carrots", the ran
domly formed beam-like form that intersects 
the space. The sides of the beam, with accom
panying aliasing artifacts, were rendered by 
the tiler. 

In "Figure with Aura and Guards" 
(figure 5), we have three apparent instances, or 
views, of a female figure defined as a points
polygon database and rendered using my 
polygon tiler. I say "apparent instances" 
because the central form in the picture is actu
ally composed of several exploded instances of 
the figure which are overlayed with various 
degrees of transparency. The form explosion 
occurs along the vector direction of the 
polygon normals, calculated at each vertex of 
polygonal intersection. In this case, each 
"normal vector" at a particular vertex is the 
sum of vectors perpendicular to the surface of 
every polygon which intersect at that vertex. 11 

If the normals were rendered along with the 
polygons, the figure would look like a porcu
pine. However, the normals are like ghosts in 
that they are not rendered from the "greater 
reality" into the preceived reality, but may 
affect it nonetheless. 

Figure 5. "Figure with Aura and Guards". 

11Glassner, p. 68. 
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In another behind-the-scenes manuever, I 
have included the "egg" concept as part of the 
"greater reality" of "Figure with Aura and 
Guards". The texture on the surface of the 
figures is a reflection of the egg's presence. 
The subtle mechanism behind the presence of 
the egg needs further clarification: The egg, in 
this case, is a sphere with infinite radius whose 
center is the center of the female database. 
Instances of the picture's Z-buffer are ran
domly placed on the surface of this sphere as 
part of the following algorithm: Rays from the 
figure emanate along the normal vectors away 
from th·e figure and towards the sphere's sur
face. They retrieve Z-buffer patterns and 
colors to be put back on the surface of the 
figure. 

Here, we have a dance which is an 
interaction between the Z-buffer mapped on 
the surface of the invisible egg and the figure 
being rendered at the egg's center. A change 
in one affects the other. As in a dance of 
subatomic particles, complex time-space 
interactions occur which make events appear 
unpredictable. 

In addition, the figure's dance with the 
egg is symbolized by her auric emanations 
towards the egg. In fact, the central figure 
turned out to be so delicate that I just had to 
put two guards in the picture to protect her. 

The remaining pictures in this series 
were produced by the same algorithmic 

Figure 6. "Sparkling Giacometti Sequence". 



mechanisms used in the previous ones, and all 
contain the dance with the egg. "Sparkling 
Giacometti Sequence" (figure 6) reflects the 
use of the "augmented" transparency mode of 
my polygon tiler. The "augmented tran
sparency mode" renders transparent polygons 
with sparkles at the edges of the polygons. 
The "sparkles" really are the result of a bug, 
or programming mistake, that occurred during 
the implementation of the transparency 
feature. Here is a case where a mistake in the 
code became a "feature" of the program. I 
kept the bug as part of the program and 
worked around it to complete the tiler's tran
sparency option. 

The four works "Sparkling Giacometti 
Sequence", "Tall Movement" (figure 7), 
"Stretched Movement" (figure 8), and 
"Stretched Movement Zoomed" (figure 9) are 
products of a certain spatial tension pro
grammed into their "greater reality". This 
spatial tension causes distortions to figure 
instances which are placed in a spatial line 
with each other. The distortion occurs along 
the direction of the normal component which 
is in line with the other figures. However, the 
end figures remain unaffected when rendered. 
The distortion also varies from figure to figure 
based upon where a figure is placed relative to 
the others. 

"Picasso Two" (figure 10) is the pinnacle 
of this series. It is the product of the complex 
interaction of every element mentioned so far. 
In this work, the effects created by chance, 
grouped with those created by unpredictably 
complex algorithmic interaction, form a visual 
tension when played against the solid 
definition of the figure. This tension in visual 
space is similar to that which I find in many of 
Picasso's paintings. 

Spacial tension is also an integral com
ponent of the next series I attempted-- a series 
much different from the previous one. These 
new images are the product of a unique 
attempt to create a form-generating space that 
resembles, in some sense, our own real star
filled "outer" space. This new visual space 
has stars in it like in the cosmic space. They 
create gravitational forces on objects which 
enter the space. However, that's where the 
similarities end. The visual space differs from 
"outer" space in that these stars have no mass 
and their interacting gravitational forces actu
ally create visual forms. Within each of these 
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Figure 7. "Tall Movement". 

Figure 8. "Stretched Movement". 

Figure 9. "Stretched Movement Zoomed". 



Figure 10. "Picasso Two". 

contained spaces are placed several random 
points, or stars, that exert gravitational forces 
upon the space. A blobby form is then gen
erated in their midst by the forces created by 
the stars. "Space One" (figure 11) is a six-by
six matrix of star spaces with their associated 
blobby forms. "Tex Blob" (figure 12) is one of 
those space blobs with patterns texture
mapped onto its surface. And "Warm-Cool 
One Dipped into Gravity Space" (figure 13) is 
"Warm-Cool One" dipped into one of these 
gravity spaces. Finally, "Folded Space" 
(figure 14)-- a freer, more complex result-- is 
composed of overlapping spaces that create 
blobby forms which ripple away from their 
centers. 

Earlier, we mentioned the need to create 
more space-oriented computer graphics tools 
for more right-brained, holistic methods or 
design. In some sense, this last series involves 
a primitive attempt to do just that. Please do 
not infer that the visual spaces should resem
ble our cosmic space-- that was simply part of 
its artistic implementation- but rather, the 
merit of its artist-tool design lies in its facility 
for designing a visual space which, in turn, 
controls the design and placement or objects 
within it. This reverses the usual method or 
spatial design within which objects are arbi
trarily placed together. Philosophically, the 
objects in the real "greater reality" are much 
more related than what our senses normally 
lead us to believe. My artwork attempts to 
suggest that relationship. I would prefer gen
eral artistic tools that do the same. 
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Figure 11. "Space One". 

Figure 12. "Tex Blob". 

Figure 13. "Warm-Cool One Dipped 
into Gravity Space". 



Figure 14. "Folded Space". 

After this, for my next work I chose a 
medium more flexible for realizing psyche/art 
involvement with less emphasis on mathemat
ics. I used traditional animation techniques 
with a computer production base. This 22-
minute piece called "Living Above the Mouse's 
Ear" reveals psychic permutations which 
create their own dreamlike spaces- typical of 
my conventional painting concerns. 

All of my artworks, whether computer
generated or conventional, have a strong sur
realistic basis. Working in conditions condu
cive to a psychic flow causes various interest
ing images and ideas to emerge on both cons
cious and unconscious levels. Here one can 
relate the creative processes and visual pro
ducts to theories based upon manifestations of 
the numinous element, or the collective pre
conscious. J. C. Gowan defines "preconscious" 
as " ... that aspect of the psyche, sometimes, 
not always, available to the ego. Preconscious 
insights tend to be expressed through right-
hemisphere imagery." 12 Gowan's "collective 
preconscious" concept is similar to the "collec
tive unconscious" concept of Carl Jung except 
that its definition is more flexible towards 
"becoming conscious". 

Making computer art through the design 
and/or modification of programming tools 
requires great efforts in time and energy. Just 

12 John Curtis Gowan, Operations of Increasing 
Order (Westlake Village, California: By the Author, 1426 
Southwind Circle, 1980), p. xvi. 
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to develop the programming proficiency neces
sary to work this way, I passed up the oppor
tunity to make a lot of conventional art. 
However, computers are seductive and fun; I 
enjoy programming. Time and energy permit
ting, programming by day and painting by 
night gives a pleasant right-brain/left-brain 
balance to my life. It even gives me a means 
of making a living without compromising my 
art. However, you will notice that these last 
two statements are indicative of the social 
aspect of the problem. I feel that resolving 
this duality on an individual basis is impor
tant enough to warrant the effort. Such efforts 
further the development of consciousness, both 
individual and collective. 
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ABSTRACT 

Illusion and Technology reviews 
the ways in which technology, including 
computer technology, has influenced 
imaging procedures throughout history. 
The two main objectives of this paper are 
to present a methodology for analyzing and 
classifying computer generated images 
according to their technical attributes, 
and to encourage an awareness of the 
aesthetic issues that exist in their 
realm. 

Categories: Imaging technologies, 
tools and methods, visual language, 
coaputer generated images, relational 
database. 

1. Tl-£ EVOLUTION OF IMABING TECHNOLOBIES 

Technology in general can be 
defined as a set of tools and methods 
designed for solving a specific task. 
Imaging technologies are the set of tools 
and methods designed for the creation of 
images. Imaging tools are the physical 
instruments (guch as pencils, brushes or 
computers> that can be used to perform a 
specific operation. Imaging methods are 
the set of procedures and operations <such 
as draw, erase, color, move) that describe 
the way in which the tools should be used 
in order to achieve the desired results. 

Imaging technologies have been a 
critical instrument in the development of 
human conciousness and the communication 
process. Nan has created images since the 
earliest stages of his life on earth. 
Visual images, especially those which 
represent reality, have always had a 
magical power of evocation: they can 
create illusions of time and space. The 
early examples of visual communication 
were highly symbolic. Nevertheless, some 
of them like the ancient pictograms 
created by prehistoric civilizations 
evoked reality with such power that they 
could substitute it. 
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The visual representation of reality 
and ideas is based on a set of visual 
elements and operations. The creation of 
effective illusions extends into the 
knowledge and control of the imaging tools 
and the visual language. Successful 
imaging operations transform images into 
powerful icon6 and objects into mythical 
symbols. 

During the Rennaisance the medieval 
barriers that prohibited the 
representation of the material world were 
broken with logical thought. Man 
rediscovered the beauty of nature and 
embarked in a major effort ta develop the 
technolgy for representing the world. 
Rennaissance artists, not satisfied with a 
<typically gothic) symbolic representation 
of the world, developed a science of 
painting which contained methods and 
rules to represent all the subtleties of 
the visual world in a measurable way. 

The methods developed during the 
Rennaissance for representing reality 
remained in use for several centuries. 
But some imaging technologies developed 
after them affected imaging techniques and 
theories. For example, the development of 
photographic techniques that captured 
reality without direct human intervention 
thrust painters into the exploration of 
alternate methods for representing reality 
and even for creating non representational 
images. Years later, the visual 
flexibility of film and television 
enriched the imaging environment with 
movement and time. Today the computer 
offers new creative alternatives. A more 
detailed description of the evolution of 
imaging technologies can be found in 
reference <4>. 

After centuries of innovation in the 
imaging field, visual creators posses not 
only a collection of imaging tools and 
methods but also a structured visual 
language with an extense vocabulary and 
precise rules. Visual language, just like 
written language, has a syntax as well as 
discrete elements and operations. 
Mastering the visual language results in 
the ability to build precise and effective 
visual co~unication. 



The visual language can be 
implemented in different technologies. 
And each technology enriches the visual 
language by adding new imaging techniques 
and a vocabulary of its own. The visual 
language can be implemented today in the 
computer, the latest technological 
innovation in the field of imagemaking. 

2. THE EVOLUTION OF COMPUTER IMAGING 
TECHNIQUES 

The first computer imaging systems 
were developed in the late fifties. Most 
of those systems were based on large 
computers, ran in non-interactive modes 
and displayed visual information on 
monochrome vector displays. Such systems 
were used to visualize and represent 
objects and situations in different 
applications including command and control 
systems, simulation of real time flight 
and physics experiments, medical diagnosis 
and design and manufacturing. The 
Sketchpad lJrawing System developed by 
Ivan Sutherland in the early Sixties 
marked the beginning of interactive 
computer graphics. 

During the sixties several hidden 
surface algorithms were developed and 
implemented on real time color surface 
shaded animation systems. The first 
graphics oriented languages were developed 
during this period and, also, image 
processing techniques (such as those 
developed at the Jet Propulsion Laboratory 
for NASA's Space Program) were 
incorporated to computer imaging systems. 

The seventies and eighties have 
witnessed the development of specialized 
graphics hardware and a large variety of 
realistic rendering algorithms which are 
of special importance to the consolidation 
of the visual language of computer 
generated images. 

3. REALISM IN COMPUTER GENERATED IMAGES 

The visual language and creative 
values of early computer generated images 
were somehow determined by technical 
limitations. But the development of 
computer technology (both hardware and 
software} as well as the expansion of the 
creative goals and standars lead to the 
development and consolidation of a visual 
language unique to computer generated 
images. 

Various strategies have been devised 
to implement realism in computer generated 
images, and each one of them generates 
very different results. Rendering 
algorithms, data representation techniques 
and image resolutions are three important 
factors that affect the style and quality 
of computer generated images. For 
example, when four different computer 
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animation production companies created 
images for the movie Tron (1982} each 
one of them stamped their own style and 
visual quality to the sequences each one 
of them produced. 

It is important to understand the 
technology behind computer generated 
images in order to understand their true 
value and meaning. Since the sixties 
various methods have been devised for the 
creation of realistic computer generated 
images and some of them are listed in the 
following paragraphs. A detailed 
description of each method is beyond the 
scope of this paper, but detailed 
technical descriptions and an extensive 
bibliography can be found in references 
(2} and (6). 

We find different imaging methods in 
each of the stages of the process for 
building a computer generated image. Such 
methods can be divided in object 
definition procedures, hidden surface 
removal algorithms, shading models, and 
surface definition procedures. 

Object definition procedures include 
blueprint digitization, coplanar 
elevations, and mathematical or procedural 
descriptions. Early mathematical 
descriptions were based on geometrical 
primitives, more recent methods include 
regular and irregular polygon meshes, 
curved surfaces and fractal surfa.ces. 

Methods for the removal of hidden 
surfaces in polygon meshes include object 
space algorithms such as Warnock's area 
subdivision (1969}, Watkins' scan line 
(1970), and Newell's depth sort (1972). 
Improvements to these methods have been 
made by several authors during the 
seventies and eighties. Image space 
algorithms were first sketched by Appel 
(1967}, and developed later by Whitted 
11980). 

Methods for hidden line removal in 
curved quadratic surfaces (sphere, capped 
cone, ellipsoid, etc.) or parametric 
bicubic patches of different orders by 
were developed by Catmull (1975), Blinn 
(1978) and Whitted (1980). . 

Early shading algorithms based on 
Lambert's cosine law determined only 
visible surfaces with diffu-e reflection. 
Warnock (1969) introduced a reflection 
model that took into account the object 
color and the specular component of light 
(highlights}. Gouraud (1971) developed a 
method of normal interpolation to generate 
smoothly curved surfaces. Phong (1973} 
developed a reflection model that included 
diffuse and specular terms. A model of 
reflecting surfaces developed by Torrance 
and Sparrow (1967} was based on 
illumination engineering theory, and was 
implemented by Blinn (1977, 1978}. Cook 
and Torrance (1982} developed a method for 
describing the optical charachteristics of 
a material and, therefore, for rendering 
more complex and subtle images. 



Several shadow algorithms have been 
reviewed by Crow (1977). Transparencies 
were made possible by the ray tracing 
procedur~s developed by Appel (1967), The 
Mathematical Applications Group (1968), 
and improved by Kay (1979), Whitted and 
Weimer (1980) and Hall (1983). 

The creation of visual textures with 
mapping procedures was introduc'ed by 
Catmull (1974) and improved by Blinn and 
Newell (1976). Normal perturbation 
procedures were elaborated by Blinn (1978) 
and developed by Haruyama and Barsky 
(1984). The creation of spatial textures 
has been executed with fractal procedures 
by Fourier and Carpenter (1981) and Norton 
(1982), and with particle systems 
procedures by Reeves ( 1983) • 

4. A HISTORICAL ANALOGY 

The search for creating realistic 
computer images has many parallels with 
the efforts made during the Rennaisance 
for the realistic representation of 
reality. During the Rennaissance, artists 
and technicians developed the technology 
needed to represent reality and to surpass 
the threshold of perception. Rennaisance 
artists, for example, built pigments, 
oil-based aglutinants and refined the 
rules of representation. 

Many of the central topics in 
Rennaissance art theories (such as volume, 
lighting, texture and perspective) are 
some of the central topics in today's 
research for the generation of realistic 
images with computers. Today, though, 
research is conducted with a different 
technology. Computers allow for the 
numerical description of images in three 
dimensi'onal environments and for their 
a.utomatic transformation into a two 
dimensional environment. 

The imaging techniques employed by 
different artists or schools (during the 
Rennaissance and today) mark the style of 
their works. Styles of pictorial 
representation of reality have evolved 
with the imaging technologies and 
stylistic differences can be found by 
analizing the technical procedures for 
creating images. 

Today we can group the images 
produced by Rennaisance artists based on 
stylistic considerations that arise from 
.technical procedures. For example, the 
Italian Rennaissance painting can be 
defined in terms of four major schools or 
styles according to the imaging tools and 
techniques they employed. Most of the 
early works dealt with developing the 
synta>: rules and the basic operations of 
the visual language, while later works 
dealt with structuring those elements and 
symbols to depict complex scenes and 
stories. A brief description based on the 
technical achievements of the four major 

19 

Italian Rennaissance painting schools is 
suggested in the following paragraphs. 

The Florentine School painters (i.e. 
Giotto, Fra Angelico, Boticelli, Leonardo 
da Vinci, Michelangelo) were the masters 
of form and movement. They simulated 
reality and represented the surface of 
things with an almost scientific fidelity. 
They elaborated the principles of 
perspective, studied the effects of light 
on volumes and portrayed people with a 
high degree of likeness and expression. 
In later years, based on direct 
observation and study of human anatomy, 
they mastered methods to represent the 
human nude in motion. 

The invention of a perspective based 
on mathematical was first sketched by 
Brunelleschi and later codified and 
formulated by Leon Battista Alberti in his 
work Della Pittura published in 1457. 
Leonardo da Vinci introduced at the end of 
the sixteenth century the aerial 
perspective or simulation of the 
atmosferic phenomenon by which distant 
forms loose the sharp definition of their 
edges and appear dimmer and less distinct 
to the observer. 

Florentine artists considered light 
as a condition for giviny relief to shapes 
and for making th~ model visible. da 
Vinci, fot e>:ample, examined shading 
subtlei..ies such as transparent objects and 
the variation of color intensisties 
created by light. For more detail on 
chiaroscuro and perspective techniques in 
the Italian Renna i ssa.nce see references 
(1) and (7). 

The Venetian School painters (i.e. 
Giovanni Bellini, Giorgione, Titian, 
Tintoretto, Canaletto, Guardi and Tiepolo} 
are characterized by the splendour and 
harmony of color that determines the mood 
of their paintings. They did not only 
fill drawings with color but also 
portrayed athmospheres. Their works are 
full of profound emotion based on the 
psycological values of color. Venetian 
portraits of common people are more than a 
likenes, they transmit emotions. 

The Central School painters (i.e. 
Duccio, Simone Martini, Pier□ de la 
Francesca, Perugino, Raphael) were not 
obsessed, as the Florentine painters, with 
naturalism. They were concerned more with 
the theme than with the formal aspects of 
the work and developed an intrincate sense 
of composition to illustrate stories. 

Most of the Northern School painters 
(i.e. Pisanello, Mantegna, Antonello da 
Messina, Coreggio, Parmigiana) remained 
linked to the principles of the Middle 
Ages and to the rather gothic Flemish 
style dominant on the other side of the 
Alps. With the exception of some 
influenced by the Florentine and Venitian 
Schools (i.e. Coreggio), most of these 
painters were interested in reviving 
antique techniques and values. 



S. A CLASSIFICATION METHODOLOGY 

A methodology for analyzing and 
classifying computer generated images 
based on their technical attributes can 
become a powerful tool for evaluating them 
in the context of contemporary images. 
The purpose of such a classification is 
not purely encyclopedic but helps us 
understand the style and visual value of 
computer generated images. 

The method suggested here classifies 
computer generated images based on their 
technical attributes, it analizes their 
structure and locates them in a historical 
perspective. This classification strategy 
examines the critical steps of the 
creative process that determine the 
attributes of the final image. Eventhough 
this classification model is based on the 
analysis of technical attributes, its 
purpose is to classify the images 
themselves and not the specific techniques 
(procedures or algorithms} that generated 
them. 

This classification methodology 
structures information as a relational 
database. Such a database is structured 
on relations; the entries can be related 
with each other in different ways and they 
can be reorganized in different 
conf i gur at i ans. A m·ore in-depth l oak at 
relational databases can be found in 
reference (5). 

Relational databases can be easily 
understood by users and they facilitate to 
change the database without affecting the 
logical structure and applications 
programs because they represent data in a 
logical way, independently from the 
internal representation of the data to the 
computer. Relational databases keep 
entries located in a dynamic structure 
with as many levels of detail as needed. 
Relational databases are usually 
represented in a tabular form as a two 
dimensional array where a field (or 
domain) is defined by a class of 
attributes. Several fields define an 
individual entry or record <table 1). 

Data input can be made through 
on-line data entry forms that include 
critical attributes (table 2). Such forms 
can be structured as multiple choice forms 
or as blank forms. The use of numerical 
codes makes the implementation of such 
database possible in a commercially 
available database package. 

A list of entries can be sorted in 
different ways by using different sort 
keys. One or several sort keys can be 
used to select entries in relation ta 
meaningful categories. For example, 
computer generated images classified from 
a historical perspective would use date as 
the primary sort key, using software codes 
and resolution as sort keys would result 
in a classification of realistic images, 

Table 1. Simple relational database in a two dimensional tabular farm. 

1. Entry# 
2. Author Name 
3. Work Title 
4. Date 
s. Company/ Schaal 
6. Country 
7. Software Codes 
8. Hardware Codes 

1 2 3 4 s 6 7 B 

2370 Blinn J Voyager 1982 JPL USA 03 07 00 04 01 07 02 

RECORD 0732 Greene N Quark 1984 NVIT USA 01 OS 00 09 03 04 00 

3270 Kawaguchi V Growth 1983 Nippon E C JAP 01 07 04 02 02 OS 01 

7320 Porter T 1984 1984 Lucasfilm USA 02 07 01 02 03 01 03 

FIELD 
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Table 2. Database entry form. 

ENTRY NUMBER: 

TITLE OF WORK: 

NAME OF AUTHOR: 
Birthdate 
Sex 

DATE CREATED: 

PLACE CREATED: 
Company/School 
City 
Country 

HARDWARE DESCRIPTION: 
Computer Brand and Model 
Computer Category Codes 
Memory KBytes 
Frame Buffer Depth 
Output Device Resolution 

SOFTWARE DESCRIPTION: 
Data Definition Techniques 

2D primitive shapes 
3D geometrical primitives 
Manual digitizing 
Scanning 
Mathematical functions 
Procedural methods 
AI techniques 

Rendering Techniques 
Hidden surface removal 
Shading and lighting model 
Texture method 
Color space 
Image processing 

CREATIVE ENVIRONMENT: 
2D 
3D 
4D 

ORIGINAL: 
Animated Sequence Frame 
Installation 
Hardcopy 

Photography 
Hybrid Methods 

CREATIVE PURPOSE: 
Scientific 
Technical 
Commercial 
Artistic 

ADDITIONAL REFERENCE INFORMATION: 
Artist involved in software design? 
How was the system accessed? 
Theme of work? 
Etc. 
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and so on and so forth. Unusual 
classifications can be defined usina more 
complex sort keys (table 3). -

An interesting application of this 
classification methodology is the 
selection of computer generated images 
based on their visual excellence, creative 
innovation and aesthetic qualities. It is 
not the purpose of this classification 
methodology to solve lenghty aethetic 
discusions or to explain in detail the 
changing nature of art and artistic 
creation. But the model suggested here 
can help to determine the aesthetic value 
of a specific work based on its stylistic 
attributes that derive from a technical 
analysis. 

Computer art can be defined as 
those works that have been created with 
the aid of computer-based tools and 
procedures, and with the purpouse of 
fulfilling an aesthetic need in the 
creator as well as in the audience. The 
final database helps to locate a specific 
work or group of works in a conceptual 
frame. Nevertheless, without a direct 
judgement of the image itself, the 
database does not contain the value 
judgments to fully judge the aesthetic 
value of an image. 

This methodology can also help to 
group works in different schools or styles 
according to the imaging methods used. 
This analysis and classification method 
can be especially useful when dealing with 
works that have been created with 
integrated software packages that are 
capable of alternate types of rendering 
images in more than one way. Some of 
those software packages (or test beds) 
are described in references (3) and (8). 

CONCLUSIONS 

Imaging technologies have always 
been an integral part of the imaging 
process and, therefore, have always 
influenced the resulting images. The 
analysis of the historical development of 
imaging technologies can help to 
understand the relation that exists 
between images and the technologies used 
to create them. 

The analogy between computer imaging 
techniques (which still are in the 
developmental stage) and the Rennaissance 
painting techniques can illuminate the 
importance of technical issues for a 
stylistic classification. 

The organization of computer 
generated images as a structured 
relational database can provide valuable 
information on their style and 
technological development. The 
classification model suggested here can be 
implemented in commercially available 
database management packages for 
microcomputers, or in artificial 
intelligent expert systems. 



Table 3. Sorting the database with 
different primary and secondary sort 
keys {upper case) genera.tes different 
reports .. 

Report A (Author/Historical): 
AUTHOR NAME 
BIRTHDATE 
Company 
City 
Country 

Report B (Historical/Regional}: 
DATE 
COUNTRY 
Author Name 
City 

Report C (Work/Techniques): 
WORK TITLE 
SOFTWARE CODES 
Hardware Codes 
Author Name 
Company 
Country 

Report D (Artistic Works): 
PURPOSE CODES 
ORIGINAL CODES 
Work Title 
Author Name 
Date 
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EFFECTIVENESS STANDARDS FOR COMPUTER GRAPHICS 

Marek Holynski and Elaine Lewis 

Boston University 

Abstract 

This paper presents the development of standards 
for computer graphics based on the definition of 
psychologically relevant structural variables. 
Different methods of obtaining graphic stimuli 
which illustrate these variables in a visual form 
are overviewed. A discussion of the creative 
potential of computer generated imagery is 
supported by initial evaluation experiments aimed 
at assessing the relative effectiveness of various 
structures. 

The Need for Aesthetic Standards 

Producers of computer graphic art often 
become so excited by the technical process of 
creating graphics that they have little or no 
regard for the aesthetic quality of their finished 
work. A few masterpieces are produced along with 
hundreds of dull and boring pictures. 

In the past, effective graphic production 
relied upon the technical skill of the producer. 
That is, the artist had to become a master of a 
particular medium, often through years of tedious 
training and practice. This "apprenticeship
period" allowed an artist to develop a refined 
sense of aesthetics along with technical skill. 
Some of the new computer graphics generation 
systems, however, free producers from many 
technical aspects of creating images. By offering 
high quality results through easily learned 
commmand languages and flexible input devices, 
users can become "instant artists." Unfortunately, 
therir aesthetic sense may not have kept pace with 
their ability to make pictures. Their work is 
technically proficient without being artistically 
gifted. 
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The challenge of producing more pleasing 
pictures can be met through the development of 
formal criteria or standards for aesthetic 
quality. In fact, the computer can assist the 
selection of superior images without usurping 
producers' control. That is, a -"fi 1 ter" can 
select potentially good images from the population 
of possible images. Ultimately human evaluators 
will select the best from the potentially good, 
and initially their judgements will establish the 
standards which guide this filter. This can allow 
users to focus on the more intellectual aspects of 
picture-making. They can spend more time being 
creative and less time being technicians. 

The computer's enormous capacity offers a 
would-be computer artist creative potential not 
provided by traditional media. In addition to 
considering rule systems for design, computer 
artists must plan for effective use of the 
unexpected. While they are using various 
transformations to pattern their elements they can 
combine these in unexpected ways. The unexpected, 
defined as the random choice provided by the 
computer through a random number generator, offers 
many interesting possibilities. This new creative 
freedom and the computer's phenomenal capacity for 
speed allows artists to generate many images. The 
need for a filter becomes even more crucial. 

An Approach 

Several scholars have focussed on standards 
for the computer graphics medium. Some have 
established categories for structural ele.ments 
possible through programming techniques [l], [2], 
[3]. Others have attempted to correlate simple 
graphics with human evaluation [4]. A problem 
with these approaches, however, is that they fail 
to incorporate established principles of design. 
Aesthetics for a new medium should acknowledge 
cultural context. Rule systems must build upon 
those of past and current media. A better 
approach considers production technique and human 
response within the context of traditional design 
principles. 



This paper documents three perspectives 
toward defining computer graphics for empirical 
testing. The first incorporates fully determined 
visual structures, fractal patterns, which are 
often used in computer image generation. The 
second considers the aesthetic potential of a 
crude form of artificial intelligence, where the 
computer structures images; and the third deals 
with traditional design principles as rules for 
structuring images. 

The First Perspective 

One way to define the structure of computer 
graphics is to use the deterministic algorithms 
that have produced the images. The simpliest 
images obtained this way are line patterns -- sets 
of line segments whose endpoints are specified 
according to a set of rules. The most interesting 
class of line patterns, called fractal patterns or 
fractals, falls between the Euclidean definition 
of one and two dimensional objects. Some consider 
the design potential of fractal patterns as works 
of art, while others use fractals as primitives to 
create more elaborate images. Increasingly they 
are used to create naturalistic landscapes (river 
networks, cloud formations) and a range of organic 
forms (tree branching patterns) [5]. 

Fractals' relevance as visual primatives plus 
their precision and flexibility make them 
desirable as variables. In this perspective, 
various levels of two fractal patterns are tested 
for their relation to viewer preference. 

Two types of patterns, each using a different 
fractal equation, were generated. For each type 
ten examples were produced in order to create a 
differential, a smooth range of stimuli that vary 
from a straight line to an extreme curve. Figure 
1 illustrates one type, Koch curves, and Figure 2 
is an example of the second type, dragon curves. 

The algorithm used to produce the Koch curves 
is based on the regular subdivision of a triangle. 
The first level is the triangle itself. At the 
second level each side of the initial triangle is 
divided into thirds and the middle third is 
replaced with two sides of a new triangle, one
third the size of the original triangle. 
Subsequent levels are formed by following this 
rule and replacing every line segment of the 
previous level with four new segments, each one
third the length of the previous level. 

The algorithm for the dragon curves utilizes 
the following recursive rule: a level O dragon is 
a straight line, a level 2 dragon is a right angle 
(two straight lines), a level N dragon is composed 
of a level N-1 dragons with different 
orientations. 

Two variables were tested in the experiment: 
dimension and density. The angle of the triangle 
in Koch curves as well as the orientation of 
dragon curves were treated as dimension variable 
O. In each case O values of 0, 20, 40, 60, 70, 
75, 82, 86, 88, and 90 were used in order to 
produce a range of stimuli representing a 
differential scale with ten levels. 

Three levels of density were represented 
through a different number of line segments within 
the images. The most simple (DENSITY 1) has 256; 
the mid-value (DENSITY 2) has 1024; and the most 
complex (DENSITY 3) has 4096 line segments. 

Sixty slides were produced of all levels and 
densities for both types of fractals. All sixty 
slides were tested for viewer preference using an 
open-ended ratio scale. That is, subjects were 
asked to assign numeric values to indicate their 
preference for each pattern. 

Figure 1: Example of a Koch Curve 
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Figure 2: Example of a Dragon Curve 

For some densities, a monotonic relationship 
with a global maximum was shown consistently. ln 
general, subjects preferred the denser, more 
complex patterns. Figures 3 shows one example of 
the precise relationships between preference and 
dimension for all densities of the Koch curve. 

It is curious to note that for both types of 
patterns subjects preferred dimension levels in 
the upper mid ranges. This suggests a consistent 
preference for O values between 86 an 88 degrees. 
Perhaps through testing different types of fractal 
patterns, this characteristic will emerge as one 
standard for an aesthetic filter. 
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The Second Perspective 

Since generation of computer graphics 
involves a compromise between structure 
(algorithms) and chance (random choice), a 
categorical scheme aimed at image evaluation can 
be drawn from specific levels of these two 
parameters. That is, all computer graphics can be 
classified according to their degree of structure 
and randomness. 

In Arts and Computers [6), Holynski suggests 
five categories for classifying images. These 
categories vary according to the amount of 
structure imposed by the artist balanced by the 
unexpected offered by the computer. If considered 
as a formal dimension, these categories are levels 
which can be described precisely through ordered 
patterns of a basic element. 

The full description of 
illustrating this approach was 
Here, we present only its brief 

the the experiment 
published in [7). 
overview. 

Each stimulus pattern is a grid of sixteen 
basic elements. The manner of determining the 
orientation of these elements can define the order 
level of each stimulus. Four orientations of the 
element are possible and for the least ordered 
type of pattern RANDOM PLACEMENT all 
orientations are equally pr~bable for every 
element in the grid. Orientation is assigned 
through reference to a random number generator. 
An example of this category of stimulus is seen in 
Figure 4. 

Figure 4: Example of a Random Placement Stimulus 
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To achieve the two more ordered types of 
patterns, element orientation was varied in a more 
systematic way. Both translation and reflection 
patterns begin with a four element quadrant where 
each element was randomly placed. Patterns 
representing the middle level for order can be 
produced by duplicating -- TRANSLATION the 
original quadrant to fill the remaining three. 
Figure 5 shows a typical translation pattern. The 
most ordered patterns were produced by reflecting 
the original quadrant about both inside edges and 
the central point. This creates a symmetrical 
REFLECTION -- pattern as shown by Figure 6. 

Figure 5: Example of a Translation Pattern 

Figure 6: Example of a Reflection Pattern 

Twenty-one slides were chosen to represent 
three levels of order (seven for reflection, eight 
for translation, and six for random placement). 
An additional dimension, color, was expored 
through three hues (nine white, six red and six 
blue). 



The sti~uli were rated with regard to 
preference by assigning a number between 1 and 10 
for each pattern. Five represented an average 
amount of liking with higher numbers indicating 
greater preference. Mean (average) values were 
calculated fer all preference ratings. When 
considered as a whole, the average preference 
rating was 4.829. When considered according to a 
particular slide's order value, some significant 
differences appear according to a stimulus' order. 
A summary table follows: 

code 

1 
2 
3 

value label 

REFLECTION 
TRANSLATION 
RANDOM PLACEMENT 

mean 

5.579 
4.881 
3.886 

std dev 

0.795 
0.639 
0.528 

n 44 

As this table clearly shows, reflection 
patterns were most preferred. This suggests that 
viewers like more ordered patterns better than 
less ordered or random ones. These results, as 
expected, are consistent with previous findings 
[9]. 

The Third Perspective 

This perspective defines three mathematically 
based variables that relate closely to Swiss 
Design Theory and grid systems, important concepts 
in graphic design [10], [12]. From this tradition 
springs the foundation for variables like 
complexity, order, and regularity as relevant 
dimensions of visual form. 

These variables, COMPLEXITY (amount of 
information), REGULARITY (proportional consistency 
of information) and ORDER (pattern of 
information), have been empirically tested for 
their relation to viewer preference [7], [8], [9]. 
When represented through computer generated 
stimuli, all are strong predictors. Order is 
especially significant. In some cases, the 
structural variables defining a stimulus have 
predicted sixty percent of the variance in 
preference. Again, these dimensions of design may 
provide the basis for an asthetic filter. 

COMPLEXITY is defined as number of pixels per 
stimulus. Number of pixels varies from 2 to 99 
per side of the matrix as complexity ranges from 0 
to 16. REGULARITY, which also ranges from Oto 
16, corresponds to systematic variation in width 
and height where larger values indicate more 
extreme ratios. ORDER defines pattern variation 
within a stimulus. As order varies from Oto 16, 
0 indicates a systematic black and white 
checkerboard and 16 indicates a completely random 
distribution. 
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The stimuli for this experiment were forty
three slides which showed bot~ a range of levels 
for each variable (a visual differential) and all 
possible combinations of three levels of the 
variables were produced. Fifteen of the 43 
stimuli illustrated three visual differential 
scales simplicity/complexity, regularity/ 
irregularity, and order/disorder -- each with five 
levels. While these scales were created, only one 
form variable was manipulated. The other two were 
held constant. Of the remaining stimuli, twenty
seven were produced to illustrate every 
combination of three levels for each form 
variable. Two of these patterns are illustrated 
in Figures 7 and 8. 

Figure 7: A Stimulus Pattern Showing Low 
Complexity 

and Low Irregularity 

Figure 8: A Stimulus Pattern Showing Low 
Complexity 

and Medium Irregularity 



The stimuli were rated using an open-ended, 
ratio level preference scale. When complexity, 
regularity, and order values were applied as 
predictors in a regression_ e~u~tion, complexity 
and regularity are highly_s 7gn1f1cant: Order was 
not found to be a sign1f1cant pred1ctor. The 
summary table appears below: 

variable b 

REGULARITY 0.6725061 
COMPLEXITY 0. 7156979 
ORDER -0.1597848 

beta f* 

0.46681 13.767 
0.36874 8.654 

-0.10748 0.743 

* significant at 0.01 
n=46 

where: beta, b - standardized and unstardandized 
regression coefficients 

f - significance lev~l 

These findings imply 
regularity are appropriate 
for an aesthetic filter. 

Discussion 

that complexity and 
variables to consider 

By looking at variables for visual form, we 
can construct a rule system that will free artists 
from many of the more mundane aspects of 
production and will allow them to focus on making 
more intelligent design decisions. Ultimately 
this will facilitate more pleasing results. A 
side benefit will allow more economical use of 
graphic systems. 

This paper presents three methods for 
quantifying visual form, techniques which relate 
both to image production methods and to the way 
that people process visual design. All of these 
measures have been shown to correlate with viewer 
preference in a variety of ways. Through more 
extensive examination of the relationship between 
form and preference, researchers can establish the 
foundation of theory necessary for an aesthetic 
filter. 

As computer graphics are used more widely in 
conjunction with other media -- print, film, video 
and lasers -- or as an independent artform, the 
need for standards will become more obvious. In 
the meantime, mor~ basic research is needed to 
define the direction of future studies. This 
paper presents a very fertile approach. 
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Abstract: This paper is a review of the typefaces 
designed for Apple Computer, lnc.'s Lisa Office 
System microcomputer by the author. It covers the 
decisions made through first and second release of the 
fonts, explains basic type practices and shows how 
their application can improve the quality of the low 
resolution fonts in question. 

INTRODUCTION 

The typefaces discussed in this paper are those 
designed for Apple Computer's Lisa®. There were 
two major releases of the Office System software on 
the Lisa. The first release, June 1983, contained 
about 40 fonts. For the second release of the 
software, August 1984. the complete font library 
was revised and augmented by 20 fonts. This paper 
covers some of the design questions that arose in the 
first version of fonts, and how those issues were 
handled in the revision for second release to further 
improve their quality. 

PROJECT CRITERIA 

The Lisa font project started in September 1981 
in the middle of the development cycle for the Lisa 
computer. The original project criteria was tor a set 
of screen fonts to be based on the designs of Courier, 
Elite and Tile (Illustration 1), which are all daisy 
wheel type designs. A secondary model was Century 
Schoolbook for the serif fonts. The character set was 
the basic ASCII set, later extended to include 
european and math support. 

ABCDEFGHIJKLMNOPQRSTUVWX-~Z 
abcdefghijklmnopqrstuvwxyz-

ABCDEFGHIJKLMN0PQRSTUVWX..XZ 
abcdef ghij klmnopqrstuvwxyz. .. 

ABCDEFGHIJKLMNOP(i)RSTUVWX-.YZ 
abcdefghijklmnopqrstuvwxyz-• 

Illustration 1: From the top Courier, 
Elite, and Tile daisy wheel typefaces. 

CH2087-5/84/0000/0029$01 .00 © 1984 IEEE 
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Apple Computer Inc. 
10443 Bandley Or. MS4·N 
Cupertino, CA 940B7 
40B 973-2946 

Modern 24 Point 
Modem 18 Point 

Modem 12 Point 
Modern 10 Pitch 

Modern 12 Pitch 
Gothic 15 Pitch 

Classic 24 Point 
Classic 18 Point 

Executive 12 Point 
Courier 10 Pitch 

Elite 12 Pitch 

Modern 24 Point 
Modern 18 Point 

Modern 14 Point 
Modern 12 Point 

Modern 12 Point 10 Pitch 
Modern 10 Point 12 Pitch 

ltodern 8 Point 15 Pitch 
llodtn I Point 29 ,i tell 

Classic 24 Point 
Classic 18 Point 

Classic 14 Point 
Classic 12 Point 

Classic 12 Point 10 Pitch 
Classic 10 Point 12 Pitch 

Illustration 2: Lisa 1 typefaces at the 
top and Lisa 2 typefaces at the bottom. 

The range of fonts included a 12 pitch, 10 pitch 
and a typewriter proportional font matched to daisy 
wheels and 18 and 24 point display fonts for headline 
use. {see Illustration 2). The fonts were in two sets, 
serif and sans serif. Myself and another designer, 
Elizabeth Hall from Elizabeth Hall & Associates, 
were hired to design the fonts to this criteria. 



There were two basic typeface designs used on the 
Lisa and a variety of type sizes from 8 point to 24 
point. Illustration 2 shows the range of sizes. both 
first and second release. Classic is a serif font 
similar to Century Schoolbook and Courier. Modern 
is a sans serif similar to Helvetica and Univers. 
(There is a glossary at the end of the paper.) 

The fonts on the Lisa are stored as bitmaps 
with width tables and other information. The fonts 
are both fixed pitch and proportionally spaced. A 
fixed pitch font is one in which each character is a 
fixed width; the number refers to the number of 
characters in a line of text an inch long. A 
proportional typewriter font is a fixed pitch font 
with one to five pre-set widths. This is different 
from typesetting fonts in which every character can 
be unique in width. 

Fixed pitch fonts were carried over onto the 
computer because of the ease of coding and the 
mechanical limitations of early printers. One always 
knew how wide the letters were, no matter which 
letter one was typing. The use of these kinds of fonts 
is one of the reasons text on computers is considered 
to be of poor legibility and readability. 

The marketing focus for the Lisa was to sell the 
machine into a business environment in which 
compatibility with a daisy wheel was essential. The 
Lisa marketing group developed this strategy based 
upon assessing the target user community. This 
compatibility with the daisy wheel printer influenced 
many characteristics of the first release font design. 

WHAT YOU SEE IS WHAT YOU GET 

The software support for the type work was 
performed by Jeff Parrish who developed the Lisa 
font editor. The editor allowed one to edit letters 
pixel by pixel on an enlarged grid (Illustration 3). 
Among other things. one could alter spacing around 
the character easily, lay characters over each other, 
and immediately see the results of any work. 

r 

• 

• 
• 

A 

t t 

The blue drear,ns oft 
to be desired when oQe 
unicorns and firelizards. 
of the north wind in its 
newborn spring day in it 
ize with the delicate det 
heat and justly so havin! 
and vampire bats inters~ 
requirements of unicorn 
rubies and emeralds in a 
blond virgin's hair. Gha~ 
the notes of the music t 

Now the reason that 

Illustration 3: Font editor screen with 
bit-editing grid and text panel. 
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h. work started on the screen fonts. printing 
became a bit more of a reality. Owen Densmore 
started the print group and began looking at printers. 
I began designing a group of experimental fonts to put 
the printers through their paces. As we determined 
which printers we were going to use we started to 
develop the printing strategy. Since Lisa was to be a 
what-you-see- is-what-you-get (WYSIWYG) system, 
we had to make the printed image the same as the 
screen image. 

We determined we had three devices to match to 
each other: a dot matrix printer (144 X 160 spots per 
inch), a daisy wheel (48 X 120 spi), and the Lisa 
screen (96 X 72 spi). The dot matrix printer also 
runs in low resolution mode using the screen fonts; 
this is not counted as a separate device because the 
fonts were primarily designed for the screen. At this 
point in the project, we began to design a separate 
set of fonts for each device. Each set was composed 
of two parts, serif and sans serif. 

Character Width Matching: The different sets 
of fonts, one for each device, had to be matched to 
each other. This was accomplished through the use of 
conversion formulas which converted a number in one 
resolution to a corresponding number in another 
resolution. This is a simple task for a computer. 

Width tables contained in the font format would 
be read in and converted using the computer program. 
For first release this was done with same size fonts 
only, i.e. an 18 point dot matrix font to an 18 point 
screen font. For second release fonts were adjusted 
for family continuity, discussed in Type Rules below, 
by converting from size to size. i.e. 24 point Modern 
to 18 point Modern to 14 point Modern. (This part 
of the matching was not necessary for the WYSIWYG 
system and was only used as a guide. Parameters in 
typefaces do not I inearly change from large to smal I 
sizes; see Type Rules). 

The numbers from the dot matrix printer do not 
convert evenly to numbers for the screen. Roundoff 
errors occurred all the time; common cases were 5.4, 
9.6, 16.8, 10.2. In most cases we would round down. 
The cases we made exceptions for are uncooperative 
letters like M. m, w, and W. These letters were 
more legible with the extra pixels. 

Although it is best to match from the top down in 
a WYSIWYG system, this was not possible with the 
daisy wheel fonts. For the 12 pitch, 10 pitch, and the 
12 proportional we matched from the daisy wheel up 
to the screen and the dot matrix printer. For the 18 
and 24 point fonts we matched from the dot matrix 
printer down to the screen and the daisy wheel. For 
second release we were able to add to the 12 
proportional width tables and to do some adjusting 
which allowed a compromise with the daisy wheel for 
those particular fonts. 



We developed eleven fonts per device all matched 
to each other. Once the bitmaps and matching were 
completed the fonts were compressed and bui It into a 
font library, a component of the Lisa Office System 
software. I designed the Modern fonts for all devices 
and the Classic fonts on the daisy wheel and Elizabeth 
Hall designed the Classic fonts for the screen and dot 
matrix printer. 

EVALUATION OF FIRST RELEASE 

After first release of the fonts was done I 
reviewed the issues that had come up during the 
development cycle. Some issues were use related, 
some software related, and some type related. One 
issue would lead to another. I will explain some 
examples of the first two here. The last set of 
issues, type related, will be explained in more detail 
in the Type Rules section. 

Daisy Wheel Impact: The world still revolved 
around the daisy wheel printer and this caused several 
problems. One, the type model for the sans serif 
fonts was Tile and had never been designed as a 
display font. There were no versions of it in a display 
size, yet the Modern display fonts had to resemble 
the daisy wheels. The decision was made, fol lowing 
marketing guidance, to design new fonts based on the 
daisy wheel model. The fonts were released but were 
too bold and were a compromise between the 
typewriter and typesetting world which meant the 
quality was poor. 

Second, since what-you-see- is-what-you-get, al I 
the devices had to have display fonts (18 and 24 
point), including the daisy wheel. These fonts were 
composed of the period on the daisy wheels. A daisy 
wheel has, as an artifact of the typewriter, an 
oversize period. The original resolution of the period 
was 48 X 60 spots per inch. The print group was able 
to double this resolution in the width direction, giving 
48 X 120 spi. This meant the dots overlapped quite a 
bit in one direction and barely in the other direction. 
It is a monument to bit editing that these fonts look 
as good as they do. (See Illustration 4). 

Common Usage: Output from the Lisa included 
the usual letters, memos, proposals and etc. One 
kind of usage led to re· thinking the way we designed 
the display fonts. That was the use of overhead. 
transparencies and slides. Overhead transparencies 
need big type so that everyone in a room can see the 
Information projected on a screen, yet the amount of 
information on one transparency can be quite large. 

We had designed the display fonts on Lisa to have 
a tight character spacing, as is the current trend in 
the type field. But by the time the printed output 
from Lisa was copied, then made into a transparency, 
the transparency was two generations from the 
original and suffered image degradations from both 
the copier and the transparency maker. The image on 
the transparencies would Invariably be blurred and all 
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ABCDEFGHIJKLMNOPQRSTUV 
WXYZ abcd~fghijklmnopqrstuv 
wxyz 0123456789 &• !?=-+"' 
ABCDEFGHIJKLMNOPQRSTUV 
WXYZ abcddghijklmnopqrstu 
vwxyz 0123456789 &•!?=-+"' 

ABCDEFGHIJKLMNOPQ 
RSTUVWXYZ abcdefghi 
jklmnopqrstuvwxyz 
0123456789 &*!?=-+"' 
ABCDEPGHIJKLMNOPQ 
RSTUVWXyz abcdefghi 
jklmnopqrstuvwxyz 
0123456789 &*!?=-+"' 

Illustration 4: Modern and Classic 18 
point and Modern and Classic 24 point 
daisy wheel samples. (48 X 120 spi) 

the characters would run into each other. This would 
be aggravated by holding the characters. 
(Illustration 5). 

Software Issues: The bold and italic versions of 
the typefaces on Lisa were done by algorithms in the 
low level graphics code called QuickDraw. The 
algorithms take numbers from the font and do 
calculations on them to modify the font's bitmap in 
some way. 

The bold algorithm takes a bitmap and writes it 
once and then moves the bitmap over one pixel and 
rewrites it again. The resulting character is smeared 
to the right. This method is common on computers 
and barely acceptable with two adjustments. The 
amount to which the character is bolded should be 
commensurate with the size of the type, i.e. an 
eighteen point type should bold more then a ten point 
type. So that characters do not run into each other, 
the amount that a typeface is bolded should be added 

FCR>a.R 
FCR YO-R 
FCR Yc:x..R 

FOR YOUR 
FOR YOUR 
FOR YOUR 

Illustration 5: An example of blurring in 
o copy. Lisa 1 on the left, Lisa 2 on the 
right. 



to the width of the character to compensate for the 
smearing that occurs. These two adjustments were 
made to the second release of fonts on Lisa 
(Illustration 6). The algorithm did not change; the 
numbers fed to it did. However, the effect of this 
change was to make bolded characters wider. One 
implication is that a fixed pitch font in bold and 
normal would no longer line up. Fonts that had to 
line up were handled specially, i.e., LisaTerminal and 
QuickPort fonts. 

FOR YOU/ DFORMA TICW 
FOR YOUR N'ORMA TION 
FOR YOUR INFORMATION 

FOR YOUR INFORMATION 
FOR YOUR INFORMATION 
FOR YOUR INFORMATION 

Illustration 6: Modern 18 pt. bold italic, 
bold and regular on Lisa 1 and Lisa 2. 

The italic algorithm takes a bitmap and starting 
at a specified point on the baseline moves up and over 
to the right placing dots as it goes; up three, over 
one, etc, (Illustration 7). For a mathematical 
formula the algorithm is acceptable though it does 
leave some blank areas. The angle at which the 
letters are slanted is a bit steep at the smaller sizes. 
The major problem with it is the character is not 
centered in the bounding box when the algorithm is 
through. The letter hangs out of the bounding box to 
the right and not to the left. (See Illustration 8) 
This creates spacing problems when one word is 
italicized in a I ine of regular text. 

Traditionally, italic fonts are separate designs. 
With the advent of digital typesetters regular fonts 
can be mechanically obliqued. Either way, the 
character is skewed from a point below the x-height 
I ine, about the center of the font (Illustration 9). 
This centers the letter in the bounding box with equal 
overhang on either side. 

HIYM 
H.IYM 

Illustration 7: Example of italic 
algorithm. 
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This is an example of 
an it,tlic word in a line 
of normal text and 
idi&t overhang is. 

Illustration 8: Italic example with part 
of the text selected to show the overhang 
problem. 

A way of fixing the italic algorithm to mimic the 
typesetting font, is to take the amount of pixels that 
the letter hangs over on the right, divide it in half, 
and start writing the character on the device to the 
left of the normal starting point by that amount. 
This change was not implemented on Lisa though it 
may still be at some future time. 

Illustration 9: Correct place to rotat( a 
letter. 

TYPE PRINCIPLES & SECOND RELEASE 

When the Lisa fonts were designed the first time 
most attention was paid to the problems of making a 
WYSIWYG system work. As a result some of the 
fonts were not as successful as they could have been. 
In this section I mention some principles that we 
applied to the fonts as we revised them. The reason 
these practices were not emphasized in the first 
release was that, theoretically, they would not have 
had any impact on the fonts because of the low 
resolution of the devices. This was found to be 
untrue when those practices were actually put into 
use. 

In Illustration 10 you can see defined the parts of 
a letter or letterform. It is the x-height that 
determines the size of the font. The larger the 
x-height the easier the font is to read. The x-height 
is 40 to 60% of the body size of a font. Most 
x-heights in the Lisa fonts range between 50 to 60% 
and are considered to be of medium to large 
x-heights. 



bounding box 
············L ........• 

lowerca:.e letter:. 

serif Hem 

ascender 

X-height 
or body 

de:.cender 

capital or 
uppercase 

_Baseline 

Illustration 10: The parts of a letter. 

The relationship between ascenders, descenders, 
and the x-height changes in a typeface as the point 
size changes. Display fonts, 14 to 72 point, have a 
smaller x-height, larger ascenders and descenders and 
less letter spacing. Text fonts, 8 to 12 point, have 
smaller ascenders and descenders, a larger x-height 
and more letter spacing. This progression of change 
is not linear. 

Historically typefaces were cut in metal and a 
separate font was cut for each size. The changes 
made accommodated the human visual system though 
it was done instinctively at that period of time. For 
a more complete explanation see Bigelow (1983). 

The relationship between the vertical stem and 
the x-height determine the weight of the stem versus 
the x-height. The relationship is 5 to 6 stems per 
x-height. If the stem is one pixel wide, then the 
x-height should be five or six pixels tall. On the Lisa 
screen the fonts are single pixel stems up to 14 point 
and increase from there. The ratios, starting at a 
point run: 5:1, 5:1, 6:1, 7:1, 9:2, 13:3. 

A family of type is a grouping of all the type 
sizes and variations of a particular typeface. 
Variations include roman, italic, light, condensed, 
bold, etc. (Illustration 12). Across a family of type, 
items like stroke weight, x-height, capital height, 
ascenders and descenders are harmonized so that any 
size and variation of the family is recognizable as a 
member of that family. A font is one member of a 
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family, i.e .. Modern 12 point is a font in the family 
of Modern. 

This idea of a family was implemented as the Lisa 
fonts were re-designed so that the various parameters 
of each font corresponded not only to its counterpart 
on a different device but also to its own family 

· members. For example, the 24 point parameters for 
x-height, cap height, ascenders and descenders are the 
guide for the 18 and 14 point parameters. The way 
in which fonts change from text to display sizes was 
also taken into account. As mentioned before bold 
and italic are done by algorithms in QuickDraw, as 
well as other variations such as shadow and outline. 

ITC Cushing Book 
WITH SMALL CAPS 

ITC Cushing Book Italic 
ITC Cushing Heavy 

ITC Cushing Medium 
ITC Cushing Medium Italic 
ITC Cushing Bold 

ITC Cushing Bold Italic 

Illustration 12: A type family. 

Leading: The space between lines makes for 
easier readability. The longer the line, the more 
leading is necessary. Bodoni's rule: For good 
readability specify one third of the size of text type 
for leading. Illustration 13 shows normal, tight and 
loose leading. When leading is too tight or too loose 
the eye gets lost trying to read across a line of text. 
On the Lisa the leading is set in the font, but the 
applications can override it. 

Word spacing is the white space between words. 
A guide to a determination of the correct amount is 
the width of the lowercase 'r' in the typeface in 
question. Too much word spacing creates 'rivers'; too 
little makes the eye work to distinguish the word. 

A typeface with large x-height requires 
more leading than one with small 
x-height. A general guideline: Type with 
small x-height, no leading; normal 
x-height, 1 point; large x-height, 2 points. 

A typeface with large x-height requires 
more leading than one with small 
x-height. A general guideline: Trpe with 
small x-height,no leacfing; norma 
x-height, 1 point; x-height, 2 points. 

A typeface with large x-height requires 

more leading than one with small 

x-height. A general guideline: Type with 

small x-height, no leading; normal 

x-height, 1 point; large x-height, 2 points. 

Illustration 13: The top paragraph shows 
normal leading, the middle paragraph tight 
leading and the paragraph loose leading. 



Artifacts of the devices play havoc with this and 
other practices. The aspect ratio of the pixel on the 
Lisa screen is 2:3. The vertical dimension is thinner 
than the horizontal dimension. A supposedly even 
weight font on Lisa is not truly so. Dots on the 
screen are written with a writing beam that turns on 
and off very rapidly. The beam can overshoot causing 
dot erosion; a single pixel stroke is too I ight, but a 
double pixel stroke is too dark. 

Physical factors of the devices affect the ability 
to which one can implement minor adjustments. An 
issue that came into play from the dot matrix. 
printer was that of dot separation (lllustration14). 
Two single stroke vertical bars have to be separated 
by a minimum of three pixels or they are not 
recognizable as two separate strokes. 

An observation from some experiments I did 
shows that the more times a vertical line is broken 
down to form a curve the less distinct the form 
becomes and the shorter the viewing distance from 
which one can discern the form. This was determined 
at a 10 point font size on the Lisa screen 
(Illustration 15). 

11 IW 111111 ~1u1111m 11111111 Iii 1111 11111111111111111 Ill llll 111111111 

Ill 
1111111111 
111m1111 
1111111111 
II !111111 
II ~11111 

Illustration 14: Dot separation. This was 
printed on the dot matrix at 144 X 160 
lines per inch. The lines are separated by 
1, 2, 3, and 4 pixels from left to right. 

abcdefghijklmnopqrstwwxyz 
abcdefghi j k lmnopq rstwwxyz 

Illustration 15: Screen resolution fonts 
printed on the dot matrix printer. The top 
line shows a rectangular letterform and the 
bottom shows a curved letterform. 

Letter spacing is the white space around a 
character, sometimes referred to as inter character 
spacing. When spacing is done correctly the visual 
space between characters should optically look the 
same. This creates an even rhythm of dark and light 
which is very well suited to what our eye wants to 
see (Bigelow 1983). 

To more easily determine the correct spacing 
we break the letterform into elements (Illustration 
16) which are the vertical, horizontal, diagonal, and 
curve. There is a rule of typography based on these 
elements that explains how spacing works. It states 
as follows: 
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"Letter spacing and word spacing 
must be consistent. Once you 
establish whatever amount of letter 
spacing between two vertical strokes, 
or a vertical stroke and a slant, a 
slant and a curve, etc., thereafter 
whenever that same combination of 
strokes occurs, the spacing should be 
the same throughout. Same with 
word spacing. This rule should never 
be violated." 

- From one of the typography 
manuals used in a class by Paul Sinn. 

I \J 
Illustration 16: The elements of a 
typeface. 

The original method of spacing letters was to 
put the same amount of white space between each 
letter regardless of what kind of strokes the letter 
was composed of. If we look at the 24 point 
Modern font for the dot matrix printer, Illustration 
17, the first line of text, 'HOHOOHH', in the first 
example, shows all the characters as having 5 pixels 
between each regardless of stroke type. The spacing 
was uneven from the right to the left of the letter. 

The next example shows three pixels around a 
curve and four around a vertical; this gives the 
6- 7-8 example. In the last example the vertical 
spacing was Increased to five pixels on either side of 
a vertical giving the 6-8-10 example. At the same 
time the diagonals have been adjusted from three 
pixels on either side to one pixel on either side. 

HOHOOHHOOOHHH 
HOHOOHHOOOHHH 
HOHOOHHOOOHHH 
HXHXXHHAHAAHH 
OXOXXOOAOMOO 

Illustration 17: The top example shows the 
characters with 5 pixels between 
characters. The middle example shows a 
variation of 6-7-8 in pixel spaces. And 
the bottom example shows the final spacing 
of 6-8-10 pixels. 



In this way, the spacing for the curve/vertical, 
curve/curve, vertical/vertical, etc. pairs was 
produced. From these pairs the rest of the spacing 
could be determined. A rule of thumb in typography 
states that if the space between two verticals is X, 
then the space between a curve and a vertical is 
1/2X. That gives a starting point from which the 
font can be visually adjusted. 

Illustration 18 shows various characters and the 
amount of surrounding white space in pixels. 
Characters like A. L, E, S, and J went through 
several steps to determine the correct spacing for 
both sides of the character. The same basic process 
was applied to the lowercase letters with the 
difference being that the numbers were smaller and 
spacing was therefore tighter than the capitals. 

H~HJJHHJOJQJ1J 
H~RH RRH H R.O~RORR 
HSHSSHHS~dsoss 
H,EHE~EHHE(jEOEE 
Ht:HLLHHCdLOLL 
noonnononno 
nanbncndnenfngn 
oaobocodoeofogo 

Illustration 18: The nllllbers indicate the 
spacing for J, R, L, E, and S. 

Next the screen version of the 24 point font was 
matched to the widths of the dot matrix printer 24 
point. This approach had the advantage that the 
spacing was more uniform. But as a result of going 
to the lower resolution the lowercase letter spacing 
became the same as the uppercase. The difference 
in pixels between different kinds of strokes 
continued to become much smaller; the size of a 
screen 12 point font yields a minimum of 2-4 pixels 
between strokes compared to 3 to 10 pixels in the 
24 point dot matrix font. 

This discussion has focused on the Modern font, 
which is sans serif. The serif font, Classic, was also 
adjusted with this method and Illustration 19 shows 
the change in Classic 24 point for the dot matrix 
printer. There was a wider range between verticals 
and curves than with the sans serif font. Dot 
separation has an impact here on how close the 
serifs can get to each other. 
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HOHOOHHOOOHilli 

OXOXXOOAOAAOO 
HOHOOHHOOOHHH 
HXHXXHHAHAAHH 
OXOXXOOAOAAOO 
champions 
noonnononno 
nanbncndnenfngn 
oaobocodoeofogo 

Illustration 19: On top is the version one 
with 4 pixels between curves, 12 between 
verticals and O between serifs. The bottom 
is 6 between curves, 16 between verticals, 
and 4 between serifs. 

Even with the limitations of the devices the 
spacing adjustments improved the quality of the 
typefaces. The space between characters becomes 
rhythmic and even, which is essential to the read
ability of the typeface. (This also clears up the 
copying and overhead transparency issues.) 

CONCLUSION 

This paper has shown how the fonts incorporated 
in the Lisa 7/7 software were improved by the 
application of a variety of type principles. 
Considering the typeface designs currently used on 
some microcomputers, these typefaces offer 
legibility and readability to the best of the device 
resolution. While low resolution type will never 
compare with graphic arts quality type, it should be 
obvious that type designed with these practices in 
mind is a definite step closer to that quality than 
fonts which ignore such rules. 

The Lisa fonts were designed for their particular 
devices, but only to the extent that the physical 
factors that affected the type design were taken into 
account. They were modeled after typesetting designs 
to the point that one can recognize a resemblance to 
a sans serif Helvetica/Univers letterform. 



When typefaces are designed for typesetting, 
practices are followed similar to the ones mentioned 
here, though typesetting machines have a minimum of 
720 lines per inch resolution, and usually much higher. 
The subtleties of letterform design are therefore 
much more complex. 

In translating type into the low resolutions of the 
computer, the trained type designer employs his 
knowledge as a filter to bring the elements of good 
type to a typeface design within the restrictions of 
the device. This means that not all the subtleties and 
details of a design may make it to the printer or 
screen, but that those which are necessary to make 
the design a good one wi 11. 
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Glossary 

Ascender: The upper stroke in a lowercase letter: b. 
d, f, h, k, I, t. 

Bitmap: The array of pixels that compose an image 
whether it be a letter, pattern or picture. 

Bold: A typeface variation in which the weight of 
the character is heavier then normal. Used for 
emphasis. 

Bounding Box: The smallest box within which a 
character image is contained. 

Capital: The large letters in a typeface, also 
uppercase. Cap height is a measurement of the same. 

Decipherable: Text which is read with difficulty, 
which must be deciphered. 
Descender: The downward stroke in a lowercase 
letter: g, j, p, q, y. 

Device: Something an image is output onto. 

Display: Fonts from 14 point to 72 points of size. 

Family: All the variations of a typeface i.e. regular, 
bold. italic. condensed. extended. 
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Font: A font is one variation of a family of type. A 
complete assortment of any one size and style of 
type. 

Italic: A typeface in which all the characters are 
slanted to the right. Used for emphasis. 

Leading: The space between lines of type. It is 
measured in points. 
Legibility: The speed at which letters can be 
recognized. Text is read with minor difficulty. 

Letter Spacing: The white space between letters. 

Lowercase: The small letters in the alphabet. 

Pitch: The numbers of charcters per inch in a line of 
text across a page. Fixed pitch fonts have a fixed 
number of characters per inch. 

Pixel: The smallest segment of a raster line that 
can be discretely controlled by the display system. 
Also bit. From picture element. 

Point: A system of measuring type. There are 72 
points to one inch. 

Readability: The measure of ease of reading a 
printed page. Text is easy and pleasurable to read. 

Resolution: The number of controllable pixels on a 
device. In this paper the measurement used is spots 
per inch. 

Sans serif: A typeface with no serifs. 

Serif: The short crossline at the end of the main 
stroke. 

Stem: A straight vertical stroke or straight diagonal 
stroke in a letter with no vertical strokes. 

Stroke: A straight or curved line. 

Text size: Type from 6 point to 14 points in size. 

Typewriter Proportional: On the daisy wheel 
printer a proportional wheel is one on which the 
characters have perhaps five pre-set widths to choose 
from. 

Uppercase: Capital letters; it refers to the storage 
of the letters in hot metal times. 

Weight: Refers to the heaviness of the stroke in a 
font. The stroke can be light, regular or bold. 

Word Spacing: The white space between words. 

WYSIWYG: What you see is what you get. A term 
describing visual fidelity between devices. 

X-height: The body of the letter minus ascenders 
and descenders i.e. ·x·. The lowercase ·x· is used to 
measure this in points. 

Lisa is a registered trade11ark of Apple COlll)Uter. Inc. Nacintostl 
is a tradellark licensed to Apple. 
ITC is International Typeface Corporation. New York. 
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.Abstract 
Department of Art 

Unfversity of Tennessee/Knoxville 

This paper provides a broad overview 
of some of the microcomputer applications 
for the field of graphic: design. The 
author's purpose is to explore applications 
beyond obvious production oriented tasks. 
She begins by comparing the past role of 
America's "Commercial Artist" to the 
"Designers" role today. In doing so, she 
demonstrates the need for computer 
assistance within the changing field of 
Gr·aphic: Deign. The remainder of the 
article describes possible microcomputer 
applications for typesetting, animation, 
business graphics, page layout, 
photography, television, typography design, 
creative problem solving, education, 
communication, concept sketching, business 
services, and image making. 

Background 
American Graphic: Design has undergone 

an evolution (1). From the turn of the 
century until the 1950's Graphic: Design 
was the domain of technicians, aptly 
called Commercial Artists. A successful 
Commercial Artist was one who could take 
ideas provided by the client and render 
them in decorative and stylized ways. This 
is no longer the case. Today, a "Graphic: 
Designer" plays a multifaceted role 
focusing on design as a process requiring 
multidisciplinary professional skills 
beyond the scope of artistic: talent <2>. 

Presently, the graphic: design 
profession is a primary contributor to 
modern visual culture.• Graphic: 
c:ommunic:ation techniques are used for 
persuasive, informative, and educational 
purposes. The increased need for design 
and the comple>:ity of new modes of 
communication demand new roles requiring 
new kinds of designers. 

• Designers are now translators, 
interpreting written and verbal 
information into visual imagry. 

e They are teamplayers and coaches 
worK1ng beside professionals like 
editors, typographers, stylists, 
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producers, suppliers, illustrators, 
photographers, printers, marketing 
statisticians, media buyers, computer 
consultants, and other specialized 
designers. 

• Today, designers must be 
literate in areas related to 
sociology and psyc:hology in order to 
analyse, predict and control 
behavioral responses to proposed 
messages. 

• A designer must be wel 1 versed 
in principles governing business. 
Not only does the design studio have 
to project a professional attitude, 
but the designer must also possess 
the voc:abulary to communicate with 
business c:lientele. 

• Designers must be tec:hni call y 
oriented so that they may perform, or 
direct, the production steps required 
in preparing a graphic: communication 
piece for publication or broadcast. 

• Designers are, of course, 
artists. An artist manipulates visual 
elements within a predefined visual 
field. In the case of graphic: 
design, the image should be distinct, 
dynamic:, mood provoking, and 
aesthetically pleasing. 

• Lastly, the transition from the 
Commercial Artist of the 1950's to 
the "Designer of the BO's" means that 
a designer must possess a strong set 
of creative problem solving skills. 
The design process today is no longer 
solely dictated by the client. 
Today, a client hires a designer or 
design team with the expectation that 
they will carry a project through 
from concept to final piece. This 
responsibility includes: defining 
and researching the problem, creating 
criteria for a successful solution, 
generating options for solution, 
selecting the best of these options, 
producing the piece, and, oftentimes, 
even monitoring the project's success 
in the market-.-



:Cntroduction 
Computer technology is playing an 

important role in defining the scope of 
today's designer. A report titled, "The 
Market for Computer Graphics in the 
Graphic Arts Industry," published by Frost 
and Sullivan, Ltd., predicts that 
electronic paint systems will become 
unive~s~l graphic design tools in graphic 
design and video studios. The influx of 
the new technology will be so great that 
sales of this computerized equipment will 
top seven billion dollars by 1990 131. 

Print Magazine prefaced the results 
of a computer graphics usage survey of its 
readers by stating, "Computer graphics 
systems are forecast by industry experts 
as the highest growth segment of the 
computer industry for the next five to ten 
years" (41. 

However, the computer industry has 
been shortsighted in limiting its 
applications for design to those 
performing production oriented tasks. 
Production is only a small segment of the 
total design process. A designer must 
integrate the social, economic, 
psychological, and physical attributes of 
a design problem into a successful and 
distinct solution. Therefore, if a 
computer is to be a worthy investment it 
should address the needs of both creative 
and practical tasks. 

This paper will provide an overview 
of production applications along with 
other more creative applications for using 
computer technology to enhance the total 
design experience. 

It should be noted that a desigr 
studio or educational institution need not 
invest thousands of dollars in order to be 
part of the "computer revolution." Most of 
the applications discussed in this paper 
can be accomplished with a personal 
computer and add on peripherals. 

The system I am using is an Apple II 
Plus with 64K of memory, two disk drives, 
a dot matrix printer with a graphics 
interface, an RBG color monitor, a 
graphics tablet, a video digitizer, and a 
communications modem. This equipment costs 
approximately $5,000.00. Software, 
supplies, books, etc. costs an additional 
$1,500.00. 
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AJop l i cations 
TYPESETTING INTERFACE 

A designer is usually provided with 
written copy for a project. However, he 
or she is responsible for choosing and 
sizing a typestyle that will enhance the 
visual concept without compromising the 
informational content of the message. 
Traditionally, a professional typesetter 
sets the copy to the designer's 
specifications. Most typesetting is done 
on a specialized computer. Therefore, it 
is possible to use a communications modem 
to interface a microcomputer, located at a 
remote site, with typesetting equipment. 
This allows the designer, after entering 
the correct conversion table, to directly 
keyboard and specify the desired type and 
layout. The advantages of this system are 
a quicker turnover, less chance for 
errors, cost reduction, and a more 
personalized involvement with the actual 
product. 

TYPOGRAPHY DESIGN 

Many of the graphic packages on the 
market include a selection of type fonts 
that the user can manipulate in respect to 
position, size and weight. Occasionally, 
the designer will want to create a 
typeface for a specific use. Most type 
design routines provide the user with a 
magnified grid in which existing 
characters can be altered and new ones 
created from scratch. The resolution is 
not nearly good enough to be substituted 
for professional typesetting, but the 
characters can be used for rough concepts 
and do have a certain sensitivity in their 
own right. 

PAGNATION SYSTEMS 

One of the most tedious jobs the 
designer performs is "keylining" a piece. 
Keylining is the process in which the type 
and artwork are pasted to a board, colors 
are separated by "cutting" overlays, and 
instructions are provided for the 
printer. Large computer systems have been 
extremely benefical in assisting the 
designer in completing this task. Time 
Magazine, for e>:ampl e, replaced X-acto 
knives and waxers with "Vista", a system 
designed by Scitex Corp. Ltd. This system 
is comprised of two screens. One of the 
monitors displays, in symbolic form, the 
designated story, headlines, art, and 
pictures. Time's designer can move the 
elements around and alter size and 
position. The second monitor shows, in 
full color, what the actual page will look 
like. When completed, the page can be 
outputted fully keylined (5). 



Microcomputers are unable to provide 
the high quality of image required for 
publication. However. word-processing 
programs are available that have "cut and 
paste" routines which can combine type and 
images together on a single page. In 
addition, images, copy, grids for layouts, 
letterheads, etc. can be designed and 
saved, then retrieved when needed. This 
technology is useful in the concept stages 
of the project. In fact, some advertising 
agencies have been experimenting with 
"soft proofing" of ads in which they 
electronically transmit the rough concept 
to the client for viewing and critiquing 
(6). 

BUSINESS GRAPHICS 

One of the more popular applications 
of computer graphics is creating charts, 
graphs, diagrams, and information graphics 
for presentations, training programs, and 
other ·situations where complex data is 
better understood ii: it can be visually 
communicated. Many quality programs are 
on the market that can manipulate data 
into a variety of graphic formats. The 
problem with the microcomputer versions is 
the inferior quality of the resolution and 
output. However, if the need exists, 
business graphics can be composed on a 
micro and then be electronically sent to a 
professional computer slide production 
house for printing <7). 

PHOTOGRAPHY 

Glenn Rand, Director of the Lansing 
Community College Photographic Technology 
Program in Michigan, has written a unique 
program for the Apple that can be used by 
photographers "to add dimension to the 
black and white printing process" CB>. 
Dr. Rand's program uses the CRT as a "very 
controllable" light source. The light 
pixels are individually programmed to 
imitate the procedure of "dodging and 
bur·ning." 

TELEVISION 

Most of the computer graphics 
produced for television are created on 
large, powerful, and expensive systems. 
However, Chyron Corporation of New York 
recently introduced a low cost 
microcomputer peripheral capable of 
generating both video text and graphics. 
This system is not as sophisticated as its 
larger counterparts, but for a designer 
working with public television or a cable 
information network it provides good 
quality graphics for displaying titles and 
credits, and fulfills other broadcast 
needs (9). 
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ANIMATION TECHNIQUES 

There are excellent software packages 
available for micros which provide the 
"tools" to create two-dimensional 
animation. "MovieMaker", by Eric S. 
Podietz, is a fine example of a easy to 
understand program that allows the user to 
develop, edit, and review animated 
sequences. The designer can apply this 
technology to planning storyboards or 
producing animatics for television 
commercials. A computer used for 
animation will save the designer time by 
actually drawing many of the frames and 
allowing for immediate changes. 

SERVICE 

One of the advantages to using a 
microcomputer instead of a stand-alone 
imaging system is that it fulfills the 
many design related applications 
previously discussed, and, also can be 
used to perform everyday office related 
functions. A wor·dprocessing program can 
be used to write letters, advertising 
copy, articles, briefs, etc. Databases can 
be tailored to generate class records, 
client profiles, mailing lists, and any 
other organizable information. Accounting 
packages can be used to keep financial 
records. A communication modem can 
connect the user to other computers, 
electronic information networks and 
services ranging from library circulation 
databases to letter ~uality printers. 

A software package is available for 
IBMs and IBM compatible systems that 
manages the day-to-day functions of an 
advertising agency. Developed by Gabel 
Advertising, Inc. in Colorado, to handle 
their own business's chores, it provides 
specialized management tools for billing, 
cost accounting, general ledger entries, 
payroll planning, invoicing, and check 
printing. 

COMMUNICATION SERVICE 

A microcomputer fitted with a 
communication modem can send and receive 
information. This makes it an ideal 
vehicle for communicatng timely, design 
related news and information between 
students and/or design practitioners. 

Currently, I am working on a project 
to electronically publish a newsletter 
titled, "Design-on~Line." This publication 
would feature articles, employment 
opportunities, legislative news, grant 
listings, a date-line for conferences and 
other events, an interactive student 
message/bulletin board, resource lists, 
and other design related information. 
"Design-on-Line" will be shared with other 
machine compatible design programs and 



studios. Eventually, it could grow to 
serve a larger audience and possibly be 
self-supporting from subscription and 
advertising revenue. 

EDUCATION 

Microcomputers, as an imaging tool, 
have already made an impact on design 
education. However, a computer in the 
classroom can also be used to perform 
other, diverse, design related tasks. 
"PFS," by Software Publishing Corporation, 
is a good example of a database management 
system that can be very useful in a 
1·earning environment. An educator can 
personalize a form for listing information 
like bibliographies, slides catalogues, 
historical data, designer biographies, 
paper specifications, market statistics, 
industrial product standards, etc. Once 
the form is composed a student can enter, 
access, rearrange, change, or delete 
information. 

The advantages of such a system are 
the following: Information can be rapidly 
retrieved from various item headings. 
Data can be continually updated. Hard 
copy, even mailing labels, can be easily 
obtained. The computer provides the user 
with an interactive session which, in 
turn, implies a more interesting approach 
to learning. The information is available 
to anyone with access to the disk. It can 
even be sent over modem to other educators 
and design practitioners. 

The computer can also be used, in a 
learning environment, to provide 
self-paced educational units on everything 
from how to perform specific design 
related tasks to to how to use the 
computer. Studen.t s can use a system to 
review assignments, access hand-outs, or 
take tests. 

Another intriguing use for such a 
system would be personalized electronic 
sketchbook/journals. Every student would 
be required to use a disk to keep notes 
and sketches. This disk would be a good 
way to document a term's work and 
research. In fact, e>:isting databases 
could be accessed and information 
pertinent to particular problems and 
solutions could be saved unto the journal 
disk for future reference. 

CREATIVE PROBLEM SOLVING 

Many designers willingly accept the 
computerization of design production but 
balk at high-tech interference with the 
creative, conceptual phases of the design 
process. However, the microcomputer is an 
ideal tool for accessing, organizing, 
manipulating, visualizing, and evaluating. 
information relative to a design problem. 
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This process, of logically exploring a 
problem by playfully coaxing the user into 
manipulating information in ways that new 
combinations and fresh ideas surface, is 
called Creative Problem Solving (10). 

Last year, at the 3rd Symposium on 
Small Computers in the Arts, I presented 
"Electronic Thinking Cap," a paper 
describing my research on adapting a 
conventional creative problem solving 
model to microcomputers. This computer 
enhanced model consists of a foundation 
program and numerous application 
programs. The foundation program is a 
hierarchically structured, attribute 
storing, database in which the user can 
search for, add to, reorganize, and delete 
information. The application programs 
are, for the most part, "games" which 
allow the user to interact with the 
foundation program in order to generate a 
quanity of alternative solutions. 

The advantages of microcomputer 
enhanced creative problem solving are 
numerous. Information can be 
systematically and rapidly accessed and 
processed. A quantity of options can be 
generated, manipulated, and visualized. 
One-to-one interaction is readily 
available. An objective appraisal can be 
used to determine a priority ranking of 
idea options. The design process can be 
documented through a history of the user's 
interaction with the model. Lastly, 
"Electronic Thinking Cap" can provide the 
designer with a non-stressful and, 
hopefully, enjoyable high-tech experience 
( 11>. 

Sl<ETCHING TOOL 

The most creative phase of the design 
process is the concept stage. 
Traditionally, the designer uses colorful 
markers on tracing vellum to present his 
or her ideas to the client. These are the 
standard tools of the profession because 
they allow for subtle to significant 
reworking of the concept. A 
microcomputer, used as an electronic 
sketch pad, is an inviting alternative to 
markers and vellum. The computer can be 
programmed to perform an array of visually 
exciting manipulations once the image has 
been inputted. For e>:ample, using "The 
Complete Graphics System," written by Mark 
Pelczarski and David Lubar (Penguin 
Software), a designer can magnify portions 
of the image, choose from a palette of 100 
colors, paint with over 90 different brush 
strokes, add text, create mirror images, 
move selected parts of the image, change 
colors, and rotate and shrink the image so 
that multiple views are shown 
simultaneously. Furthermore, the images 
can be saved to disk and then retrieved 
for viewing, reworking, or hardcopy 



output. 

Models for packaging graphics and 
other three-dimensional concepts such as 
e>:hibits, costumes, stage designs, product 
prototypes can be built, panel by panel, 
using the 3-D routines. Once all the 
points have been visually or 
mathematically entered, the image can be 
moved, sized, rotated, and even drawn 
upon. 

IMAGING TOOL 

Computer generated art has been slow 
to gain acceptance by the design 
community. Owning or buying time on large 
imaging system is e>:pensive, yet, the 
smaller microcomputer systems cannot 
provide the standard of quality needed for 
professional work. However, the industry 
is beginning to respond to the needs bf 
illustrators and designers who want to use 
the computer as a fine art tool but cannot 
afford a stand-alone imaging system. 

Chartpak Company, producers of 
transfer lettering and graphic art 
products, recently introduced, "System 
640," a graphic system compatible with the 
IBM PC. This system offers many of the 
same features of the sophisticated 
stand-alone systems, at about a tenth of 
the cost. The advantages of these kinds 
of "add-on" systems, other than their 
affordablity, are accessibility, ease of 
operation and the versatility of the 
personal computer to also be used to 
perform numerous non-imaging tasks. 

Co:nclusio:n 
This paper has provided a generalized 

overview of some, but certainly not all, 
of the microcomputer applications for 
graphic design. Furthermore, the field is 
so dynamic, and growing to rapidly, that 
some of the information presented in this 
paper will, no doubt, be obsolete by the 
time this publication goes to press. 

There are two important points to 
keep in mind when considering 
microcomputer applications for design. 
The first is that computer technology need 
not be financially prohibitive. The 
potential user needs to decide on the 
priorities for use and purchase a 
microcomputer system that best serves 
those needs. Most systems are modular in 
composition and peripherals can be added 
as finances permit and the need merits. 

Secondly, there is no limit to the 
microcomputer's potential as a creative 
addition to a design environment. Massimo 
Vignelli, an internationally renown 
designer stated, "The computer frees the 
designer to design" (12>. If the designer 
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approaches the machine with 
then he or she can go 
preconceived notion that a 
solely a production tool and 
fulfill a wide range of 
creative tasks. 

an open mind 
beyond the 

computer is 
use it to 

diverse and 
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3-D COMPUTER GENERATED ANIMATION 
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ABSTRACT 

As computer graphics has become 
more sophisticated technologically, 
it has become an obvious tool for 
animation. While many 2-D and 3-D 
computer animation systems are 
based on traditional eel animation 
concepts and terms, there are a 
number of new concepts and design 
criteria the artist must consider 
when working in this new 3-D medi
um. Computer animation is a 
multi-stage process, or animation 
pipeline. The computer animation 
environment is described, and each 
stage in the pipeline is discussed, 
with special attention to data gen
eration, data manipulation and mo
tion control techniques. 

1. Introduction 

Animation is the graphic art which 
occurs in time and conveys complex informa
tion through a sequence of images as seen 
over time. The source of information for 
the viewer of animation is implicit in pic
ture change; change in relative position, 
shape, and dynamics. Norman McLaren, a 
well-known Canadian animator, describes 
animation: 

Animation is not the art of 
DRAWINGS-that-move, but the art of 
MOVEMENTS-that-are-drawn. 

What happens between each frame is 
more important than what exists on 
each frame. 

Animation is therefore the art of 
manipulating the invisible inter
stices that lie between frames. 
The interstices are the bones, 
flesh, and blood of the movie (and) 
what is on the frame (is) merely 
clothing (17]. 
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This equilibrium between form and 
movement characterizes animation and makes 
it unique as a graphic medium. In anima
tion anything can move in any desired way; 
this is what makes animation so exciting. 
The artist can create and bring life to new 
and imaginary worlds. In this respect ani
mation is one of the most creatively free 
mediums. Ironically, animation which is so 
artistically free is also a time consuming, 
tedious, and expensive medium. 

2. USES OF COMPUTERS IN ANIMATION 

As computer graphics has become 
sophisticated technologically and as 
puter availability has increased, it 
become an obvious tool for animation. 

more 
com
has 
The 

computer can be used as an augmenter for 
conventional animation and as an image syn
thesizer in computer generated anima
tion (14]. As an augmenter in traditional 
animation the computer is used to control 
the moves of the camera, eels and/or the 
animation bed of the animation stand. One 
advantage of the computer is its ability to 
deal with complex relationships precisely 
and rapidly. The computer is able to 
repeat mathematical operations over and 
over again either identically or with small 
incremental changes. It can be used to 
compute camera moves, as well as keep the 
detailed records for the exposure sheets 
that are necessary for animation organiza
tion and production [3]. 

Computer generated animation can 
include both 2-D animation and 3-D anima
tion. The approach to 2-D computer anima
tion is very similar to the process of 
traditional eel animation. The animator 
need only learn how to use the computer and 
the specific software available to create, 
store, and playback the animation [5]. 

3-D computer animation, in some 
respects, is similar to clay, puppet, or 
model animation. In 3-D animation the 
model, props, and backgrounds are built 
and/or painted, then the lights are set up 
to show the dramatic effect desired. A 



motion picture camera with single frame 
capabilities is set up and one frame of 
film is exposed. The animator moves the 
model just a little and a frame is exposed. 
Repeating this process over and over again 
is the process of creating animation. As a 
result of the persistence of vision, when 
these single frames are-projected at an 
appropriate rate they appear to blend into 
movement. 

2 .1. 3-D Computer Generated Animation 

In 3-D computer generated animation a 
mathematical model of the characters, 
props, and background are created by the 
artist and stored in the computer memory. 
Many copies or instances of one model can 
be used. If one tree is digitally gen
erated, it can be used to create a forest. 
For a scene, these models can be manipu
lated by changing their size, position, and 
orientation in space. The color and sur
face properties are assigned to the models. 
As with model animation the lights are set 
up to best show off the form and the 
action. The "camera" or eyepoint from 
which this scene is viewed can be placed 
anywhere and moved at will. The resulting 
image is rendered on a display device. 
Then the image can be stored in computer 
memory and/or recorded one frame at a time 
on video tape or film. 

2.2. Preproduction Planning 

The process of planning for an anima
tion is essential. Animation is a visual 
art form, a form of communication. 
fore, the idea is the first and most 
tial step of creating an animation. 
what makes the animation work. 

There
essen
It is 

The storyboard is the conceptualiza
tion of the animation in a visual format. 
Animation is time consuming and expensive. 
Through the storyboard, scenes can be 
edited and rearranged prior to actual 
rendering, thus avoiding a great deal of 
time and expense. The storyboard contains 
the action, timing, sound, motion, transi
tions, information flow, rhythm, and char
acter development, as well as the lighting 
specifications and the "camera" shots. 
There should be enough drawings, usually in 
comic book form, to get across the key 
ideas and to be able to clearly follow the 
action. Even in highly interactive com
puter animation systems preplanning and 
storyboarding is essential. 

2.3. Movement and Timing 
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The animator's main concern in 3-D 
computer graphics is the choreography of 
objects, lights and the camera. The anima
tor must communicate this information to 
the computer for each frame of the anima
tion. These changes or transformations are 
controlled in various ways by the animator, 
depending on the system being used. 
Besides specifying the parameters of the 
objects and the view for a scene, the focus 
is on the changes of these parameter over 
time for the desired effect. The reader is 
referred to the excellent film on timing 
and motion in animation by Norman 
McLaren (18]. 

A common pattern of movement is to 
hold, accelerate to constant speed, 
decelerate, and hold. In traditional ani
mation tedious mathematical calculations 
must be performed by the artist and written 
on the exposure sheet, and/or incorporated 
into the drawings or models in order to 
generate the proper motion for each frame. 
In computer animation, of course, we can 
program these mathematical functions so 
that the animator is free to concentrate on 
designing motion rather than calculating 
the numbers to enter on an exposure sheet. 
While the mathematical functions used in 
traditional animation can bew applied in 
computer animation to move the models, 
lights and camera, the computer can keep 
track of many objects and changes simul
taneously, so that the animator can control 
movement much more complex than in tradi
tional animation. In addition, since the 
computer, not the animator, evaluates the 
mathematical functions that generate 
motion, it becomes practical to incorporate 
much more complex and realistic models of 
motion into animat~on sequences. 

Since many 2-D and 3-D computer anima
tion systems are based on traditional eel 
animation concepts and terms, the reader 
should become familiar with this field. 
Preston Blair [2], Frank Thomas (29], Brian 
Salt (28], Eadweard Muybridge [19,201, Eli 
Levitan (16], and Harold Whitaker (30] are 
good sources on traditional animation tech
niques and terminology, as well as motion 
and timing. 

2.4. Time and Space: Computatioo Cost 

An artist considers the cost and avai
lability of materials and the quality of 
the workspace when designing a work of art. 
This is also true in computer graphics. 
Cost in computer graphics refers to two 
factors: computation time and memory space. 

Modeling is often seen as a process of 
simplification; yet portraying the world in 
a manner that is believable to the viewer 



requires detail. As a digital image grows 
more complex and detailed, the more expen
sive it will be to produce. Conversely, 
while a simpler image may be easier to pro
duce, it will appear less realistic. Com
putational cost is related to a number of 
factors such as the complexity and number 
of objects in a scene, and the complexity 
of the light and shading models used. The 
artist must take these issues into con
sideration when designing an animated 
sequence. 

The sophistication of the graphics 
software used to generate images can vary. 
Programs that try to closely represent the 
real world may be very complex and require 
extended computation time. Similarly, 
mathematical models that try to represent 
highly detailed objects will take longer 
and require more computer memory to calcu
late images. The time it takes to produce 
one image can vary from a few seconds to a 
few days! 

Realism in 3-D computer graphics 
requires a fairly powerful computer, con
siderable mass storage, and a color display 
device with its own memory. The price of 
computers and memory has decreased substan
tially in the last five years, but they are 
still very expensive. Fortunately for the 
artist, a new generation of microcomputers 
is approaching the performance of the mid 
range computer. Some of these micros are 
now being tested and used in computer 
graphics labs. We can look forward to the 
day when substantial computing power for 
computer graphics is readily affordable. 

3. Artistic Control of Computer Animation 

In an analogy with conventional 
cinema, in computer graphics the animator 
is able to position and orient simulated 
light sources and a synthetic camera. 
Objects can be made larger or smaller or 
scaled. They can be turned in space or 
rotated. They can can be moved around in 
space or translated. These manipulations 
are called transformations. Any parameter 
that can be controlled for an object can be 
changed over time during an animation 
sequence. For example, incrementally 
translating an object to another position 
in space over a series of frames will make 
it appear to move. Varying the distance 
between moves can either speed up or slow 
down the motion. If an object is rotated 
by .5 degrees per frame, it will turn 12 
degrees a second, or revolve completely 
around twice in one minute of animation. 

Computer graphics has some of the same 
problems as traditional animation. If the 
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size of the move is too great it will 
create the effect of a visual stutter. In 
computer graphics the simulation of motion 
blur is being explored to eliminate this 
problem [15,23]. 

Depending on the system, the animator 
may be able to define a path which an 
object will follow. A path allows the 
artist to design complex motion through 
mathematical procedures. 

All of the above operations can also 
apply to objects that are attached 
hierarchically. A bicycle can be built out 
of separate parts. The wheels, the handle 
bars, pedals, seat, and a rider can be 
attached to the frame of the bicycle. As 
the bicycle frame is translated down the 
street all of the parts come along. The 
wheels and the pedals can be rotated at a 
speed appropriate for the distance of the 
translation, and at the same time the han
dle bars can be turned. This motion of 
articulated objects can become extremely 
complex. 

Object attributes such as shininess, 
texture and color, transparency of an 
object can change from frame to frame. The 
background color can change slowly from day 
to night colors, or a dull opaque object 
may become shiny and transparent. Lights 
can also change dynamically. Their range 
of influence can be scaled incrementally, 
they can change colors, or even fly around 
influencing the lighting and color of other 
objects in the animation. 

One feature unique to computer graph
ics is the ability to arbitrarily and 
weightlessly move the "camera". Views 
impossible in other medium can be achieved. 
The eyepoint and center of interest can be 
used in animation to simulate filming con
ventions or techniques, such as a cut, pan, 
dolly, truck or crane shots. Changing the 
view angle can simulate the changes of a 
zoom lens. For example, since the camera 
is always aimed at the center of interest, 
for a pan the "camera" is stationary and 
the the center of interest is moved. In a 
trucking shot the center of interest and 
the eyepoint follow parallel paths. 

4. The Animation Environment and The Ani
mati~Pipeline 

An animation environment has both 
hardware 
hardware 

and 
for 

software components. The 
the computing environment 

includes a computer or computers, termi
nals, printer, tape drive, and extra memory 
discs. System software for the computing 
environment includes an operating system, 
text editor, drivers for the hardware and 



various programming languages. The graph
ics hardware includes display devices, such 
as a CRT, vector display or picture-system, 
a color raster display device, frame 
buffer, and various input devices such as a 
mouse, knobs, dials, joysticks, switches, 
buttons, bit pad and digitizing camera. In 
an animation environment it is also impor
tant to have a way of recording animation 
on film or video. 

The graphics software necessary in an 
animation environment can be categorized by 
the purpose of the software: creating and 
editing data, scene description and motion 
control, display algorithms or rendering 
programs, post production (image process
ing) and a system for saving, filming, 
and/or recording frames. 

Most environments are not made up of 
one large program. Instead systems are 
made up of several efficiently designed 
special purpose programs [7,9]. These pro
grams carry out their designed task and 
send the results to the next program to 
implement its special task. This is called 
the animation pipeline, which looks some
thing like: 

data generation-> scene description-> 
rendering-> opticals -> camera 

4. 1. Data Generation 

Data generation software allows the 
artist to create the mathematical models 
that will be animated. Some of the methods 
for building data are projection, lofting, 
solid of revolution, and combina
torial [27,26]. 

The biggest concern in designing the 
data generation system is the ease of use 
for the artist, its efficiency, and immedi
ate graphic feedback. The artists greatest 
concern is the ability to create the forms 
they want. There are some animation sys
tems that combine the data generation with 
the animation system. 

4. 2. Data Manipulation 

Artists want to be able to refine and 
adjust an existing object to achieve the 
best possible form. An interactive system 
that facilitates these adjustments is 
extremely helpful. To edit data by hand 
can be very tedious and time consuming, 
especially for large objects. For example, 
if a polygon is defined incorrectly, it 
may take a while to find out exactly which 
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polygon it is and correct the problem. To 
move a point the artist would have to edit 
the data file and change the values for 
that coordinate, display the object to see 
if the change was correct, and so on until 
he is satisfied. An object editor can 
allow the artist to change a polygon 
description, move points, or even add, 
delete, or assign color to polygons or ver
tices and immediately see the results [9]. 
The artist can interactively see the object 
while he adjusts, edits, and refines the 
form and may even undo some operations that 
do not look right [24]. In addition a 
variety of mathematical techniques are 
known for cutting, bending, and distorting 
objects, as well as generating fractals. 

4. 3. Surface Description 

Surface description, such as color, 
shading model, texture, transparency, or 
light reflectance of objects are usually 
carried out in the display algorithm, but 
the artist has to specify these parameters. 
In many systems these parameters are desig
nated in the animation script, but in other 
systems are part of the object description. 
They are mentioned here, because sometimes 
special purpose programs are used to create 
the desired effects. An important example 
is texture mapping. A texture pattern must 
be created to be mapped onto an object. 
This pattern can be created in several 
ways; through the use of a digitizing cam
era, through a paint program, a weaving 
program, procedurally generated, or a scene 
description created by the artist. This 
image or a section of this image must be 
mapped onto the object. Sometimes special 
software is useful for mapping a texture in 
the particular way an artist desires. 

4.4. Scene Description and Animation 

In a scene description the contents of 
a frame are described. An animation system 
allows the animator to describe a sequence 
of images. The types of animation systems 
currently in use are~-~ keyframe systems, 
animation languages, systems for control
ling articulated figures, systems for simu
lation or a combination of these. 

Interaction between the artist and the 
computer can be device-driven or language
driven. In a device-driven system the 
artist interacts with the computer through 
switches, knobs or dials, bit pad and 
receive immediate graphic feedback. 
Depending of the system, the artist can see 
these changes in real time. In a 
language-driven system the artist creates a 
textual script and then 'runs' the script 
to see the animation. Some systems allow 



the artist to interact through either or 
both methods. 

4.4.1. Keyframe Systems 

A keyframe is similar to an extreme in 
traditional eel animation. In a keyframe 
system the animator specifies the scale, 
position, orientation, color of objects, 
and the view parameters for a frame. This 
becomes a keyframe. Then any desired 
changes are made in the objects or parts of 
the objects, the animator specifies how 
much time has elapsed since the last key
frame, and the new keyframe is set. The 
computer interpolates the specified number 
of in-between frames by computing the 
changes between keyframes. These 
inbetweens can be calculated linearly (uni
form incremental changes) or eased motion 
can be generated. Some systems give the 
animator interactive control over the 
dynamics of motion. 

A keyframe system developed at Pacific 
Data Images, Inc. (PDI) [6], allows the 
artist to interactively set up keyframes, 
run pencil tests at various levels and use 
the same script to fine tune the final ani
mation sequence. This system combines the 
data generation and the animation into one 
system. Another example of keyframe sys
tems is ANIMA II [13], a keyframe program
ming language which uses scripts and pro
duces real-time color shaded animation. 

Some 3-D systems use a multitrack or 
event driven approach, which allows the 
artist to set times and events indepen
dently for each object, rather than all 
objects in a scene for a keyframe. An 
example of a multitrack system is MUTAN 
(MUltiple Track ANimator) [11]. This sys
tem allows the animator independent tracks 
for multiple characters, sound, and camera. 
MUTAN is based on the exposure sheet used 
in conventional eel animation. TWIXT [12] 
is an event driven system. Twixt allows 
the artist to interactively set up events 
and playback the action in a pencil test to 
see the motion. Where MUTAN has each 
object on an independent tracks, TWIXT has 
each parameter of an object on a separate 
track. For example, the color of the 
object could be eased-in while the transla
tion and rotation is eased-out. Twixt also 
allows the construction of hierarchical 
relationships among objects, and a shape 
interpolation routine is built in as one of 
the tracks. One advantage of an event or 
multitrack animation systems over a key
frame systems is the ability to create the 
motion of each object independent of other 
objects in a scene. The sequences of events 
can be used to develop an animation script 
which can create either a realtime pencil 
test in wireframe or low resolution shaded 
images, as well as a final finished 
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animation. 

4.4.2. Animation Languages 

An animation language is a programming 
language for animation and graphics, which 
allows the animator to specify objects and 
their dynamics and surface qualities as 
well as camera dynamics. Graphics or ani
mation languages, like other programming 
languages, allow for variables, iteration, 
incrementation and conditional statements 
for controlling animation. Some examples 
of animation languages are ANIMA II, ANTTS 
(Animated Things through Time and 
Space) [8], and ASAS (Actor/Scripter Anima
tion System) [25]. ANTTS allows the anima
tor the possibility of hierarchical struc
tures and is able to run on a DEC PDP-11/23 
micro-computer. ASAS combines the data 
generation with the programming language 
and incorporates advanced programming tech
niques. ASAS also allows the animator to 
set up hierarchical structures. 

4.4.3. Control of Articulated Motion 

Animation of articulated figures is 
difficult. Even in conventional eel anima
tion, rotoscoping was oft~n used to trace 
live action film of an actor onto the eels 
to better portray the motion. Sometimes 
articulated models where used as a guide to 
aid the animator [29]. An animation sys
tems focusing directly on this problem of 
complex motion is BBOP [31], developed at 
New York Institute of Technology (NYIT). 
In this system the animator organizes the 
structure of the articulated figure in a 
short script. Then the animator interacts 
with this figure through dials, bit pad, 
and joystick to control the joint action of 
the figures. The animator has immediate 
graphic feedback. The camera may be placed 
and a sequence of motion designed and 
played back to test the motion. The anima
tor may specify the motion through graphic 
means by adjusting a graph for the timing. 
GRAMPS (GRAphics for the Multi-Picture Sys
tem) [22], designed for use for scientific 
research in molecular models and chemical 
research, deals with relationships of very 
complex data structures. 

4.4.4. Simulation 

A simulation is a simplified model of 
a phenomenon or action. Flight simulators 
have been used for many years to train 
pilots. The pilot interacts with the com
puter through all the normal flight control 
devices available in a cockpit. These 
analogue devices control the motion for the 
real-time animation which is displayed on a 
TV-screen "windshield". This simulation is 
augmented by actual pitch and roll of the 
cockpit for kinesthetic feedback. 



Simulation of complex human motion is 
being studied by Norman Badler [l], David 
Zeltzer [33], and several others. sa, the 
skeleton animation system [32]. -SA is 
designed for the artist to interact with 
the system at several levels. All move
ments can be set up in an interactive mode, 
or ''skills", such as walking, can be stored 
and used several times. Since walking and 
running are cyclical procedures, these can 
be used and re-used with only slight 
adjustments to change the quality of the 
stride. Principles from robotics and 
artificial intelligence are important parts 
of such systems. 

4.5. Rendering and Display Software 

The display algorithm can be imple
mented in software or hardware. The major
ity of animation labs and production houses 
develop their own display software, using a 
variety of rendering algorithms. Tech
niques have been developed to remove 
hidden-surfaces from an image, and for ras
ter displays, to compute surface shading 
and texture, all without introducing the 
aliasing artifacts associated with digital 
imagery. Research is continuing on effi
cient techniques for generating synthetic 
images that are nearly indistinguishable 
from photographic images. In general, 
mathematical proficiency and programming 
skills are not required to use such sys
tems. But as with any complicated tool, 
the user who understands the basic concepts 
can make the best use of the capabilities 
of that tool. Foley and Van Dam [10] and 
Newman and Sproull [21] are comprehensive 
texts on computer graphics. See [27] for a 
non-technical introduction to the field of 
3-D computer graphics. 

In an animation environment the time 
it takes to generate the final image is 
important. Some systems with the appropri
ate hardware allow the artist to view ani
mation sequences in real time. This facil
ity is extremely helpful in testing and 
debugging the movement and timing of an 
animation sequence. High resolution shaded 
graphics are currently too slow to give the 
animator this necessary feedback until 
after much time has been spent calculating 
frames and recording the animation on film 
or video tape. For this reason many sys
tems allow the animator to choose the 
appropriate viewing mode for a particular 
stage of the animation. For example, a 
pencil test can be displayed in wireframe 
mode to get a rough idea of a sequence in 
the early design stages. Next a low resolu
tion, shaded pencil test can be computed to 
check the color and placement of objects 
(which may be ambiguous in wireframe 
views). Lastly, expensive, high resolution 
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frames are generated. This hierarchy E..!._ 
viewing modes makes the most efficient use 
of the system. There is no reason to spend 
days or weeks calculating high quality 
images until the animator is confident the 
sequence is correct. 

4.6. Post Production 

Optical or special effects can be per
formed electronically. It takes special 
programs to do fades, wipes, dissolves, 
mattes, titles, compositing and other image 
processing. Sometimes 3-D animation is 
calculated, saved and then used later as 
2-D in the same manner as eels. This pro
cess is referred to as 2 1/2-D. 

4.7. Recording 

Animation can be recorded on either 
film or video. Software and hardware are 
necessary for this process. An animation 
camera (16mm,35mm) must be interfaced with 
and driven by the computer. Video equip
ment for recording one frame at a time must 
also be interfaced and driven by the com
puter. Equipment for synchronizing sound 
with the animation may also be available. 
A number of problems can arise due to the 
limitations of various imaging devices (see 
Catmull) [4]. 

One problem in computer animation is 
the transfer to hard copy. Transfer to 
another medium usually causes problems and 
also moves the product another generation 
away from the original. In the transfer of 
an image to film there can be a loss of 
resolution. If the monitor resolution is 
less than the resolution of the film then 
the individual raster lines will be seen on 
the film. There is also a loss of color 
quality. This is similar to taking a color 
print of a stained glass window with the 
light shining through it; the color looses 
some of the power of the luminance in the 
print. If the image is taken by setting a 
camera in front of the buffer the camera is 
shooting through both the curved surface of 
the face of the monitor and the lens, which 
can reduce the quality of the image. 
Hardware developed primarily for the pu~
pose of this transfer to film, use a flat 
screen and usually do three separate passes 
(either red, green, blue, or cyan, magenta, 
yellow) which will yield higher quality 
results. There may be problems with the 
exposure in areas of high contrast because 
the exposure has to be longer than the 
refresh rate. If the final product happens 
to be a film transfer to video the colors, 
format, and resolution will change. 

If the output is directly to video, 
the problem is transferring the RGB digital 



image to NTSC analogue. Some of the reso
lution is lost if the video is not a one 
inch format. 

The final form should be known prior 
to calculating an animation due to the dif
ferent format size. The edges of the image 
seen on the buffer may be lost when 
transferred to video. This video safe area 
has to be kept in mind while working on the 
animation. 

5. Artistic Concerns 

The field of computer animation is 
still new and there are many problems to 
still be worked out, but the advantages are 
great. Once a model has been created it 
can be used and re-used with many varia
tions. If a scene is not correct the 
artist does not have to redraw a sequence, 
but must make some adjustments in the 
script and regenerate the frames. There is 
a freedom of form, camera movement, and 
animation possibilities that no other media 
provides. Once the artist/animator moves 
into this realm of 3-D computer animation, 
the artistic and aesthetic potential can be 
realized. 
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A LOGO-BASED CAI PROGRAM FOR PRODUCING REPRESENTATIONAL ART 

James J. McGinnis 

Temple University 

ABSTRACT 
A LOGO-based CAI program was 

developed to facilitate the drawing of 
realistic scenes on an Apple II 
computer. The program generates objects 
that children can use to construct 
pictures. No two objects are ever drawn 
exactly alike. A demonstration program 
that automatically generates entire 
scenes was also developed. 

THE LOGO LANGUAGE 
LOGO was developed at MIT over a 

period of 15 years. A major goal of the 
LOGO language is to transform the 
computer into an object to think with} 

LOGO is an ideal language for children 
because it has relatively few syntax 
constraints. In addtion, most commands can 
be abbreviated which results in a command 
set that places minimal typing demands on 
new users. The simplicity of the language 
allows children to concentrate on solving 
problems without frequent digressions to 
correct typing and syntax errors. 

Pictures are drawn on the screen by 
commanding a "turtle" that resides there 
to move in the desired direction. Whan the 
turtle moves it can, at the user's 
discretion, leave a trail. 

LOGO AND REPRESENTATONAL ART 
In spite of the simplicity of the 

language, children often have difficulty 
creating realistic scenes. Young children 
tend to loose track of the pan status when 
moving the turtle. They draw lines that 
were not intended or they accidently omit 
l inas. 

With this in mind, I created a CAI 
program that facilitates the creation of 
realistic scenes. The program consists of 
a set of subroutines that draw scenic 
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elements such as clouds, mountains, 
rivers, trees, and houses. The subroutines 
perform several functions in addition to 
drawing the object. First, they select the 
color to be used. Second, they keep track 
of the pen status. The pen is always 
lifted at the end of a subroutine so that 
the child can position the turtle for the 
next object without leaving a line. The 
program allows children to use a building 
block approach to construct realistic 
scenes while allowing them the flexibility 
to add their own objects. 

The subroutines that draw houses and 
trees require the child to specify a size. 
That requirement provides children with a 
straightforward introduction to the 
concept of a variable. 

fhe tree subroutine uses a standard 
binary trre algorithm to draw the 
branches. The leaves are than placed on 
the branches using an algorithm that 
randomizes their location within an area 
that is detrmined by the tree·s size. 

The painting program has bean used in 
several experimental courses that ware 
taught at Temple University. Children 
between the ages of 7 and 15 used the 
program to create pictures. It was found 
that children in these age groups had no 
difficuly using the subroutines described 
above. 

A LOGO-BASED DEMONSTRATION PROGRAM 
An additional program was created for 

demonstration purposes. The program runs 
all the subroutines while supplying 
appropriate constraints on random 
variables. For example, the program will 
not allow the base of a tree to be drawn 
above the horizon. There are no user 
specified options. The demonstration 
program takes approximately 4 minutes to 
run and it never generates the same 
picture twice. 



The program makes use of a monocular 
cue far spatial perception called 
interposition. An abJect that partially 
obscures another object is perceived as 
being closer than the obscured obJect. 
Clouds are drawn first. Mountains may 
partially obscure them when drawn 
afterward. Trees are drawn last so that 
they will partially obscure mountains and 
clouds. 

rhe program uses two metnods to 
produce a pseudo-perspective. The size of 
the random elements that are incorporated 
into a river is increased as tne height on 
the screen decreases. l'he same strategy 1s 
used to vary the size of trees. Figure 1 

shows four pictures that were 
automatically generated by the 
demonstration program. 
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ABSTRACT: This paper will examine computer 
graphic workstations for artists and designers. 
It is important to understand the many componants 
of a workstation, what one should "look for" when 
investing in one and how to evaluate what your 
goals and needs are when assessing these computer 
graphic systems. 

I. INTRODUCTION 
A computer graphics workstation is the 

artists/designers studio or the equipment that 
constitutes the user's workplace for the creation 
of visual and verbal material. It is the single 
user system, consisting of input, display, and 
output devices. It can be purchased either "off 
the shelf" as a complete package, or can be 
custom made from various components. 

In this article we will examine those work
stations that are "off the shelf", designed for 
artists and other users who typically use 2-D 
design, illustration, and presentation graphics 
as opposed to true 3-D graphics.* 

Before making an investment in a computer 
graphics workstation, it is important to under
stand the basic types, the relative costs, what 
is included (hardware, software), what the state
of-the-market is for computer graphics worksta
tions, and what you need to know about the 
industry in order to make an intelligent choice. 
The following pages will discuss those issues 
and describe the generic types that most designers 
working now in traditional studios will be using. 

II. WHAT IS A DESIGNER'S WORKSTATION? 
Although computer graphics workstations are 

typically made up of similar parts, there are many 
inherent differences. It is not the individual 
components that define these differences, but the 
sum of the parts, or how they are put together to 
create the total system. When looking at the 
brochures for many of these systems, they appear 
to contain identical hardware; but, because of the 
design of the software, the prograrrming that 
directs the hardware in its operation, they will 
work as completely different systems and do com
pletely different things. When looking at com
puter graphics systems it is essential to under
stand the basics of hardware, software and 
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interactive devices. 
HARDWARE DEVICES: They are defined as various 

components of a workstation such as the input, 
interactive, and output devices and a means of 
storing information and images. The computer, 
often referred to as the CPU or central processing 
unit, can be any size from micro to super. The 
amount and type of tools, as well as the speed and 
sophistication, are dependent upon the size of the 
computer. The ability of one machine to perform 
operations better and faster is often due to the 
size of the base system for which it is designed. 
The structure of the hardware will often allow the 
use of some tools, but will make it impractical or 
impossible to use others. 

Most state-of-the-market workstations available 
today operate with computers of approximately the 
same power and similar characteristics. They are 
mainly micro systems, which are dedicated to the 
operations needed for particular design, illustra
tion, animation, and page layout tasks. 

The parts of the machine that allow the artist/ 
designer to maintain control and get the job done 
are the INTERFACES. There are three basic 
divisions' INPUT DEVICES, INTERACTIVE DEVICES, and 
OUTPUT DEVICES. These interfaces and how well 
they function perhaps are of the most importance 
for the designer using a graphics system. 

INPUT DEVICES are those which allow the user 
to place into the computer the initial images, 
text, or other data that will be elements of the 
final piece. These can be photographic images, 
live video, points digitized off a tablet, using a 
puck, a stylus, a mouse or lightpen, or numbers 
input through the keyboard. All these inputs 
become numeri ca 1 data that wi 11 define the draw
ing. 

The two most common input devices are the 
video camera and the digitizing tablet. The video 
camera allows the user to scan in any dimensional 
image or object, or to "grab" a single frame of 
live video into the computer memory. The original 
can be either black and white or color. Some 
machines will accomodate full color, some limited 
color, and others only black and white within the 
computer. This capability is usually price depen
dent. The camera itself is often an ordinary 
video camera that is linked to the computer through 
hardware and software, which allows the scanned-in 
image to be digitized, or read by the computer. 



It is a frontend device, controlling the conver
sion of the image into digital data which the 
computer can understand. The user need only be 
concerned with the quality of the lens and the 
camera, just as in a photographic system, for the 
image quality is directly dependent upon how good 
the lens is. Time is also of importance and the 
user should be aware of how long it takes for the 
image to be digitized into the computer system. 
The time varies from machine to machine, and 
ranges from l/3Oth of a second to many minutes. 

The tablet, mouse and lightpen are devices 
that allow the user to draw into the computer, 
very much like drawing upon a blank sheet of pape~ 
The tablet contains a grid of wires that senses 
the location on the drawing device and sends a 
message of the point location to the computer. 
Depending upon the routine or the process being 
executed, the location is interpreted and allows 
the user to paint, draw or edit. The mouse 
usually operates without a tablet, directly on 
the surface of a table. The lightpen, another 
input device, "talks" directly to the computer 
via light signals. This is used directly on 
the display screen. 

The keyboard, is a keyboard, is a keyboard. 
The information is put into the computer by the 
user in the form of alphanumerics or by special 
function keys designed for a particular system. 
Any system that relies solely or heavily upon 
keyboard input, should come with a detailed list 
and explanation of the function keys and their 
meanings. Keyboard input is very individualized 
for each computer and it is impossible to 
describe any single system as being typical of 
a 11 systems. 

Computer programs can also generate numer
ical data from calculations and mathematical 
infonnation that is then converted into an image 
on the display screen. This is presently the 
least common way of inputting in the 2-D artist/ 
designer system, although it is quite common in 
true 3-D and other hybrid graphic systems that 
depend on calculations for the method of locating 
picture information. 

On the other end of the computer chain are 
the OUTPUT DEVICES. These allow the finished 
computer graphic to be transferred to 11 hardcopy" 
and taken out of the machine. The two major 
categories that we will be concerned with are 
photographic and printed output. 

Photographic output devices are precisely 
that. They allow the image on the computer screen 
to be transferred to film or photo paper in the 
form of photograph. The format may vary, but it 
is most commonly a 35mm camera. Other fonnats are 
from movie film (animation) and large format sheet 
film (4x5 and 8xlO). Other photographic devices 
are write-once videodiscs, videotape, and printing 
plates. 

The methods for taking a photograph of 
computer graphics range from aiming a camera 
directly at the screen and shooting, or using a 
fairly inexpensive camera with a hood which 
blocks all light falling onto the screen (thereby 
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eliminating reflections); to a more complex photo
graphic system, which produces the image on its 
own internal monitor directly from the computer 
memory. Clearly, the range, cost and sophistica
tion of the camera devices are vast and should be 
considered before investing in any particular 
style. 

Printers and plotters are varied in style of 
operation and output. The simplest is the single 
pen plotter which simply records lines. Because 
almost all art/design systems are capable of far 
more visual operations and results, the pen plot
ter is rarely seen in that environment, as the 
one and only output device. They are mostly used 
at the architectural and engineering workstation, 
where clean lines for mechanical drafting, floor
plans and elevations are necessary. 

Multipen plotters produce a colored image 
which can vary in complexity and color control. 
This is dependent upon the number of colored pens 
and the resolution of the plotter. 

In the printer category there are dot matrix 
printers on the low end and laser inkjet printers 
on the middle to high end. Dot matrix printers 
are alphanumeric printers that transfer typewriter 
characters to paper. Here again, the simplicity 
of the device will not allow more than letters, 
numbers, and symbols to be printed, and therefore, 
restrict the user in the form of output. Dot 
matrix printers, like single pen plotters, do not 
have unusual results unless they are under the 
control of the artist/designer, who clearly sees 
the advantages and characteristics of the devices 
and exploits them in a unique manner. 

Laser printers employ the use of a very 
narrow and coherent beam of light which results 
in precisely focused light. These are often used 
in in-plant publishing situations, where large 
amounts of paginated material can be stored, and 
printed in sequence on both sides of the paper 
and then collated for delivery. The process is 
repeated for each copy. The less expensive 
devices are used as high quality proofing devices, 
very much like the traditional electrostatic 
copier, but with greater accuracy, speed, and 
some say, sharpness. 

Other types of output devices will take the 
form of thermal printers, typographic, for 
galleys and proofs, videotape, direct broadcast 
video, film for animation, videodisc, and printing 
plates. Most output devices can be used with 
most machines (once the proper "device driver" is 
installed, if not included with the original 
package), and some are included in the pricelists 
of any given system. 

The quality of the output device is in the 
eyes of the beholder and the usefulness of the 
final result is directly dependent upon the 
intended purpose of the work. Most workstations 
will be equipped to allow different devices to 
be interfaced to the computer. But, by far the 
major output device for artist/designer work
stations is the 35mm camera. Because all other 
output devices are generally considered to be 
secondary in quality and desirability by the 



manufacturers, this article will limit the dis
cussion of output devices to a simple naming of 
the generic types. 

INTERACTIVE TOOLS: These tools are what allow 
the artist/designer to perform the work with 
fluency and efficiency. They are the controls that 
allow one to work in a manner that is consistent 
with more traditional tools and art/design inter
action. Interactive tools are both hardware and 
software. It is the design and the integration of 
the two that define both good and bad interactive 
tools. Without a doubt, the most difficult and 
challenging part of designing a computer graphics 
system is the design of the interface and the 
interactive devices that will allow the user ease 
and fluidity of operation, while still maintaining 
a high level of sophistication in the tasks that 
are performed. It is important to keep in mind 
that what appears to be the same level of opera
tion is quite different due to seemingly minor 
changes. Just as the comfort of a chair is the 
sum of all the design considerations for human 
sitting, and one chair that looks almost identical 
to another can be quite different to the individ
ual who uses it; the design of the interface on a 
particular computer is also the sum of the parts 
that are considered during the design phase. 

HARDWARE INTERACTIVE DEVICES, many of which 
have already been mentioned, compri.se the parts 
of the machine that the user directly handles and 
controls. They are the keyboard, stylus, puck, 
mouse, lightpen, TSO (touch-sensitive-display), 
foort pedal and speech recognizers. Clearly, the 
design and ergonomic considerations are key 
factors in the usefulness and "friendliness" of 
these interactive devices. 

SOFTWARE INTERACTIVE TOOLS: Once the par
ticular interactive device is chosen by the manu
facturer, the manner in which it functions with 
the workstation is largely a product of the 
prograITJ11i ng written to make it work with the com
puter. More often than not, the actual hardware 
is similar and it is the software that is a key 
factor in the friendliness of a particular station. 
The issue is complex, and as workstations become 
commonplace in the design studio, the design of 
these interfaces will more reflect the needs, 
tasks, and specifications of the user. The soft
ware and hardware engineers of these workstations 
rarely take into consideration who the end-users 
of these machines are. They believe that they 
understand the process of design better than the 
actual user, a professional artist/designer, who 
has spent years doing these tasks. It is only 
recently that computer companies have seen the 
need to consult with professional artists and 
designers for help designing the overall inter
faces that are appropriate to the marketplace. 
Within the next several years we will see more and 
more companies concerned with the "end user" 
rather than the CPU. 

The most common interactive control written 
for computer graphics is the menu. This is a 
"listing" of those routines and tools that are 
part of the "designer's toolbox" of programs that 
will allow all the art/design functions to happen. 
An interactive menu will route you through the 
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system, enabling you to go from one routine to 
another in a fluid and logical manner. The design 
of these menus is very different in all cases and 
quite particular to the system. Easy to read, well 
laid out menus are an asset, for the user can 
quickly go from one tool to another. Like a studio 
of traditional art tools, the ease that one can 
find the needed instrument is a key factor in the 
ease in completing the work. Menus that are too 
cramped and too complex are ineffective, so are 
menus that are too limited. 

Menus can be placed on a tablet (on a paper 
or acetate overlay). They can be put alongside of 
the picture space on the monitor, always in view. 
They can be placed in the picture space but erase
able. They can be on a separate screen. Most 
well designed menus are activated with the stylus, 
puck, mouse, lightpen, or TSO. Less convenient 
and "friendly" menus require the user to read the 
list of choices and then to input the information 
to the CPU by way of typed commands. 

Other considerations for interactive devices 
are concerned with the idea that the user must 
communicate the needs in a comfortable way, con
sistent with design functions. Without this 
approach to user control, the artist/designer may 
never feel at ease and in control of the system 
enough to ever embrace it as a common and useful 
tool. 

III. WHAT IS A WORKSTATION SUPPOSED TO DO? 
Like a studio, the graphic workstation func

tions as a place to perform work, a space in 
which to do the work, and a toolbox for doing the 
work. Also, like a single artist's studio, the 
computer graphics workstation can never supply all 
the tools for all the tasks an artist/designer may 
need to use. There is no single machine that will 
do every job needed to be done. There is no 
computer on the market that combines all the re
quirements of illustration, animation, typography, 
layout and pagination, photographic manipulation, 
image processing, and graphic design. And there 
is no system on the market that can replace all 
the tasks of the designer with the simple press 
of a button. There is no computer on the market 
that will ever replace the designer and artist. 

What you can expect from a computer is that 
it will perform tasks easily and quickly, having 
the ability to make changes and variations with 
much less effort than traditional tools. Also, 
computers will allow the user the opportunity to 
explore ideas that would not ordinarily be done, 
for their overall complexity in accomplishing them, 
and because the computer opens up opportunities 
not necessarily available with traditional tools. 
In addition, the combination of tools on the com
puter will allow new ways of exploring visual 
language, perhaps redefining aspects of that 
language and the process of design itself. 

Computer graphic workstations can be placed 
in specific categories. Most systems will overlap 
into two or more, usually with a primary function, 
often designated by the manufacturers, and second
ary ones, which often do not perform as efficiently 
as the first. 



The purpose of this analysis is to allow 
you to think about major design considerations 
as decided upon by the manufacturer. What is 
important in this categorization is to keep in 
mind the overall purpose of the computer and to 
be aware that compromises had to be made when 
designing the system. Because no one computer 
graphic workstation will do all design/art jobs, 
the primary category is the one that will be most 
often followed, compromising on the secondary 
requirements. 

IV. THE FIVE CATEGORIES 
BUSINESS AND PRESENTATION GRAPHICS: These 

systems are designed to prepare graphics '.or pre
sentations and for consolidation of data 1n a 
visual graph and chart format. Attributes of 
these machines are primarily concerned with their 
ability to store and interpret data in a visual 
manner, perhaps through a variety of graph and 
chart styles once the initial data is entered 
into the machine. Generally, the choices for 
color are more limited than other types of systems 
and in some cases the colors have been pre-chosen 
into very specific palettes. Often times they 
are quite bold, allowing ease of presentation 
when made into slides. In most cases much concern 
has been given to the design of and the use of 
type, in presentation formats. Many times the 
display monitor is simply a rough version of the 
final graphic, which uses a very sophisticated 
camera to greatly increase the resolution of the 
output. 

Because many of the graphics are the result 
of statistical data and must be interpreted into 
charts and graphs, a common interface is the key
board as well as the tablet. The systems often 
use basic shape-making routines that produce 
circles and rectangles and other polygons to 
format a presentation, and then manipulate these 
shapes. In many instances the workstation will 
incorporate a basic paint system to allow "free
hand" painting onto the screen. 

ARTISTS' ILLUSTRATION AND SKETCH SYSTEMS; 
These workstations are primarily used for paint 
systems and image manipulations. They have much 
more sophisticated paintboxes, with many more 
color and brush choices. As these systems be
come commonplace and their costs drop, they will 
likely be the workhorse of the basic art/design 
studio, for they contain more of the typical tools 
for artists and designers, with increased flexi
bility. 

It is quite easy to find systems today that 
have digitizing cameras as part of their basic 
systems, as an accessory. These allow you to 
input photographic and live video information and 
then to do all the painting and manipulation 
tasks with the digitized image. Typical manipu
lation routines include scaling, rotating, and 
distorting. (Keep in mind that these manipula
tions are all 2-D, on the x and y axis only; i.e. 
these are not true 3-D systems. But it is the 
clever use of these functions that allow the 
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artist to render an illusion of 3-D.) 

Other common routines found in this type of 
system are those having to do with type, grids, 
color changing, collaging, and cut and paste 
tasks. The more sophisticated the system the 
more colors available-up to the ability to 
display approximately 250,000 colors on the 
screen at any one time out of a field of 
approximately 16.8 million colors. The low end 
of this scale will offer a display of 12-64 
colors out of a field of about 500. Most systems 
are presently in the middle with approximately 
256 colors displayable colors from the field of 
16.8 million choices. 

Output from these systems is usually in the 
photographic formats noted in the introduction. 
However, more and more systems are now interfacing 
to inkjet plotters, which are available for re
duced costs. 

DIRECT BROADCAST VIDEO AND ANIMATION SYSTEMS: 
As their names imply, these systems are made for 
the broadcast and animation needs of telecommuni
cations. They are often found in TV studios and 
are used to have artwork quickly prepared and 
then sent directly to the broadcast studios for 
display on the air. Most of the news graphics 
that are shown above the left shoulder of the 
newsreporters are prepared in a studio down the 
hall and wired directly to the video mixers in 
the production studios. Requirements for these 
systems are high-speed storage and retrieval of 
images, size of the storage library for on-line 
images, type (headlining, mostly), and image 
manipulation. It is usually imperative that they 
be in some way connected to a digitizing camera, 
so that live video and photographic input can be 
easily merged with graphics and then manipulated. 
High resolution is not an issue, for the resolu
tion of TV broadcast is relatively low, and the 
graphics need not exceed that amount. 

PAGINATION SYSTEMS: The pagination systems 
are designed for page layout and publication 
design. The components include text, line art, 
halftones, headings and folios. They were devel
oped initially for the prepress market and are 
commonly seen in newspaper layout rooms or catalog 
houses where there are large quantities of layout 
and type manipulations in need of rapid publica
tion. 

Their ability to format and size type is 
essential. From the low end to the high priced 
systems within this category, the manipulation 
capabilities become more and more sophisticated; 
with the most advanced systems allowing a very 
rapid manipulation and exact visualization of 
what will happen in the output. In the lower 
priced systems only approximations and/or 
"greeking" of the text is possible. Color has 
not been a major consideration up to this point 
because of the immense expense involved, and 
most systems offer no color at all. It is the 
black and white nature of these machines that 
offer the speed of operation. 



Pagination systems are usually front ends and 
offer a large variety of type styles and sizes. In 
the higher priced systems they are capable of merg
ing the text with images. Output from these 
systems goes to typesetters, paper proofs, and 
camera-ready artwork, and some systems can be 
interfaced directly to plate-making devices at the 
prepress site. 

IMAGE PROCESSING SYSTEMS: These systems allow 
photographic manipulations to be done directly in 
the computer that would take hours to duplicate in 
the darkroom. Sizing and scaling, rotating, crop
ping, tone and contrast control, and special 
effects (reversals, solarization, posterization, 
bas reliefs, etc.) are all part of the manipulation 
menu available on these machines. Images are 
scanned into the systems in high resolution, man
ipulated, and then output to camera-ready copy or 
directly to plate. 

Most systems are black/white only, at the 
present time. At the highest end, however, there 
are capabilities for color separations to be made 
with three and four plate registered output. 

V. COSTS AND PRICE VS. PERFORMANCE 
Computer graphic workstations are expensive. 

In the traditional studio, artists and designers 
wishing to experiment with a new tool are able to 
go to the nearest supply store and purchase it. 
With the introduction of high technology equipment 
into the art/design marketplace, the ability to 
learn and experiment becomes rare outside the pro
duction house. Even within the production house 
there is little time to experiment on non
production jobs. 

Presently, the range of equipment is from 
approximately $6000 on the low end to $1.5 million 
on the high end. The mean is approximately 
$30,000 for the average system, base cost, with 
no bells and whistles. The costs of purchasing 
and maintaining equipment still remain very high, 
and although they are decreasing rapidly, they 
will still remain outside the budget of the small 
studio for quite some time. 

With regard to the five categories, the least 
expensive systems usually are those for business 
and presentation graphics, continuing up the cost 
scale through image processing systems. As the 
systems increase in their complexity and add to 
their toolbox, the price goes up (and up ... and up). 
Thus, the more sophisticated system that allows 
the user a full range of tools and functions be
comes cost prohibitive for all but the largest and 
busiest production houses. In turn, the cost of 
operation of these systems is such that the larger 
and more complex the system, the less time there 
is for "creative designing" vs. production work. 
Indeed, this is a dilemma, for the increase of 
computer graphics in the world of visual communica
tions necessitates all artists and designers to be 
knowledgeable of (if not experienced in) computers 
and their capabilities. But the opportunities to 
get the experience is often the biggest deterrent 
to the artist. 
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Clearly, you get what you pay for in computer 
graphics workstations. The ability to design and 
manufacture a machine containing all the needed 
tools of the typical designer and still remain a 
system that is within the budgets of most users 
is a problem not yet solved. As each system 
reaches out to include more and more functions, 
with better and better interface, the cost of the 
hardware drops proportionately; but, the cost of 
the software that implements these tools is con
tinuing to rise. 

The result is that systems are limited in 
their toolboxes and their functions. The manufac
turers must make decisions concerning what to 
include in their systems that will be the most 
attractive to the potential user, leaving out many 
options that are technically available, but far 
too costly to include. Sophisticated tools are 
costly because of the memory space needed in the 
computer. The more tools, the larger the space 
required to house them and to allow them to 
operate. Without upgrading the extent of memory 
of the base system, little is left for accessories 
and picture storage. Compromises must be made by 
all manufacturers, and those compromises are the 
very definition of the machines. 

As mentioned in the introduction, the inherent 
hardware of any system is very similar to others 
in its category. Their differences are in the 
initial design and implementation of the software. 
It is that configuration and implementation that 
define the individual machine and its functions. 

VI. CONCLUSION 
Every artist/designer using a computer must 

keep in mind the task to be done and how appropri
ate that system is for that task. Some tasks 
demand compromise in the ease of control for 
complexity of operation. Many factors add to and 
subtract from the effectiveness of the interface 
beca·use one function is linked to all others in 
the chain. Interactive devices should be con
cerned with the idea that users can communicate 
needs in a comfortable and consistent way. Using 
keyboards as a major input device is a good example 
of how the computer companies must become more 
sensitive to the issue. The keyboard allows you 
to input graphic elements which are "plotted" by 
counting spaces on the keyboard. Although this 
task is clearly effective for inputting textual 
material, it is highly inefficient and counter
intuitive for graphics. Because of the demand of 
the design community, we see fewer examples of 
systems that have keyboards as their major input 
device. It is the growing demands of this commun
ity that will force the industry to change the 
methods, and hopefully, produce devices that are 
effective as well as sophisticated for design 
tasks. It is not the purpose of this article to 
debate and discuss the features of all interactive 
devices, but rather to understand that the computer 
manufacturer is still in control of the ease and 
comfort of the machines sold to the public. 

It is obvious that the computer, like the 
camera, is a tool. The workstation for computer 



graphics is conmonplace in many studios and art 
departments. Colleges and professional schools are 
teaching computer graphics as part of their founda
tions curriculum. Enrollments in all computer 
graphics courses, no matter how elementary, are 
well above the space available. It is not simply 
the "hottest fad" of the year. It is part of the 
workspace and the vocabulary of visual conmunica
tions. With this in mind, the workstation is more 
and more available and its use obvious in all 
aspects of design and art studios. For the person 
wanting to enter this world, it is important to 
understand the initial reason for investing in a 
computer graphics workstation, for those reasons 
will be the key factors in deciding what category 
of system to investigate, and how much money to 
spend to purchase the minimum equipment needed to 
get the work done. 

*NOTES: In contrast, a true 3-D system is 
one that can render three dimensional forms from 
data (numerical). These forms can be objects, 
environmental drawings and various forms of simu
lation; taking into account the angle of view, 
rotation, volume, and other statistical informa
tion. A 2-D system is quite different from the 
3-D one by the very attributes that define them, 
and it is important to understand that they rarely 
overlap in the same system. 

There is a "pseudo 3-D" often found in com
puter graphics workstations, that gives the 
appearance of dimensionality, but does not have 
true 3-D characteristics of rotation, variation of 
angle of view, and scaling. The results of this 
could be described as the "look" that is part of 
many graphic systems designed for artists and de
signers. These pseudo 3-D packages are linked to 
the 2-D system and should not be compared with 
the true 3-D systems in terms of performance. The 
success of these pseudo 3-D tools is really the 
cleverness of the user, describing the illusion of 
volume, depth and space much like traditional per
spective drawings. 

THE AUTHORS: Alyce Kaprow and Joan Shafran 
are consultants and researchers concentrating in 
the area of computer graphics workstations for art 
and design studios and art schools and departments. 
They both are active designers and teachers, and 
have run hands-on workshops using various computer 
graphics systems. Both have done graduate work at 
the Visible Language Workshop at the Massachusetts 
Institute of Technology. 
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ABSTRACT 
Since 1970, the GROOVE system has been the 

classic example of an interactive editor of time 
functions. It has inspired the design of an inter
active score editor for microcomputers, named 
INTERSCORE. A composer is provided with a wide 
range of easy to use editing operations, and with 
both audio and visual feedback (in piano-roll nota
tion). An organ-Like keyboard is extensively used 
as an input device. Time relationships are given 
particular attention. 

INTRODUCTION 

Buxton et al. [2] divide the composer's tasks 
in the context of computer music as follows: 

1. Definition of the palette of timbres to be 
available: This is analogous to choosing the 
instruments which are to comprise the compo
ser's orchestra. The main expansion on the 
analogy is that the composer also has the 
option to "invent" his own instruments. 

2. Score definition: Definition of the pitch
time structure of a composition. In con
ventional music, this task would be roughly 
analogous to composing a piano version of a 
score. 

3. The "orchestration" of the score: 
of instruments to a score. 

Attachment 

4. The performance of the material being devel
oped. 

The conceptual framework induced by the above 
classification is observed in this paper. Thus, 
instruments are defined separately from the score, 
and the possibility of setting up timbres individ
ually designed for each note is Limited. In re
turn, the removal of the instrument definition from 
the score makes it potentially easier to construct 
Long, complex pitch-time structures. 

At the present time, music software available 
on microcomputers makes it possible to define 
scores using either one of the following 
approaches: 

CH2087-5/84/0000/0058$01 ,00 C 19114 IEEE 
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1. A score is defined as a sequence of statements 
which explicitly specify the pitch and dura
tion of each note. Definition of a score is 
conceptually similar to text editing. It is 
also possible to edit a score using a symbolic 
musical notation. The score is then speci
fied, for example, by picking notes of the 
appropriate duration from the menu and posi
tioning them on the staff [12]. 

2. A score is thought of as a record on a 
"pseudo-tape," simulated in the memory of a 
computer. The sequence of events is defined 
in real time, by playing an organ-Like key
board used as the input device. The user's 
model of the system is that of a multi-track 
tape recorder. Thus, a score is developed by 
"recording" successive instruments with 
"playback" on separate "tracks." An unsat
isfying track can be "erased." Smaller cor
rections can be made using a "punch-in/punch
out" facility [8]. 

The essential difference between these ap
proaches Lies in their rapport to time. In the 
first case the composition time is dissociated from 
the performance time. Time characteristics of a 
note are defined as numerical parameters. Conse
quently, the order in which the notes are specified 
may be different from the order in which they will 
be played during a performance. The score can be 
easily modified by inserting, deleting, or changing 
appropriate statements. However, since it has to 
be substantially processed by the computer before 
the performance, effects of the modifications can
not be instantly evaluated. 

In the second case the situation is diametri
cally opposite. The performance time is a Linear 
function of the composition time. A composer has 
immediate audio feedback: He hears what he plays. 
Modifications of the score are made in real time, 
by rerecording unsatisfactory parts. As a result, 
the whole composition process occurs under real
time pressure. A mastery of the keyboard is neces
sary. Small adjustments are difficult to make. 

An interactive score editor should provide a 
composer with a wide range of easy to use editing 
operations combined with good audio and visual 



feedback. This objective was first met in the 
GROOVE system [10]. The nature of interaction 
implemented in GROOVE was described as follows: 

One of the most important features of 
GROOVE is the flexible control of "program 
time" which may be used both to edit and to 
alter the generation of the output func
tions.... We may slow down the progress of 
program time by reducing the frequency of the 
interrupt oscillator. Or we may stop the 
progress of time altogether by throwing a 
switch which essentially tells the computer: 
"Don't progress time normally at all, but, 
instead, use the value of a knob to give the 
current position of time within one disk buf
fer •••• " The user may essentially "redraw" 
any portion of any disk function using any 
input device he Likes, such as the (X,Y) axes 
of the 3-dimensional wand or a knob value. 
While he is doing this, not only can he see 
what he is doing on the oscilloscope display, 
but he can also observe its effect on the 
controlled process. So it is quite possible 
to stop in the middle of a run and "tune up 
the chord •••• " Given the appropriate com
mands, the system will allow any functions of 
time to be altered in any conceivable manner. 

The idea of the GROOVE system has been widely 
recognized as a model example of interactive score 
editing [6]. However, the system itself was not 
portable and is not available since the unique 
hardware was dismantled. 

INTERSCORE is an interactive score editor for 
microcomputers, inspired by GROOVE. It is written 
in C, in a modular and portable way. At present 
INTERSCORE is implemented on the Apple //e (*), 
with a 5-octave alphaSyntauri (**) keyboard and 
Mountain Computer Music System (+) synthesizer 
boards [12]. Two pedals and a joystick complete 
the hardware configuration. INTERSCORE makes use 
of the Syntauri programs Quickwave and Wave to 
define instruments. INTERSCORE files are compat
ible with the multitrack recording system METATRAK 
(**) [8] and the Composer's Assistant (**) [13] can 
be used to transcribe the score using conventional 
notation. 

This paper presents INTERSCORE from 
(composer's) perspective. Time problems 
interactive score editing are given 
attention. 

the user's 
related to 
particular 

(*) Apple Ile is a trademark of Apple Computer 
Inc. 

<**) alphaSyntauri, Metatrak, and Composer's 
Assistant are trademarks of Syntauri Corp. 

(+) Music System is a trademark of Mountain Com
puter Corp. 
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From 
embedded 
functions 
ries: 

GENERAL DESCRIPTION OF THE SYSTEM 

the user's perspective, the editor is 
in a menu-driven control program. The 
of this program fall into three catego-

1. Selection of the instruments (timbres) to be 
used for audio feedback. These instruments 
can be, but do not have to be the same as the 
instruments used for the final performance. 

2. File manipulation. This category includes 
concatenation and merging. Concatenation of 
files results in Longer scores. Merging in
creases the number of instruments playing con
currently [1]. 

3. Transfer of control to utilities, such as 
programs to define new instruments, the screen 
dump program, etc. 

An example of the screen while editing is 
shown in Fig. 1. The central area of the screen is 
thought of as a window, in which the selected 
portion of the screen is visualized as a plot in 
pitch-time coordinates (scroll-bar notation [3, 
9]). A non-continuous Line indicates two or more 
instruments playing in unison. For comparison, 
Fig. 2 shows the same piece of music using con
ventional notation. 

Wide Lines at the top and the bottom of the 
score (Fig. 1) show the current position of the 
time cursor. The notes corresponding to this posi
tion are being played by the synthesizer. Under 
the score, the text portion of the screen is used 
to display the menu of editing operations and to 
show the current state of the editor. The selected 
mode is displayed in inverse video. Special char
acters warn about particular situations, such as 
the end of the score being reached. The space in 
the upper right corner of the text portion of the 
screen is used to display additional information, 
for example parameters of editing operations, error 
messages, etc. 

SCORE VIEWING 

Even relatively short scores cannot be rep
resented in their entirety on the Limited surface 
of a screen. Thus, an interactive score editor 
must provide viewing operations which make it pos
sible to select the portion of the score to be 
seen. In INTERSCORE this selection is thought of 
in terms of moving a virtual window over the 
scroll-bar representation of the score. Three 
special keys ([, I, ]) are used to position the 
window in such a way that the time cursor appears 
near the Left edge, in the middle, or near the 
right edge of the window. The composer can also 
specify the resolution of the presentation (number 
of time units per pixel). Wide scope - Low resolu
tion views help in analyzing the general structure 
of the composition and are particularly useful when 
browsing through the score. High resolution views 
are of great value when making fine modifications. 
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Fig. 1. A dump of INTERSCORE screen. 

portion shown in Fig. 1 

Fig. 2. The score from Fig. 1 in conventional notation. 
An excerpt from J. S. Bach, Das Wohltemperirte Klavier, Part II, Prelude I. 

Transcription by C. Czerny and A. Ruthardt, Leipzig: C. F. Paters. 

EDITING MODES 

The two basic editing modes are called insert 
and overdub (Fig. 3). In the insert mode the score 
is virtually spliced at the point determined by the 
current position of the time cursor and new notes 
are inserted between the spliced parts. Extraction 
of a portion of the score is implemented as the 
insertion of a segment of negative duration. In 
both cases the overall duration of the composition 
is affected. Thus, the insert mode can be thought 
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of as an equivalent of tape editing by splicing 
[7]. Likewise, the overdub mode is analogous to 
the magnetic tape procedure of building up a compo
sition one track at a time on a multitrack tape 
recorder. The added notes are to be played con
currently with the notes previously specified. 

The operation complementary to overdub is 
called erase. The composer can either erase all 
notes played by a given instrument within some time 
Limits or can select the notes to be erased by 
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Fig. 3. INTERSCORE editing modes. 

pointing 
nate) and 
a chord, 
neously. 

to them with the time cursor (x coordi
the keyboard Cy coordinate). By playing 
several notes can be erased simulta-

The replace mode is used to change the pitch 
or the instrument assigned to the selected note. 

The adjust mode makes it possible to move the 
beginning~e end of a note in time. 

The remaining two modes: Yank and put are 
patterned on similar operations found in text edi
tors [11]. Yank fetches a portion of the score, 
played by the specified instrument, delimited by 
two positions of the time cursor. Put, in essence, 
places the yanked portion at another point in the 
score. This can be done in several ways. First, 
either the insert or the overdub mode must be 
selected together with put in order to determine, 
how the added notes shall be matched with the 
existing portion of the score. Second, the yanked 
fragment can be repetitively put, several times in 
sequence, transposed by an interval specified with 
the keyboard, and possibly with the instrument 
changed. 

ALL editing modes are illustrated in Fig. 3. 
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TIME MANAGEMENT 

Time is the essential component of both the 
process of the composition of a piece of music and 
its performance. Therefore, the relationship bet
ween the composition time and the performance time 
should be easily manageable by the composer. For 
this purpose several time modes have been intro
duced into INTERSCORE. 

The simplest relationship between the compo
sition time and the performance time is illustrated 
in Fig. 4a. During the composition time the key
board is sampled and the score is updated in equal 
intervals denoted by Dtc. During the performance 
the score is read and data to the synthesizer are 
passed in intervals Dtp. The ratio Dtp/Dtc con
trols the "playspeed:" If it is different from 
one, the performance will be faster or slower with 
respect to the composition. Absolute values of 
intervals Dtc and Dtp control the "time resolution" 
of the composition. For small values of these 
intervals (milliseconds) the discretization of time 
is negligible and the sequence of events entered 
into the score is repeated with all nuances during 
the performance (Fig. 4b). Large values of time 
intervals (fractions of a second) Let smaller time 
differences disappear. This can be used to elimi
nate some imprec1s1ons which may occur when 
entering data from the keyboard (Fig. 4c). The 
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composer has to enter data in synchronization with 
a metronome generated by the editor. Otherwise Low 
time resolution may deteriorate rather than improve 
the score (Fig. 4d). 

Abstracting from their finite resolution, the 
above modes define Linear mappings of the composi
tion time into the performance time. A modifica
tion introduces a piecewise Linear mapping. At any 
moment the composer can stop the progress of time 
or reverse its direction by using one of two 
special pedals (Fig. 4e). While the composition 
process is still very similar to real-time re
cording, errors can be instantly deleted before the 
recording resumes. 

When scrolling a score to access a particular 
fragment, it is convenient to dynamically control 
the playspeed in addition to the time direction. 
The device used for this purpose in INTERSCORE is a 
joystick. See Fig 4f. for an example. 

In the modes described so far, time has pro
gressed autonomously. The external devices have 
only controlled the actual value of parameter Dtp. 
These autonomous time modes can be contrasted to 
the triggered modes. In a triggered mode each 
change of the performance time is directly caused 
by an external signal. One possible source of this 
signal is the organ-Like keyboard itself. In this 
case time progresses when a key is being pressed or 
released. The time intervals associated with the 
pressed or released keys, Dtp in and Dtp_out, need 
not be the same (Fig. 4g). If-

Dtp in>> Dtp out, 
the entered notes will be performed Legato; if 

Dtp in<< Dtp out 
they will be performed staccato. Instead of con
trolling parameters Dtp in and Dtp out directly, it 
seems more convenient to specify the overall dura
tion of a note: 

Dtp = Dtp in+ Dtp out 
and its "articulation" (or duty cycle): 

Art= Dtp_in / Dtp. 

Another source of triggering signals are 
pedals used to increment or decrement performance 
time by a predefined value (Fig. 4h). While the 
organ-Like keyboard is active all the time, its 
state affects the score only when a pedal is 
pressed. Thus, the composer can try, for example, 
a few possible chords before entering the final one 
into the score. The duration of this chord will be 
determined by the number of times the pedal is 
pressed while the keys are down. Instead of pres
sing the pedal repeatedly, the composer can also 
specify the duration of each note or pause by 
entering appropriate values of the parameter Dtp 
from the alphanumeric keyboard. A variant of this 
approach makes use of symbols 1, 2, 2., to 
denote the duration of the whole note, the half 
note, the dotted half, etc. in a predefined tempo 
and with a predefined articulation (Fig. 4i). This 
mode is particularly convenient when entering a 
score given in conventional music notation. 

A summary of time modes provided by INTERSCORE 
is shown in Fig. 5. 
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CONCLUDING REMARKS 

Design and experimentation with INTERSCORE has 
yielded some observations: 

1. Scroll-bar notation is a convenient means 
for visual communication between the composer and 
the computer. The difficulty in perceiving the 
exact pitch of each note (with no staff) is irrele
vant because of the audio feedback. Moreover, it 
is easy and intuitive to find the pitch of a note 
by matching it with the displaceable bars corre
sponding to the keys pressed on the keyboard. Due 
to the audio feedback, precise positioning of the 
time cursor (up to a single pixel) is trivial. The 
visual and the audio feedback are complementary. 

2. When a long score of a repetitive struc
ture is edited as a single file, the composer may 
confuse similar parts of the score. It is there
fore preferable to build Long scores using separate 
files, which are concatenated at the end of the 
editing session. 

3. Although the description of INTERSCORE was 
given in terms of physical devices (joystick, 
pedals etc.,), the software was written in a device 
independent way, patterned on the methodology de
veloped in computer graphics [5]. Thus, only the 
appropriate device drivers have to be rewritten 
when replacing the joystick with a different val
uator, or pedals - by any other buttons. Appar
ently, the organ-like keyboard does not fit into 
the existing classification and introduces a new 
class of Logical input devices. The problem is, 
however, that the main purpose of the device inde
pendent design (i.e. the possibility of simulating 
various Logical devices using the available physi
cal devices) is questionable in highly interactive 
musical applications. Substitutions of physical 
devices (for instance, hand manipulated buttons for 
pedals, Let alone a replacement for the organ-Like 
keyboard) tend to deteriorate the man-machine in
terface to the point of uselessness, even if they 
are perfectly feasible from the viewpoint of soft
ware design. 

INTERSCORE has not yet been extensively tested 
by musicians, therefore an objective evaluation is 
not available. However, the main expectation re
lated to its creation seems to be fulfilled: Using 
INTERSCORE it is easy to quickly create complex, 
error-free scores. Moreover, if desired, nuances 
of articulation giving a feeling of "real perform
ance" can be preserved in the editing process. 
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ABSTRACT 

This study investigated the curriculum concerns for 
microcomputer-based art activities for secondary 
art programs. Art supervisors and computer art 
"experts" were surveyed concerning their opinions 
for content consideration. Although the partici
pants were generally receptive to microcomputers in 
the art room, findings indicated several areas of 
disagreement and indecision as well as a number of 
impediments to the successful adoption of micro
computers into the art room. 

A trend in education toward the acquisition of 
skills in the myriad uses of microcomputers is evi
dent today as our society begins a shift to a 
technologically-based society. Being an integral 
part of the larger educational structure, art edu
cation will not likely be excluded from this 
transition. The urgency and importance of the 
problem is reflected in a statement by White 1 : 

"It is imperative that the art education profession 
not become an impotent pedagogical edification due 
to our unwillingness to accept the responsibility 
thrusted upon us ... caused by the impact of 
computers on society and education." In other 
words, art programs will be expected to provide 
some type of effective art experience for students 
on microcomputers. 

Only recently has the role of the microcomputer in 
the secondary art curriculum been critically 
examined by art educators. 1 '

2
' 3 '

4 Little research 
exists examining the new technology and its impli
cation for teaching art on the secondary level. 
Most existing reports on microcomputers in the art 
classroom focus on two factors: the present dis
crepancy and lack of concern for this new medium in 
the curriculum, and the role microcomputers could 
serve in the art program. Relatively little is 
known, however, about what is presently being 
offered on the microcomputer in art at the secon
dary level and what will be needed in the near 
future. 

Educational technology as a field has emphasized 
the integration of new technology into educational 
experiences. At the same time, educational tech
nology is concerned with the utilization of a 
systems approach to the development of instruction
al delivery systems. Needs assessment procedures 
are a device used in educational technology and 
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instructional development that could provide the 
foundation for development of clearly identified 
aims and goals for a secondary art curriculum in 
microcomputer-based art activities. 

The primary purpose of this descriptive study was 
to determine by means of a needs assessment the 
major components and skills that a secondary art 
curriculum should include in order to facilitate 
student involvement and competence with micro
computers in art. Writers who support the use of 
systematic procedures for instructional develop
ment have suggested that needs assessment may 
capitalize on pertinent information and thus facil
itate better decisions in the future development of 
instruction in the use of microcomputers in art for 
secondary art students. 

The evaluation of all potential content areas for 
microcomputer-based art activities is clearly a 
critical matter for art education programs. Cer
tain factors may need to be considered by art edu
cators concerning microcomputer-based art content 
and it would be advantageous to identify these 
factors so that effective implementation and adop
tion of microcomputer-based art activities is 
possible in secondary art programs. 

A consensus in agreement of the content concerns 
for microcomputer-based art activities would seem 
to be a valid venture to undertake in art curricu
lum development. The procedures labeled "needs 
assessment" promoted by Briggs 5 and Kaufman 6 sug
gest that instructional options be subjected to 
some form of empirical analysis so that art edu
cators would be able to make decisions based on a 
mutual sense of ~urpose and agreement. In addition 
Eisner and Eiler also indicated the importance of 
using methods to facilitate change in art so that 
art educators would not resist change but "employ 
critical procedures by which wise choices may be 
made among competing proposals for change." With 
few exceptions, such data collection and empirical 
analysis have not been conducted. 

A second issue in a needs assessment analysis was 
to identify the present status of microcomputer use 
in secondary art classrooms in order to establish 
the need for the development of related goals. The 
identification of this present status was secured 
by investigating the current abilities of secondary 
art teachers in microcomputer-based art activities. 



A major question may be raised regarding how art 
supervisors see the current abilities of art teach
ers in the use of microcomputers in the art class
room. Do art teachers have the knowledge of 
microcomputer applications but not the actual 
skills to use them? Are the microcomputer skills 
they possess largely data management? In other 
words, do they use microcomputers for record keep
ing and grading of students? Do the art teachers 
have microcomputers in their schools to use in the 
art room? Very little evidence is currently 
available on the present status of microcomputer 
use in the secondary art classroom. 

In this study, the use of microcomputers in the 
secondary art room was explored as a creative 
medium and not as a tool for computer-assisted in
struction in secondary art programs. The study 
assessed the current conditions for art teacher 
preparation in microcomputer-based art activities 
and the possible content areas to be included in a 
secondary art program. 

Method 

Sampling 

The study's population consisted of two separate 
groups. One group consisted of all art super
visors, numbering 369, across the United States who 
were listed in the American Art Directory, 1982. 8 

The second group was designated as computer art 
"experts." This group consisted of art educators 
from higher education. Their selection was based 
on the following factor: publication of one or 
more articles on the topic of computer art or com
puters in art education or one or more courses 
taught in computer art/graphics or computers in art 
education. 

The sample used in this study consisted of 137 art 
supervisors and 24 computer art "experts." A 
stratified random sample of art supervisors was 
used. The stratification method was utilized in 
order to reduce variability of the sample. A 
possible source of error, it was felt, was randomly 
selecting a sample heavily composed of states with 
a greater number of art supervisors. This situa
tion could have influenced the internal validity of 
the study. To offset this possible source of 
error, a maximum of three randomly-selected art 
supervisors were chosen from each state unless the 
state had fewer than three supervisors listed. 
When the first selection was completed, a further 
random sample was conducted with the remaining 
names to achieve the sample size of 137. A major 
reason for using stratification was to increase the 
likelihood of a representative sample of the total 
population. 

The justification for a sample size of 24 in the 
group designated as "experts" was that there are 
not enough art educators currently who have ex
perience in computer art that would allow for an 
increase of the sample number. Those individuals 
who do have the experience are primarily profes
sionals on the post-secondary level. 
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Objectives 

The major objectives of the investigation were to 
determine: 

(1) the categories of microcomputer-based art 
skills that are appropriate for secondary 
art students to develop; 

(2) the present abilities of secondary art teach
ers to provide microcomputer-based art 
activities; and 

(3) the present availability and use of micro
computers in art on the secondary level. 

Procedures 

Data were collected by means of a survey utilizing 
a mixture of question types in order to secure the 
most accurate as well as objective information in 
quantitative form. The survey consisted of three 
sections: (a) general background data, (b) par
ticipants' opinions concerning the potential of 
specified content regarding use of microcomputers 
in secondary art education, and (c) present status 
of secondary art teachers and secondary schools in 
regard to microcomputer-based art activities. 

The reliability of the study was established by a 
split-half reliability test based upon a pilot 
study. Calculation of test reliability was con
ducted on the second section only because this 
section addressed the primary concern of the study: 
what topics should be considered for inclusion in a 
secondary art class on microcomputer-based art 
activities. In addition, it was the intention of 
the other section to gather descriptive data which 
were specific to the participant's situation and 
did not lend to reliability testing. 

After the survey was determined to be a reliable 
instrument, the survey was distributed by mail to 
the selected participants of the study. Partici
pants were asked to complete the survey and mail it 
back to the investigator. A follow-up letter was 
sent to nonrespondents to motivate them to complete 
the survey. The total number of responses used in 
the study was 97; 86 art supervisors and 11 com
puter art experts. 

Data Analysis 

Content Considerations 

The results of the frequency distributions and the 
means of the question, "Microcomputers and their 
exploration as an art medium should be included in 
a secondary art curriculum," are presented in Table 
1. Since the combined percentages of agree and 
strongly agree was 83%, it would appear that art 
educators are receptive to the inclusion of micro
computer-based art activities in the secondary art 
curriculum. 

However, it was a major concern of this study to 
identify more specific areas that art supervisors 
and computer art experts felt should be included in 
a secondary art curriculum in the use of microcom
puters. Eighteen content areas were chosen for the 
survey after a review of the literature. Table 2 
reports the results concerning these 18 curriculum 



Table 1 

Responses to "Microcomputers and their exploration 
as an art medium should be included 

in a secondary art curriculum" 

CATEGORY LABEL FREQUENCY PERCENTAGE 

Strongly Disagree 0 0.0% 
Disagree 4 4.0% 
Undecided 12 12.0% 
Agree 47 48.0% 
Strongly Agree 34 35.0% 

N = 97 mean = 4.144 

concerns for microcomputer-based art activities. 
The data revealed that the areas that should be in
cluded in a secondary microcomputer-based art 
curriculum as perceived by art supervisors and 
computer art experts were: (a) the use of periph
eral devices; (b) the evaluation and criticism of 
computer-generated images; (c) the creation of 
computer-generated images; (d) the identification 
of careers in computer graphics; (e) the appreci
ation of computer-generated images and the ability 
to assess their use in the environment; (f) the 
definition of computer art terms; and (g) the 
selection of appropriate software for personal use. 
The use of peripheral devices was seen as an im
portant facet of a microcomputer-based art curri
culum by 79 of the respondents (81%). Eighty-three 
of the participants (86%) felt that the ability to 
critically evaluate computer-generated images was 
a salient competency for secondary art students. 
In addition, 81 of the respondents (84%) thought 
that the creation of computer-generated images was 
a significant skill for students to exhibit. 
Eighty participants (82%) from the survey agreed 
that being able to identify suitable careers in 
computer graphics was important for art students. 

The area of assessing the implications of using 
computer-generated images in our environment was 
viewed by 86 of the participants (89%) as a content 
area to emphasize. Being able to appreciate and 
value computer-generated images was considered by 
84 respondents (87%) to be a worthwhile ability to 
possess. Seventy-nine participants (81%) of the 
sample had the opinion that definitions of computer 
art terms need to be included in microcomputer
based art activities. Finally, seventy-three re
spondents (75%) ranked the selection of graphic 
software packages for personal use as a topic to 
be included in a secondary microcomputer-based art 
program. 

The areas that art supervisors and computer art 
experts felt should be of least importance or were 
uncertain about for inclusion in a secondary 
microcomputer art curriculum were: (a) computer 
animation, (b) use of commercially-produced 
graphic software programs, (c) three-dimensional 
graphics (3D), (d) computer programming, (e) de
scriptions of hardware and software devices, and 
(f} two-dimensional graphics (2D}. By combining 
the strongly disagree and disagree categories, the 
results of the data obtained were that 49 of the 
participants (50%) felt computer animation should 
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not be included and 62 participants (64%) felt com
mercially-produced graphic software programs should 
not be the major focus. Sixty-seven respondents 
(69%) felt production of 3D graphics was either not 
necessary or they were undecided. 

Forty-eight respondents (50%) were unsure computer 
programming was a necessary skill for art students. 
The sample population appeared to be evenly divided 
concerning the ability to describe hardware and 
software devices (mean= 3.39) and the abilities to 
produce 2D graphics (mean= 3.42). 

The data also reveal that of the 81 individuals re
sponding favorably to the question, "Should stu
dents be able to produce computer-generated 
images?", 57% felt they should be able to create 
2D designs, 37% felt they should be able to produce 
3D designs, and 32% felt the student should be able 
to create computer animation (Table 3). 

Table 3 

Breakdown of Responses to Types of 
Computer-Generated Images Students Should 

Be Able to Produce By Participant's Response 

CATEGORY LABEL FREQUENCY PERCENTAGE 

2D graphics 
3D graphics 
Computer animation 

Current Status 

46 
30 
26 

57% 
37% 
32% 

The frequencies of responses of art supervisors 
concerning the competency levels of art teachers 
in microcomputer-based art activities are presented 
in Table 4. It appeared that there was consistent 
agreement concerning art teachers' current lack of 
knowledge and skills in most of the competencies 
listed. From this sample, it appeared that few 
school systems have secondary art teachers who 
possess strong microcomputer skills. 

Table 5 presents the number of microcomputers per 
secondary school while Table 6 reports the number 
of secondary art teachers who offer some art 
activities on microcomputers to their students. 
Comparing these two tables, the results seem to 
indicate that although 92% of the schools surveyed 
do have microcomputers, only 27% of the secondary 
art teachers provide art experiences on them. 
These data indicated that the majority of schools 
do have microcomputers available. The data also 
reveal that of the secondary art teachers who do 
provide art experience on microcomputers the range 
is from one art teacher in an entire school system 
to 10 in a school system. However, 63 art super
visors (73%) responded that none of their art 
teachers provide microcomputer art experiences. 

Problems That Need to Be Addressed in 
Using Microcomputers in the Secondary 
Art Classroom 

A final open-ended question was provided in the 
survey concerning immediate problems to be overcome. 



Table 2 

Summary of Frequencies and Means of Curriculum Concerns 
for Microcomputer-Based Art Activities 

STRONGLY STRONGLY 
DISAGREE DISAGREE UNDECIDED AGREE AGREE MEAN 

The use of peripheral devices (i.e., graphics 3 1 14 40 39 4.144 
pad, light pen) with the microcomputer 
should be a part of a secondary art 
curriculum. 

Art students should be able to evaluate and 3 3 8 58 25 4.021 
criticize the quality of computer-generated 
images. 

Art students should be able to discuss the 1 13 25 46 12 3.567 
historical developments of computer art and 
identify the important artists in this field. 

Secondary art students should develop the 0 5 11 49 32 4.133 
skill to create and produce computer-
generated images. 

Art students should be able to use the micro- 7 9 20 40 21 3.608 
computer as a tool for all areas of art. 

It is important for art students to be able to 1 7 9 54 26 4.000 
identify suitable careers in computer-
generated imagery. 

The ability to create animated sequences on 1 48 22 24 2 2.773 
the microcomputer does have to be a skill 
art students demonstrate. 

Major focus for a secondary art curriculum 25 37 18 10 7 2.351 
should be on the use of commercially 
produced graphic software programs on the 
microcomputer. 

Secondary art students should be able to 0 5 6 53 23 4.072 
assess the implications of using computer-
generated images in our environment. 

The ability to produce 3D graphics on the 7 33 27 23 7 2.897 
microcomputer is a necessary skill for 
secondary art students. 

Art students should be able to program the 2 24 22 32 17 3.392 
microcomputer in order to effectively use 
it as an art medium. 

An appreciation of computer-generated images 0 4 9 61 23 4.062 
in our environment and society is a topic 
that needs to be included in a secondary 
art curriculum. 

The ability to recognize and describe the 0 9 17 54 17 3.814 
characteristics of computer-generated 
images is a skill art students need to 
possess. 

Descriptions of hardware/software devices 0 27 19 37 14 3.392 
and their functions do have to be included 
as art activities for students. 

Static 2D designs in high/low resolution 2 15 34 32 14 3.423 
graphics should be a skill exhibited by 
secondary art students on a microcomputer. 

Art students should be able to define and use 0 4 14 61 18 3.959 
computer art terms. 

The process of selecting appropriate software 
packages (i.e., Koala pad, Graforth) for 

2 2 20 62 11 3.804 

personal artistic use should be a topic in 
a secondary computer art course. 

Microcomputers and their exploration as an 0 4 12 47 34 4.144 
art medium should be included in a 
secondart art curriculum. 
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Table 4 

Frequency Ratings of Perceptions of Art Supervisors Concerning Art Teachers' 
Competencies in Dealing with Microcomputers in Art 

COMPETENCY 

Computer art terms 
History of computer art 
Recognition of computer characteristics 
Career vocations 
Evaluation and selection of graphic software 
Microcomputer visual problem solving 
Drill and practice 
Tutorial 
2D design on microcomputer 
3D design on microcomputer 
Peripheral device usage -

Programming 
Animation 
N - 86 

graphic tablet/pad 
mouse (tracing stylus) 
light pen 
digitizer 

Table 5 

Number of Microcomputers per High School 

CATEGORY LABEL 

None 
One 
2-5 
5-10 
Over 10 
Lab 
No Answer 

N = 86 

Table 6 

FREQUENCY 

7 
3 

15 
18 
27 
14 
2 

PERCENTAGE 

8.0% 
3.0% 

17.0% 
21.0% 
31.0% 
16.0% 

2.0% 

Number of Teachers in School System Who 
Provide Microcomputer-Based Art Activities 

CATEGORY LABEL FREQUENCY PERCENTAGE 

0 63 73.0% 
1 7 8.0% 
2 5 6.0% 
3 2 2.0% 
5 3 3.0% 
10 2 2.0% 
No Answer 4 4.0% 

N = 86 

The problems that were identified were in six cate
gories (teacher training, funding, lack of good 
software, curriculum development problems, 
accessibility/availability of microcomputers and 
space for microcomputers, and the role of the 
microcomputer in art). Table 7 indicates the fre
quencies of responses concerning these categories. 
Twenty-ei9ht of the participants indicated a con
cern for identifying the role the microcomputer 
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NONE WEAK FAIR GOOD EXCELLENT 

16 51 12 3 0 
35 43 10 0 0 
18 57 13 5 0 
31 42 12 3 0 
39 42 5 2 0 
43 40 5 0 0 
39 42 6 1 0 
43 38 7 1 0 
37 40 9 2 0 
50 43 5 0 0 

38 39 8 2 1 
45 36 6 1 0 
44 38 5 1 0 
50 34 4 0 0 
48 36 4 0 0 
52 32 4 0 0 

Table 7 

Problems Needing Attention in the Use of 
Microcomputers in Secondary Art Classrooms 

CATEGORY LABEL FREQUENCY 

Teacher training 8 
Funding 15 
Lack of quality software 6 
Curriculum development 16 
Accessibility/availability 11 
Role of microcomputer in art 28 
No Answer 13 

N = 97 

should play in art. According to the participants, 
the roles included: (a) the microcomputer used 
only as a tool for other art media, (b) the micro
computer as a separate art medium, (c) the micro
computer used for CAI, and (d) the microcomputer 
used for teacher management. 

The next two highest categories of problems were 
funding (15) and curriculum development (16). Once 
the role of the microcomputer has been identified, 
there appeared to be the need to address the prob
lem of developing appropriate activities for art 
students. Many respondents felt art educators 
should determine these activities but indicated 
that presently most art teachers lack skills in 
this area. This lack of skill training is re
flected in the identified problem of teacher train
ing {8). Secondary art teachers need to be 
trained in microcomputer uses and skills in order 
to make intelligent decisions on its inclusion in 
the art program. Along with these concerns was the 
knowledge that availability of funds was lacking 
for curriculum development. Two reasons were often 
identified for this lack of funding. One reason 
was cutbacks in areas other than the basics, such 



as art, would not allow for what respondents termed 
"extras" such as microcomputers. The other reason 
was general lack of awareness by administrators, 
who provide the funds, of the serious exploration 
of microcomputers in art and their creative po
tential. 

General Discussion 

The findings in this study led to the following 
conclusions: 

(1) Over three-fourths of the art supervisors and 
computer art experts agreed that micro
computer-based art activities should be 
included in the secondary art curriculum. 
Specifically, they supported the inclusion 
of the following topics in a microcomputer
based art curriculum: 
• the use of peripheral devices; 
• the evaluation and criticism of computer

generated images; 
• the creation of computer-generated 

images; 
• the identification of careers in computer 

graphics; 
• the appreciation of computer images and 

the ability to assess their use in the 
environment; 

• the definition of computer art terms; and 
• the selection of appropriate software for 

personal use. 
Although participants were in agreement with 
the general inclusion of microcomputers in 
the art program, they disagreed with the 
necessity of including the following micro
computer activities in the program: 

• computer animation; 
• the use of commercially-produced graphic 

software programs; 
• production of 3D graphics; and 
• descriptions of hardware/software func-

tions. 
In addition, they also were primarily un
decided on whether the following two areas 
need to be included in microcomputer art 
activities: 

• computer programming, and 
• production of 2D graphics. 

(2) Art supervisors reported that the majority of 
secondary art teachers lacked knowledge of 
computer-generated images and skills in 
art applications on the microcomputer. 

(3) Over half of the school systems surveyed had 
at least five microcomputers per school 
with many having lab facilities. The art 
supervisors, however, indicated that the 
majority of their art teachers did not pro
vide any microcomputer art experiences. 

(4) The major problems that needed to be overcome 
so that the use of microcomputers could be 
successful in the secondary art classroom, 
in order of importance, were: 
• Identify the role of microcomputers in 

art; 
• Curriculum development of appropriate 

activities; 
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• Funding; 
• Accessibility, space, and availability; 

and 
• Teacher training. 

The results of this study suggest that secondary 
art educators are receptive to and see the need for 
the inclusion of microcomputers in the art class
room. This finding contradicts the earlier held 
conception 1

'
2

'
9 that newer technology was viewed 

by art educators with great apprehension and should 
be avoided in the arts. There is evidence, how
ever, that agreement on certain content areas in 
microcomputer-based art is lacking. Implications 
from this stLKly suggest that problems of agreement 
may be due primarily to lack of knowledge of and 
skills with microcomputers. 

The results are also consistent with the ideas of 
writers 10

-
11

-
12 in that there appears to be an 

absence of specific knowledge needed for the use of 
microcomputers in the art classroom. The success
ful use of microcomputers in the art class requires 
not only an awareness and understanding of the 
creative potential and avenues for exploration with 
a microcomputer but also an adequate ability to use 
it. To what extent did the participants in this 
study provide evidence of these levels of compe
tencies? An answer to this question is provided by 
the competencies of the secondary art teachers and 
experiential data. Both competencies and micro
computer experiences indicate weak levels of 
abilities in the use and knowledge of microcompu
ter-based art. This means that the absence of 
these skills in secondary art teachers will influ
ence the art activities that are planned and used 
in their classroom. The most revealing comparison 
of this fact is between the number of microcompu
ters per high school and the number of art teachers 
offering microcomputer art activities. The 
majority of art teachers clearly provide no ex
perience although microcomputers are available. 

However, many of the areas that the respondents 
felt should be included in microcomputer-based art 
activities do not require the actual use of the 
microcomputer. For example, the evaluation and 
appreciation of computer art and the identification 
of careers in computer graphics do not require 
hands-on utilization of the microcomputer. Al
though there would be additional information needed 
by art teachers to provide this content informa
tion, it would appear not to be as extensive as 
actual experience in using the microcomputer. The 
results suggest that art departments that do not 
have microcomputers available or funds for their 
inclusion could provide this type of content with
out the aid of a microcomputer. These solutions 
could remedy some of the problems (funding and 
availability) that participants felt needed to be 
addressed before microcomputers were included in 
the curriculum. 

The findings of this study also illustrate that 
computer art may simply be such a new area that in
consistencies do exist concerning appropriate con
tent for art curricula. The research lended sup
port to the contention that art educators lacked 
understanding of microcomputer-based art in 
general. An example may illustrate the importance 



of acquiring specific skills in microcomputer-based 
art by art educators. Discrepancies were apparent 
in responses to the need for students to produce 
computer-generated images. Although the general 
consensus was that 3D graphics and computer anima
tion should not be included and that the role of 
2D graphics was uncertain in a microcomputer art 
program, the majority of individuals responded 
favorably to the creation of computer-generated 
images. These results are inconsistent with the 
fact that the only types of images that can be 
created on the microcomputer are 2D designs, 3D 
images, and computer animated sequences. A 
secondary explanation for these inconsistencies may 
be in the structure of the survey itself. Indi
viduals may have interpreted survey questions 
differently which could account for this fact as 
well. 

One important result of this research was the 
participants' identification of areas that needed 
to be overcome in order to implement microcomputer
based art activities in the secondary art program. 
Data from the open-ended question revealed the need 
and importance for educating school administrators 
about the creative potential microcomputers have in 
art. Without this awareness and subsequent support 
by school officials, art educators will have dif
ficulty incorporating microcomputers into the art 
curriculum. 

Another complication to the use of microcomputers 
in the art program suggested by the data seems to 
be the lack of accessibility of microcomputers or 
the space for them in the art room. In many cases, 
the locations of microcomputers in high schools are 
in the math and science areas. The open-ended 
question revealed that art departments do not al
ways have access to them. Results also revealed 
that art teachers would have difficulty providing 
space for the equipment in their existing class
rooms. Perhaps secondary art educators should 
consider the possibility of developing a mutually 
agreeable user schedule for microcomputers in their 
schools so that they (art teachers and students) 
could gain access to them. 

This study set out to investigate the content areas 
that should be included in a secondary microcom
puter-based art curriculum. What should be clear, 
however, is that inconsistencies and discrepancies 
in the respondents' positions on several topics 
existed, strongly lending support to the contention 
that lack of agreement on topics may in fact be 
merely lack of understanding of microcomputers in 
art. This lack of understanding may be due to a 
lack of tradition in a new area of art exploration. 
Thus, art educators must begin to learn how to 
create microcomputer-based art themselves. In this 
way, familiarity with and understanding of the 
medium will develop and the formulation of a tra
dition in microcomputer-based art will begin. 
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Abstract 

describe an installation using sound 
producing microcomputers in a public place and 
provide an evaluation of the reaction to the 
piece as well as some comments on the use of 
microcomputers in environmental/conceptual art. 

Introduction 

As discussed elsewhere my art work has 
developed as ways of expressing the formal 
features of the human nervous system (Shortess, 
1983 )~. Briefly I have used the properties of 
the nervous system as the basis of my art in 
much the same way as any artist uses the 
features and ideas of his/her subject matter to 
create images in whatever way they are defined 
by the artist. In my particular approach, I am 
not trying to create literal nervous systems but 

interactive devices that behave in 
some ways like nervous 

systems.One effect of these pieces 
is to create for the viewer the 
idea that neural activity is an 

essential part of the art 
experience. For 

these purposes the 
interactive function or 
behavior of the system 
is more important than 
the visual appearance 
although that too is, 

of course, part of the piece. But it has been 
the ability of microcomputers to behave 
interactively that has led me to use them in my 
work. 

In this sense then my work is a form of 
conceptual art in that it is driven by ideas 
about the nervous system and asks questions 
about the nature of art and the role of neural 
activity in understanding art ideas (see for 
example, Kosuth, 1969)1. However, it is not 
conceptual in the sense that there are physical 
objects that outlast my creative act. On the 
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other hand they continue to generate ideas about 
neura•l activity, as well as neural activity in 
the viewer, for as long as the viewers and 
pieces can interact. They are not so much 
conceptual in the act of creation (as with much 
of performance art), but they are conceptual to 
the extent that they successfully ask questions 
about the idea that the nervous system is the 
essential art object. 

Within this general context, I will 
describe my installation piece, Red Network, and 
provide some comments on a questionnaire that 
evaluated the exhibition, as well as some 
general comments on the use of computers in this 
kind of art. 

The Installation 

This installation was part of 
series of exhibitions on Art and 
sponsored by the Lehigh University 
that were in place from September 
October 30, 1983 at the University. 
in two separate buildings housed 
exhibitions. There were three other 
of interest, aside from Red Network: 
1) an exhibition of offset prints in 
Building A, 2) a survey of the 
history of art and 

Figure 1. Map of the 
connecting pathway 
between the two 
buildings, A and M. 
Scale 
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technology cal led "The Aesthetics of 
Technology: From the Crystal Palace 
to the High Frontier" in Building M, 
and 3) an exhibition of shells and 
other natural forms cal led "Nature's 
Technology" in Building Mas well. 

Red Network provided a conceptual 
link between the two buildings (see 
Figure 1). For this installation I 
placed on the floor in the lobbies of 
both buildings aluminum covered boxes 
from which extended heavy red cord 
attached to the ceiling (see Figure 
2). Al 1 boxes were 15 inches high and 
occupied from 360 to 650 square inches 
in various rectangular shapes. The 
cord also extended outside along the 
walkways connecting the two buildings, 
a distance of over 1000 feet. Outside 
the cord was placed in noncontinuous 
sections supported by aluminum stakes 
driven into the ground so that the 
cord was about a foot above ground 
level. At the ends of each section, 
the cord followed the stake into the 
ground and was anchored below the 
ground level. This gave the 
impression that the cord continued 
underground between the above-ground 
sections. As thP exhibit continued 
(over a period ot six weeks), the 
number of stakes was reduced, making 
the connection more conceptual and 
less literal. In each lobby a small 
sound generating computer (a Commodore 
VIC-20) was housed inside the aluminum 
covered boxes. Pressure sensitive 
pads were placed under the foot mats 
inside the doors and connected to the 
computers. As people entered and left 
the buildings there were bursts of 
sound from the boxes. Often a group 
of people leaving at the same time 
would produce sequences of the 
bursts by the chance spacing of 
their walking patterns. In 
addition, by alternately 
stepping on and off the 
pads, one could 

Figure 2. One of the aluminun covered 
boxes with ~ord. 
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Figure 3. Schematic 
floorplan of in
stallation in 
Building M. 
SW- Switch 
SP- Audio Speaker 
CO- Computer 
AM- Amplifiers 
Scale 
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deliberately create sequences of these bursts to 
form unique sound patterns. These two locations 
served as the two main nodes with the red cords, 
as the connecting elements of the total network 
structure, binding the two exhibition spaces 
together. 

The floor plan for the Building M node is 
shown in Figure 3. The node in Building A was 
similar except that there was only one pressure 
sensitive pad and only one speaker, since the 
available space was smaller. The joystick 
inputs to the VIC-20, which is a pair of 
switches, were simply connected to the pressure 
switches placed out of sight under the regular 
door mat runners in the entrances. The 
connecting wire was run in an unobtrusive way 
around the edges of the space. The program in 
the computer kept looping and looking for a 
change in the state of one of the switches. 



When a change occurred in either switch a 
subroutine was called that generated a sound 
burst associated with the particular switch that 
closed. Both switches produced eight notes in 
succession. A typical sound burst for each 
switch is shown in Figure 4. The tone for one 

.I I J. J4 

I J II 
SW 2 

r 1crrr1r c IJ 11 

SW 1 

Figure 4. Note sequences generated by the 
sculptures 

switch was lower than for the other. The tones 
for each burst were always the same and were al 1 
about 16 msec. in duration but the time 
intervals between notes of the burst varied each 
time the mat was depressed. The ranges of 
intervals were from 20 msec. to 220 msec. for 
switch 1 and from 20 msec. to 170 msec. for 
switch 2. The same program, connected to switch 
1 only, was used in Building A. The particular 
sequence of intervals varied in a quasi-random 
order as determined by the random number 
generator of the computer. After the burst it 
again evaluated the switch. If it remained 
closed the program would not return to the main 
loop. This required that the participants keep 
moving around on the mat in order to continue to 
generate sounds and provided a safeguard against 
the sound going on continuously if a broken 
switch remained closed, although the pressure 
switches continued to operate throughout the 
exhibit. In fact, there were no reliability 
problems in the system at all. While the system 
was looping and looking for a switch closure, it 
would generate a single note of 16 msec. 
duration and with the tonal value of high C. 
The interval between occurrences of this single 
note was between 0.6 sec. and 18 sec. This 
served to indicate that the system had a will of 
its own and was not simply driven by the traffic 
through the buildings. 

The Reactions 

The reactions of viewers to the piece 
included indifference, genuine liking and 
disliking as well as an unsureness about the 
work as "art." Some people, I am told, talked 
to it when they would go by, others played on 
the mats to create their own sound sequences 
while others never noticed. However, the 
computer-generated reactivity seemed to be the 
most engaging part of the piece. 

The outside stakes with the red cord 
suffered various forms of nonverbal abuse. They 
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were bent, pulled out, pushed over and taken 
away. During the daily maintenance I also 
changed the exact placements and reduced the 
total number of stakes over the period of the 
installation partially in response to the abuse. 

In addition some of the students got 
involved with the work in a variety of public 
ways. There was an editori a 1 in the campus 
newspaper and towards the end of the show a 
group of students built a sculpture on the lawn 
in front of Building M, using pieces of the red 
cord and stakes of Red Network together with a 
supermarket shopping cart. It was dubbed "cart 
art." 

After the exhibitions were over, a 
telephone survey of 110 students was carried out 
to gauge the impact of the exhibitions for the 
i;urpose of improving the exhibition program at 
the University. can provide a complete 
description of the results to anyone interested. 
Here I wi 11 simply summarize them, particularly 
as they pertain to Red Network. First there was 
a problem in obtaining a random sample of the 
Lehigh student population. The sample obtained 
was overrepresentative of sophomores and 
underrepresentative of seniors so that 
uncritical generalizations to the general 
student population cannot be made. Within that 
limitation, however, the results from the sample 
indicate that there were significant differences 
in student awareness for the exhibitions. The 
students were most aware of Red Network (65% of 
the 110 students) while 20%, 28% and 39% of the 
sample were aware of the other three 
exhibitions. In addition there were 22 students 
who were only aware of Red Network and not the 
other three exhibits while for each of these 
other exhibits 0, 4 and 6 students respectively 
indicated awareness of but one of them. This 
suggests that Red Network was more salient than 
the other exhibitions. This is consistent with 
the newspaper editorial and the "cart art" work 
created by the students, since none of the other 
exhibitions was responded to in these ways. 
Whether this salience was due to the interactive 
quality, the fact that it was located in several 
areas of the campus or some other reason cannot 
be determined. Future work may be able to 
answer these questions about computer controlled 
interactive art works. One other result 
emerged. About half the students who were aware 
of each of the exhibitions reported reacting 
positively towards it while the other half was 
either negative or indifferent. There were no 
differences in this measure across exhibits. 
Therefore the salience of Red Network did not 
seem to result from an overriding liking of it, 
although it should be emphasized that these 
results are suggestive rather than conclusive. 

Comments 

I will not attempt an evaluation of the 
overall success of the piece since I do not have 
the data with which to do it. Certainly for 
some vi ewers the piece did work wel 1. For 



others it was something meaningless. As an 
experiment it was clearly valuable to me as the 
artist. It demonstrated possibilities for the 
use of computers in nontraditional forms that 
allow art, as an open concept, to develop in 
ways that are at least improbable without the 
computer. Its value, in addition to its 
interactive ability, is that it behaves in 
highly repeatable ways and the artist can 
specify the rules by which the program works, or 
change the rules and experiment with the 
parameters of the program. The microcomputer is 
also relatively inexpensive, is convenient, fits 
into a small box and is portable. It is an art 
form that does not depend on high cost and state 
of the art equipment. 

But when and how does one use a computer, 
or any other medium for that matter? This seems 
to me to be one of the most important parts of 
the process of artistic expression and in the 
final analysis each artist must answer these 
questions for her/himself. However, there seems 
to me to be a guiding principle that is often 
lost when computers are involved. In the search 
for higher resolution, more powerful machines 
and, by some technical criterion, better and 
improved systems, the technical often drives the 
creation. For me the making of art should be 
driven by the art ideas and not the technology, 
unless of course that in itself is the idea. 
The technological medium provides the limits of 
the po~sibilities but does not provide ideas of 
art. True, there may be interactions between 
the medium and the artist that are helpful to 
the artist in understanding the technology and 
what it can do, but that is not artistic 
creation. In the case of Red Network, I wanted 
to make a statement about connections among a 
group of art exhibits that reflected the 
metaphor of the nervous system. In addition, I 
wanted the piece to be placed in particular 
public areas without a great deal of security 
and areas that were not well laid out for 
connecting a piece into major computer systems. 
This seemed to be an ideal application of the 
small VIC-20 microcomputer. But it was the idea 
of the neural metaphor that came first and then 
the search for the appropriate medium. It is 
this principle that somtimes gets lost in the 
rush to bigger and better machines. 

From this it follows that since one of the 
qualities of the machine is as a processor of 
information, arts dealing with ideas about 
information structures, information transmission 
and other information processing activities find 
computers a natural medium to use, al though 
certainly not the only one. Since my art work 
is dealing with ideas about the nervous system, 
which is an information processing system among 
other things, the computer can provide a means 
to express the neural metaphor. In addition, 
the computer is a powerful medium for looking at 
the conceptual basis of art. By helping to move 
art out of conventional molds, it is a way of 
extending the definition of art. In the case of 
Red Network, I have combined these two ideas by 
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asking about the relationship of art to neural 
responses. In this context then, is the art 
work the collection of boxes, red cord, 
computers, wires, switches, etc? Or is it the 
interaction that occurred while it was in place? 
Or is it the idea that the essential art work is 
a pattern of neural activity which exists in 
some people's neural memory? Different people 
will answer these questions in different ways 
and I will not presume a correct answer. As the 
artist, the exploration of the means of asking 
such questions is the exciting activity of 
creation. Microcomputers provide another way of 
doing just that, but a way that is uniquely 
suited to the task. In addition to these sound 
sculpures I have been developing programs, using 
graphics and text that are more language based. 
They make statements, ask questions and require 
viewer responses. This is another of the many 
potential ways to use the computer medium to 
express artistically, ideas about neural 
function and the arts 
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In this paper we will discuss computers as a means 
of presenting poetry and in our discussion address 
the more general issue of aesthetics and computer 
graphics, 

INTRODUCTION 

Nora writes poetry, She doesn't like computers, 
Computer generated poetry doesn't impress her and, 
frankly, it doesn't impress me either. My 
specialty is computer graphics. Approximately 4 
years ago I helped design an artists' work 
station. One of the images I created on this 
system inspired Nora to write Gretchen Prisoner of 
Love. More images followed and soon we had our 
first slide/tape show. 

We thought about distributing our creative effort. 
Traditionally poetry is distributed through the 
print medium in books and literary journals. 
Sometimes it is accompanied by illustrations or 
photographs. We even have concrete poetry which is 
its own illustration. Unfortunately, people would 
rather watch TV than read a book of poetry. A 
slide/tape show is not the most portable of media 
and not everyone has a slide/tape synchronizer in 
the den. 

Why not make poetry available on TV? We tried 
videotaping our creation but this ended in 
frustration. The sound track was left off our copy 
rendering it useless. 

Why not translate Gretchen Prisoner of Love from 
slide/tape to floppy disk? We tried putting it on 
the computer and herein lies our tale. 

AESTHETICS 

Gretchen Prisoner of Love is a prose-poem. In the 
original slide/tape version each of the 88 lines 
of text corresponds to an image, The relationship 
between text and image is one of text and context. 
The image creates a context for interpreting the 
text. In turn, the text gives meaning to the 
image. This relationship raises the issue of 
aesthetics. 

"Aesthetic" comes from the Greek for "sense of 
perception". Webster's defines aesthetic as that 
which relates to sensuous cognition involving pure 
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feeling or sensation especially in contrast to 
reasoning or rationalizing. "Aesthetics" seems to 
have aquired a related but opposite meaning as a 
set of rules for judging the worth of a piece of 
art. This second definition opposes the first 
because it emphasizes reasoning over feeling, And 
herein lies the failure of "computer art". 

In general, computer art appeals to the intellect 
not the emotions. We hear something like, "That's 
a nice piece of computer art because ••• ", rather 
than, "That piece makes me feel, •• ". This 
distinction is important. Computer art which 
illicits the first response will never be anything 
more than "a nice piece", but that which illicits 
the second response has real potential. In 
Gretchen Prisoner of Love we are attempting an 
immediate sensous experience; we are attempting to 
illicit the second response, 

To put it another way, poetry appeals to the 
emotions, this is a given, Computer graphics 
appeals to the intellect, this is a mistake. 

In order to avoid this pitfall, we needed a 
presentation sufficiently complex so that it 
defied immediate rationalization, We tried to do 
this in several ways. An image can be made 
complex; its relationship to other images in the 
presentation can be made complex; and, finally, 
the relationship between the images and the text 
can be made complex, We have now returned "full 
circle" to our discussion of text and context. 
Let's wrap it up by paraphrasing Susanne Langer
art is the appropriate relationship between that 
which contains (context) and that which is 
contained (text). 

WHAT YOU CAN DO WITH YOUR COMPUTERS 

Now for Nora's two cents worth. Anyone who has 
been paying attention the last few years knows the 
computer has become a tremendous aid to writers, 
Word processing makes editing and revising faster 
and easier, and more and more books and articles 
are composed and arranged on word processors, 
There is another kind of writing however, that is 
still best done by the slower method of pen on 
paper: poetry and lyric prose. 

In well-written poetry and prose-poetry, every 
word is carefully considered, chosen and placed 



for its meaning, impact, and relationship to the 
whole. As the creative process unfolds, hours or 
even days may pass before the right word or group 
of words is found for a particular placement. If a 
phrase comes to the writer in the middle of the 
night, she does not get up and power up the 
system, find the disks and programs she's using, 
and insert the phrase. She writes it down in the 
notebook next to her bed. 

In the original slide/tape production of Gretchen, 
the lines were written to accompany the images. 
The reading, or sound track, was an important part 
of the presentation. In the computer version, 
different (though similar, when possible) images 
were created to accompany the script, which, no 
longer heard, has to be read off the screen. The 
movement and placement of the words became an 
important part of the visual images. 

The computer as a means of presenting poetry and 
images is probably not an obvious application of 
the technology, but a computer disk is definitely 
an appropriate vehicle for Gretchen's narrative." 
Certainly there are worse things you could do with 
your computers. 

THE PRESENTATION 

The original slide/tape format uses approximately 
90 slides synched to a prerecorded audio cassette. 
There is a line of text for each slide, an 
inaudible pulse at the end of each line advances 
the slide tray. Timing or pacing is determined by 
the narration. The original images included real 
photographs, digitized video images and computer 
generated images with a resolution of 378 x 241 x 
16 of 4096 colors. 

And we wanted to do this on an APPLE! 

The new computer format uses 32 images presented 
with text on the APPLE's high resolution screen, 
so-called, having a resolution of 280 x 192 x 6 
colors. No real photographs, and the digitized 
video images are limited to 4 levels of grey. 
Timing is determined by programming. 

The script was reorganized; lines of text were 
grouped to correspond to avaliable images. In the 
outline that follows, the images are numbered 
1-32. The"&" indicates that the screen is cleared 
and corresponding lines appear on a blank 
screen.The"+" indicates that the last lines are 
cleared before the new lines appear. Because there 
are only 40 characters per line, some of the 
original lines are broken. The"/" indicates a 
pause inserted in order to control the speed at 
which the line is read, that is, to control pacing 
for variety and emphasis. 
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Here is the reorganized script-

1. 

Gretchen/ 

2. 

Prisoner of Love/ 

& 

All my life I've struggled/ 
to find my owm identity./ 
Who am I?/ 

3. 

When I cut through the fascade,/ 
through the layers I present/ 
to the outside world,/what is left?/ 

4. (text window) 

s. 

I am a woman./ 

+ 

More than anything,/! feel./ 

6. 

Emotions/are the driving force/ 
in my life./And why not?/ 

& 

Does anything else really matter?/ 

7. 

We all go through our daily routines/ 
doing what we need to uo/ 
to get by in the world./ 

+ 

We think our activities are important./ 
We believe we have chosen our paths,/ 
set our own goals./ 

8. 

We believe we are masters/ 
of our own fate/because no one/ 
wants to believe/in a random universe./ 

& 

But do we really make our own decisions?/ 
Do we really have a choice?/ 
Perhaps not./ 



9. 

Our life form has evolved/ 
to its present state/ 
because our bodies carry/ 

+ 

genetic material/whose sole purpose/ 
is to reproduce itself./ 

10. 

Is that why/I can only identify myself/ 
in relation to another./ 

11. 

Lowell is a cad./ 
He takes shameless advantage/ 
of my love./But I can't give him up./ 

& 

I tried to fight it./ 
I told myself/ 
it's useless,/ 

12. 

He'll/only/break/your/heart-/ 

13. 

cut/it/into/pieces./ 

14. 

But he drew me/ 
to him like/ 
a magnet,/ 

+ 

calling for me/ 
in my dreams-/ 

+ 

GRETCHEN/ (repeat 4 times) 

+ 

I couldn't resist./ 

15. 

Lost in his arms,/nothing else mattered./ 
His kisses were /like magic,/ 

16. 

his touch/like none I'd known before-/ 
so gentle,/yet so strong./ 

& 

How can I describe/ 
what happened in my mind/ 
when we touched-/ 
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17. 

the images/so strange,/colors/so vivid,/ 

18. 

shapes and patterns so real,/ 
beyond the realm of illusion./ 

14. 

Oh Lowell,/ 
will you never care for me/ 
as I care for you?/ 

19. 

It's not not that Lowell is cold/ 
or unfeeling./He loves his work./ 

20. 

He spends most of his time/ 
at the computer,/devoting his life/ 
to information processing./ 

21. 

And this he does/in the name of art-/ 
because he's also devoted to art./ 

& 

He says,/ 

+ 

"Because of the dichotomy/ 
between art and science,/ 
artists should take over/ 
the technology."/ 

+ 

Oh I know he's right./ 

22. 

Think of how technical minds/ 
have misused technology./ 

23. 

How science has abused humanity/ 
and endangered the future/of our planet./ 

24. 

But Lowell is into/ 
computer augmented creativity./ 

+ 

There are worse things/ 
a computer scientist can do./ 



& 

Too bad/ 
computers bore me/ 
comatose,/ 

25. 

My mind goes plaid/whenever he talks/ 
about the system output/ 
of his algorithmic strategy,/ 

14. 

Can't he see/ 
what he's doing/ 
to me?/ 

+ 

There must be a way/ 
to make him notice./ 

+ 

A way to get him/ 
to leave his machine,/ 

& 

I needed a/PRIORITY INTERRUPT./ 

26. 

I tried to make him jealous./ 
I went out with other men,/ 
It didn't faze him,/ 

27. 

I flirted blatantly with his co-workers,/ 
He was pleased/ 
I found his friends so charming./ 

& 

"I want you to be free," he said,/ 
And I want to be free,/ 
but is it possible/ 

28. 

Could sheer will ever harness the energy/ 
of sociobiologically influenced/ 
electrochemical synapses/ 

29. 

in a woman born in scorpio sun/ 
with capricorn rising?/ 

30. 

I do what I need to do/ 
in my daily routine./ 
I have chosen my path,/set my goals./ 
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& 

But do I make my own decisions?/ 
Do I have a choice?/ 

31. 

Will I always be/possessed by/passion,/ 
enslaved by/lust,/a prisoner/of love?/ 

32. I (final image, no text) 

& 

Written by/ 
Nora Wilson/ 
Programmed by/ 
Walter Wright/ 

& 

A Lofty Thoughts Production/ 
Copyright 1984./ 

STRUCTURE AND COMPLEXITY 

Now for Walter's two cents worth. As I worked with 
Nora's script I became aware of subtleties 
previously missed, a craftiness lurking between 
the lines. On the surface Gretchen Prisoner of 
Love is a simple tale of unrequited love, There 
are two principal actors: Gretchen who is a woman, 
and Lowell who is a cad, Gretchen identifies 
herself in relation to, hopefully, Lowell, He on 
the other hand seeks fulfillment in his work. But 
there's more than romance here. 

There is the conflict between natural systems such 
as biology (Gretchen is something of an amateur 
sociobiologist), and man-made systems or 
technologies: between feelings and the machine, 
And there is the conflict between art and science. 
So we have several conflicts interwoven in the 
script. Each a simple confrontation of opposites; 
but together a complex structure which 
approximates reality. For example, Gretchen and 
Lowell may not be seeing eye to eye but, at least, 
they're both for art as opposed to (mis)applied 
science. 

The writer weaves together a number of simple 
themes to produce a complex structure, Nora has 
done this not only on the level of plot, but with 
voice, grammar, and syntax. Here is Gretchen (the 
amateur sociobologist) pondering her predicament: 

"Our life form has evolved to its present state 
because our bodies carry genetic material whose 
sole purpose is to reproduce itself. Is that why I 
can only identify myself in relationship to 
another?" 

Or, consider this gem: 

" ••• shapes and patterns so real, beyond the realm 
of illusion." 
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Figure 1 Titles 

The visual artist must also weave together a 
number of simple themes to produce a complex 
structure in support, or sometimes in opposition, 
to the text. I used three types of images 
corresponding to the three voices used in the 
text; real (digitized video) images corresponding 
to the narrative voice; illustrative in response 
to the use of cliches; and abstract images in 
response to the more poetic passages. 

Figure 3 Gretchen 

Figure 5 Lowell 
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Figure 2 A Broken Heart 

The title- "Gretchen/Prisoner of Love"- is an 
example of illustration, Figure 1. The title is 
spelled out directly, an obvious one to one 
correspondence. Further, the phrase "Prisoner of 
Love" is imprisoned inside "Gretchen"; indicating 
that the prison isn't outside Gretchen, the prison 
is Gretchen. Another example of illustration is 
the breaking heart, Figure 2. 

Figure 4 Gretchen and Lowell 

Figure 6 Gretchen Thinking 



Figure 7 Emotions 

Figure 9 A Random Universe 

Real images, Figures 3-6, are used to introduce 
Gretchen- "Who am I?"- (and there she is) and 
Lowell who first appears in a composite image-
" ••• in relation to another."- a visual pun, and 
then on his own (the cad). There is one particular 
image of Gretchen, she's in the lower half of the 
frame, used at three points in the script where 
the narrative·becomes highly introspective, Her 
thoughts appear cartoon-like above her head. And 
at one point Lowell's voice appears (in inverse 
type) to summon her away. Here we have something 
like counterpoint; the real images become a 
cliche. 

Abstract images, Figures 7-10, are used to convey 
feelings and concepts. The first pure abstract 
appears with the line- "Emotions are the driving 
force in my life" • A knife-like triangular 
(negative) shape cuts the picture and overlaps the 
previous image of the body. It points to the text 
for added emphasis. Another type of abstract is 
used with the phrase- " ••• our daily routines ••• "
and appears again with- " ••• my daily routine." In 
this image groups of orderly horizontal and 
vertical lines are torn apart into areas of 
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Figure 8 Our Daily Routines 

··--~ 
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Figure 10 In The Name of Art 

contrasting color indicating the usual outcome of 
well laid plans. Some abstract images are (or 
contain) visual puns; for example the image which 
accompanies the phrase- " ••• a random universe. 11

-

is made from random pieces of images used 
elsewhere in the presentation, and with- " ••• in 
the name of art ••• "- is an image containing, what 
appear to be, little framed canvasses. 

Many images are combinations of these three basic 
types- real, illustrative and abstract. The 
statement- "I am a woman."- resulted in a 
composite image made from two real images, Figure 
11. The dominant figure is assertive like the 
statement; the second figure appears to be 
emerging from tears in the first and changes the 
original assertation to a question- "I am which 
woman?". These same two figures are combined again 
near the end of the presenation; they are in 
better balance. The final image, Figure 12, 
combines illustration, realism, and abstraction. 
Gretchen, as she first appearred, is combined with 
the unbroken heart, however, she is still a 
prisoner as suggested by the vertical bars which 
break up the image. She is still a prisoner of 
love. 



Figure 11 I Am a Woman 

OK, I've suggested ways in which these three types 
of images were woven together to form a complex 
structure which supports through correspondence 
and opposition the equally complex structure of 
the text. This structure is one of expression; and 
expression is only one dimension of visual 
imagery. Just as the writer (bless her heart) 
works with grammar and syntax, so does the visual 
artist. Composition is a second means of 
structuring visual imagery, a second dimension. 
Again taking the three types of images- real, 
illustrative and abstract- let's look at the order 
in which they occur in the presenatation. 

Group 1: the titles constitute a single 
illustration, followed by one real image, four 
abstract images, and another illustration. This 
group of seven images introduce Gretchen and the 
concept of genetic determinism. 

A bridge: two realistic images serve to introduce 
Lowell and form a bridge to the second major 
grouping of images. 

Group 2: again this group starts with an 
illustration- the breaking heart- followed by one 
real image, four abstract images, and the same 
real image repeated. In this group of seven images 
Gretchen driven, we suppose, by genetic 
determinism pours out her heart. 

Group 3: immediately we launch into the third and 
last major group of images. Four abstract images, 
one real image, one abstract image, four real 
images, and four abstract images. This group is 
obviously different; there are fourteen images
twice as many as groups 1 and 2; the order of 
subgroups established in 1 and 2 is reversed. We 
are introduced, in the first subgroup of four 
images, to the themes- feelings versus the machine 
and art versus science. In the second subgroup of 
four images Gretchen confronts Lowell directly, 
attempting to lure him from his machine. This is 
stage two of the standard "hollywood plot" which 
has three stages- crisis/ conflict/ resolution. 
But there is no resolution, in the last subgroup 
of four images we have a recapitulation of the 
original romantic conflict; and the question-
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Figure 12 A Prisoner of Love 

"Will I always be ••• a prisoner of love?"- is left 
unanswered. 

A summary: the final image combines illustration, 
realism, and abstraction. The unanswered question 
reverberates through this image. 

Let's look at the order of images in its simplest 
forms- "I" repesents an illustration, "R" a real 
image, "A" an abstraction, and"/" divides the 
major groupings-

IRAAAAI/RR/IRAAAAR/AAAARARRRRAAAA/I 

And as numbers-

1141/2/1141/41144/l 

OK, here we are at the opposite end of the 
structuring continuum- from expressive to 
mechanical; informal to formal; or, as Gretchen 
might put it, from feelings to the machine. The 
question we must ask now is-

Is this a suitable structure, an appropriate 
container (context) for that which is contained 
(text) ? 

And, of course, I think it is. Here's why. The 
major groupings of images correspond directly to 
the development of themes within the plot, as 
outlined above. The ubiquitous rule of threes is 
basic to the "western aesthetic". Parts 1 and 2 
are identical, in a formal sense, leading us to 
predict Part 3. But no, Part 3 inverts our 
expectations; elaborating and extending the 
structure of Parts 1 and 2. Literature, hollywood 
films, and pop music- just to mention a few 
diverse examples- use similar means of structuring 
and form(al) development. Not wishing to belabor 
what is meant to be but one example of 
structuring, I have a final observation. The 
number sequence above, if transposed into musical 
notes and intervals in a minor scale, would make a 
nice lament ••• 



The next several sections are technical in nature, 
They describe the hardware and software used in 
bringing Gretchen Prisoner of Love to the computer 
screen. We will look at assembly language 
utilities, higher level language programs, and 
other graphic systems used in producing and 
orchestrating text and images, These are the 
building blocks for the presentation system. 
Discussing them not only satisfies a programmer's 
compulsiveness but will help to define the term 
ttcomplexity tt 

GRAPHIC UTILITIES 

VCUtilities is a package of assembly language 
graphics routines developed for an advanced 
computer graphics class at Virginia Commonwealth 
University, School of The Arts. It includes -

UD 

SAD 

& 

- calculate line address, 

- calculate screen address, 

- fast clear. 

% - zap phase bits, all black bytes cleared, 

S! 

P! 

X! 

V! 

HL 

VL 

R! 

A! 

T! 

- clear screen to 1 of 32 color patterns. 

- draw a pixel, 

- draw a pixel in XOR mode, 

- draw a vector, 

- draw a horizontal line, 

- draw a vertical line, 

- draw a rectangle, 

- draw a filled rectangle. 

- text drawing in XOR mode. 

Figure 13 Vertical stripes on the current screen. 
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I< - digitize a video image. 

S> - save image from current screen to 
alternate screen, 

S< - load image from alternate screen to 
current screen. 

P> - pack current screen to buffer. 

P< - unpack buffer to current screen, 

My APPLE has a 294K Synetix RAM card and a 
MicroWorks video digitizer. The RAM card gives me 
32 alternate high resolution screens, This is 
handy because I program in TransFORTH which leaves 
only 1 screen on the APPLE, My version of 
VCUtilities uses the 1 available screen on the 
APPLE as the current screen and the additional 32 
screens on the RAM card as alternate screens. 
Images are loaded from alternate screen in 
REPLACE, XOR, OR or AND modes, Consider for a 
moment two images, vertical stripes on the current 
screen and horizontal stripes on an alternate 
screen. Figures 13-17 shows the current screen 
before and after loading the alternate screen 
using the 4 logic modes, 

I 

I 

The XOR mode is used in text drawing because it 
allows text to appear over any background and 
because text can be erased by redrawing. 
Understanding these 4 logic modes is important to 
any graphics programmer because they contribute in 
large part to the unique character of computer 
generated images. More later. 

VCUtilities includes packing and unpacking 
routines. Packed images take up less space in 
memory and on the disk. All 32 images used in 
Gretchen are stored on the back side of the 
program disk. Finally, I should mention that 
VCUtilities was developed using the ALD II system 
written by Paul Lutus. And while we're on the 
subject, Paul Lutus also wrote the TransFORTH 
language used to develop the presentation system 
that made Gretchen possible. 

Figure 14 Horizontal stripes loaded in REPLACE 
mode. 

l 

! 

l 

l 



Figure 15 Horizontal stripes loaded in XOR mode, 

Figure 17 Horizontal stripes loaded in AND mode, 

GRAPHIC PROGRAMS 

First a brief explanation of the FORTH language, 
FORTH routines are called words and each word is 
added, in turn, to the system library. New words 
are defin~d using words already in the library. A 
FORTH system is built up or extended for each 
application, Therefore each application is its own 
FORTH system with its own library of specialized 
words. FORTH uses a data stack, parameters used by 
a word are placed on this stack before the word is 
invoked, For example, the following line of code 

2 2 + 

adds two and two. The syntax is called Reverse 
Polish Notation, the parameters are 11211 and 11 211 

and the word is"+" The result 11411 is placed 
back on the stack. 

The words or programs described below were added 
to the TransFORTH library to make the special 
graphics system used in producing Gretchen, These 
additonal words or programs include-

HGR - display high resolution page 2. 
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Figure 16 Horizontal stripes loaded in OR mode, 

C! - set color pattern, takes 1 number ( 0-31 
) from the stack. 

& - fast clear. 

% - zap phase bits, all black bytes cleared. 

S! - clear screen to 1 of 32 color patterns, 

DATA - set xy coordinates. 

P! - draw a pixel, takes 2 numbers ( XO,YO) 
from the stack, 

X! - draw a pixel in XOR mode, as above. 

V! - draw a vector, takes 4 numbers ( 
Xl,Yl,X2,Y2) from the stack, 

R! - draw a rectangle, as above, where Xl,Yl 
define the upper left corner and X2,Y2 define the 
lower right. 

A! - draw a filled rectangle, as above. 

T! - text drawing in XOR mode, takes 2 
numbers ( Column,YO) from the stack and retrieves 
a line of text from the TransFORTH buffer PAD. 

I< - digitize a video image. 

L! - set logic mode, takes 1 number ( 0-3) 
from the stack. 

S> - save image from current screen to 
alternate screen, takes 1 number ( 0-31) from the 
stack. 

S< - load image from alternate screen to 
current screen, as above, 

D> - save current screen to disk, asks for 
file name and adds the prefix "PAC." indicating a 
packed image, 

D< - load current screen from disk, asks for 
file name as above. 

@ - wait, takes 1 number from the stack 
which determines the delay until next word 
executed, 



In addition to the routines listed above, words 
were developed to create and manipulate images. 
These additional words are used to pack images 
created using other graphic systems, to transform 
images, to collage images together, and to move 
groups of images between disk and the 32 alternate 
screens. None of these words are compiled with the 
system, rather they are stored on disk to be used 
as required. Briefly, they are-

PACK.KOALA - takes images created with 
Microillustrator, packs them and stores them on 
disk. 

PACK.CEEMAC - takes images created with CEEMAC, 
packs them and stores them on disk. 

INVERT% - flips the phase bits, changes green to 
orange and violet to blue. 

INVERT flips all bits, inverts the image. 

# - an integer random function, takes 1 
number from the stack and places a random number 
back on the stack. 

TP - "Torn Paper" creates a mask useful in 
collaging images together. There are 4 additional 
words TPO, TPl, TP2 and TP3 corresponding to the 4 
logic modes. 

VB - "Vertical Bars" creates a mask as above. 
Again 4 additional words VBO, VBl, VB2 and VB3 
correspond to the 4 logic modes. 

SQ - "SQuares" creates a mask as above. Again 
4 additional words SQO, SQl, SQ2 and SQ3 
correspond to the 4 logic modes. 

Figure 19 Vertical Bars mask. 

85 

TSAVE - saves alternate screens to disk, takes 2 
numbers from the stack indicating the first and 
last screens to be saved. 

TLOAD 
above. 

- loads alternate screens from disk as 

Computer generated images achieve a unique 
character through the use of masks. Complex images 
are built by collaging together several basic 
images in cqmbiniation with masks using the 4 
logic modes mentioned earlier. Photographers and 
filmmakers are more familiar with the term 
"matting" and videomakers with the term "keying". 
Essentially, we're talking about the same thing. 
Figures 18-22 show various masks produced by the 
Torn Paper, Vertical Bars, and SQuares words. 

Figure 18 Torn Paper ~ask. 

Figure 20 SQuares mask. 



Figure 22 Combination of Vertical Bars and 
SQuares. 

GRAPHIC SYSTEMS 

Besides the VCUtilities graphics system, both 
CEEMAC and Microillustrator were used to create 
images for Gretchen. 

CEEMAC is a system for visual composition. The 
user writes a score which results in a dynamic 
visual display of dots, straight lines, curves, 
and predefined shapes. The user can interact with 
this display in "real time" and can direct the 
composition according to his/her whim. An animator 
friend of mine calls this "metaprogramming"; the 
user defines the rules which structure the image 
but doesn't define a particular image. Alternating 
between "execution" and "editing" the user refines 

□□m • •• D ~ D DO HD~ ■□~~~ D 
••• DOM~ □□ ~n~o 
□~~□ ~ ~□~□ D ~ 
□□■■ o o uu~ou~ 
~□□□□--= --□~~ = □mmmmmm□mmmm □□□mmmm □ 
~□□om □ □ ~□□moa 
111111 Oillll!lll!ll Dll!lllltl!!!OOOll!l!l!IHI! 
D 111111 D llll!l lll!li D l!!l!i l!l!i! 1111110 l!!lii l!llll DD ••••• □ • □□• 

□-□- □• - -□--□ 111111 llllll □ llllll□ !lllllllllllllllll 111111 D 
oommomm mmmmmmmm□o □□ 

~□ ~ -□ • □ □ mm mm mm mm mm □ 111111 
II II Ill 

Figure 23 CEEMAC Image 
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Figure 21 Combination of Torn Paper and Vertical 
Bars. 

the rules until satisfying images result. These 
images can be "frozen" and saved on disk. CEEMAC 
was written by Brooke Boering and is available 
from Vagabondo Enterprises, 135 Stephen Rd, Los 
Aptos, CA 95003. Figures 23-24 are images from one 
such CEEMAC score. 

Microillustrator is a "paint system" which comes 
with the Koala Pad. It allows the user to draw 
freehand or with simple shapes. There are 8 
brushes available and the user can select from a 
pallette of 18 colors. A fill routine and a 
magnify routine are included. Images can be saved 
and loaded from disk. I use this system to create 
original images and to 'clean up' digitized video 
images. Figures 25-26 were created with 
Microillustrator. 

Figure 24 CEEMAC Image 



Figure 25 Microillustrator Image 

Each of these graphics systems- my own TRansF0RTif 
system, CEEMAC, and Microillustrator- produce 
unique identifiable images. My own system can 
digitize a video image and produces geometric and 
mathematically derived images. CEEMAC images are 
also geometric but are more fluid and more random 
than my own. Microillustrator produces those 
cartoon-like graphics tablet images that easily 
identified as "computer graphics". Many of the 
images in the presentation collage or combine 

Figure 27 Shapes So Strange combines two Koala Pad 
images. 

Figure 29 Computer Augmented Creativity uses 
images from CEEMAC and my own system. 
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Figure 26 Microillustrator Image 

images from the same system or images from 
different systems, Figures 27-30. 

These images are the result of overlaying simple 
images; sometimes of similar types (complementary) 
and sometimes different (contrasting). The 
juxtapositons which result create visual tensions 
which are resolved structurally using balance and 
proportion, design techniques familiar to all 
graphic artists. 

Figure 28 Shapes and Patterns collages images form 
CEEMAC and my own system. 

Figure 30 Possessed by Passion combines digitized 
and geometric images. 



COMPLEXITY AND ART 

In art then, as in life, complexity is produced by 
overlaying simple images or patterns, resulting in 
tensions and, therefore, changing the way in which 
the elements which make up the images or patterns 
are perceived. And, we hope, changes the viewer in 
some small way as well. We have all experienced 
disruptions to our daily routines which produce 
tensions and demand change, either in our routines 
or in ourselves. When things become too much, we 
seek to relieve the tensions, to restore harmony, 
to return to a simpler way life. The same can be 
said of art. The complex rhythms and conflicting 
melodies introduced into a piece of music must be 
resolved by the composer. The tensions produced by 
contrasting color and form must be resolved by the 
painter. No, I don't mean resolution as in 
conflict/ crisis/ resolution, the hollywood plot; 
I mean resolution as in dynamic balance. Nora does 
not provide a solution to Gretchen's problem; this 
problem may be insoluble; this is real life. The 
painter and the composer do not resolve conflicts 
between elements by keeping the good ones and 
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eliminating the bad; but by creating dynamic 
balance, a structure in which conflicting elements 
not only co-exist but co-exist to each other's 
benefit. Complexity, therefore, is an important 
attribute of the structure which organizes a work 
of art. 

CONCLUSION 

This past summer, We installed Gretchen Prisoner 
of Love in a group show at Virginia Commonwealth 
University's Anderson Gallery in Richmond. The 
presentation was programmed in TransFORTH, using 
the routines outlined above, and ran on an Apple 
Ile. The images were stored on my Synetix RAM 
card, for fast recall, and appeared simultaneously 
on three monitors. The program cycled 
continuously, during gallery hours, for two weeks 
and drew a small but appreciative audience. 

In an effort to achieve broader distribution, I 
have reprogrammed the presentation in assembler to 
run on any 48K Apple II. Gretchen Prisoner of Love 
is available at minimal cost; it can be copied 
free of charge. 
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ABSTRACT: 
An FFT spectrum analyzer, 

implemented as a hardware plug-in card 
for the Apple][ computer, with its 
associated software, is described. The 
FFT process is explained, and a brief 
bacKround of acoustical analysis is 
given. Several applications of the 
hardware/software in musical acoustics 
are presented. 

0 INTRODUCTI ll'I: 
Audio and acoustical analyzers are 

no strangers to the musical instrument 
world, nor is digital synthesis. How
ever, what is new is a highly sophisti
cated hardware/software digitally-based 
analyzer system for the Apple][ compu
ter. Until a few years ago, computer
ized FFT analyzer systems were available 
only to large research organizations. 
This paper will describe how the IQS 
401-1 FFT Spectrum Analyzer system can 
now be affordably used by acousticians, 
sound engineers, musicians, musical 
instrument designers, and/or builders. 

The system will be shown to be useful in 
both analytical and digital 
sampling/manipulation applications of 
any analog signal(s). 

1 BACKRO~D1 
The famous German physicist Hermann 

von Helmholtz (1821-1894) invented per
haps the most classic analyzer; this was 
used in experiments forming many 
theories on which modern acoustics and 
phsycoacoustics are based. Even before 
the era of electronic Fourier spectrum 
analyzers, Helmholtz used a large set of 
his acoustic resonators to verify the 
existence of harmonics in complex tones. 
By holding successively smaller (i.e. 
higher frequency) resonators to his ear 
with a musical note playing into the 
resonators large opening, Helmholtz 
heard an increase in the amp! itude of 
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any frequency that was present in the 
harmonic structure of the instrument. 
Thus, he could roughly determine the 
Fourier spectrum of the note. 

The invention of the vacuum tube in 
1915 marked the beginning of modern 
analysis advancing the field from mecha
nical analyzers to electronic machines. 
The sol id-state and computer era pro
vided the means to advance the implemen
tation of Helmholtz's and Fourier's 
theories, and brought them into our 
laboratories and studios. 

The FFT technique is based upon 
Fourier's theorem which states that any 
periodic function (of frequency f) can 
be expanded as a 1 inear combination of 
the ,sine and cosine functions of fre
quencies f, 2f, 3f,.... Therefore, once 
one set of values is Known, the other 
may be computed, i.e. transform time 
domain values to frequency domain values 
and visa versa. The Fourier transform 
technique became popular in the 60's 
when researchers developed a mathemati
cal shortcut, the FFT <Fast Fourier· 
Transform), minimizing the computation 
time. 

The technique of the FFT starts 
with a digitized signal waveform, which 
we can consider to be a 1 ist of numbers. 
We multiply the numbers on this 1 ist by 
those on other 1 ists representing digi
tized sine and cosine waves. In doing 
so, we use multiplication to transform 
the time-oriented 1 ist made from the 
original signal into a second 1 ist of 
numbers, one for each of the frequencies 
we have analyzed. All of this 'number 
crunching' is carried out by a micro
computer, and the resultant 1 ist of 
numbers is then displayed on a CRT in 
the form of a graph. 

2 THE FFT ANALYSIS SYSTEM: 
The IQS 401-1 FFT Spectrum Analyzer 

is an extremely powerful Apple][ based 



system that allows complete analysis 
using the Fast Fourier method. This 
laboratory grade instrumentation system 
affor·dabl y pr·ov ides a 11 the tools neces
sary, both hardware and software, to 
accomplish FFT analysis of physical 
systems or analyze arbitrary signals for 
power spectrum, phase, or group delay 
char·ac ter i st i cs. System facilities pro
vi de for test signal generation and the 
acquisition, analysis, storage, and 
plotting of real-time wave forms and 
spectra in either the time or frequency 
domain or· three-dimensionally in both 
domains simultaneously . System soft
ware featur·es extr·eme versat i Ii ty and 
ease-of-use while clear presentation of 
data is provided by its high-resolution 
graphics. 

2.1 THE HARDWARE: The basic system 
architecture is outlined in figure 1. 
The preamp (figure ~lb) is gain 
controlled by a DAC used as a digitally 
programmed attenuator, via software 
operation. In the feed-forward compensa
tion mode, the preamp has an extended 
gain bandwidth-factor of+/- 0.2 Db 5Hz 
to 40KHz. 

The next stage consists of the 
anti-alias low pass filter, which is 
programmable in order to accommodate 
multiple sample rates, and has a 100 
Db/octave rolloff. The output of the 
filter routes to the sample and hold 
amplifier, where digital data is strobed 
out onto the data bus via an ADC (audio 
to digital converter). 

The test signal generator circuit 
consists of a DAC (digital to audio 
converter) that can receive instructions 
dir·ectly from sofhJare. This allows 
simple software driver routines to 
create a wide variety of waveforms for 
many applications. For example, it can 
be used to provide impulses that are 
software controllable in amp! itude and 
width for impulse testing. Another 
application is to 'play back' waveforms 
at any speed from memory which may have 
been previously sampled, brought off 
disc, or synthesized by inverse FFT. 
Such waveforms could consist of ~gated 
sine tone bursts, pre-recorded sounds, 
sections of speech, etc. 

Referring to the system block 
diagram in figure 1, the digital portion 
is represented by the lower 2/3 of the 
diagram. It provides interface, memory, 
timing and logic control functions. The 
SYSTEM CONTROL LOGIC block determines 
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how each module interacts with one 

another and 1 inks the overall system to 
the Apple II bus structure. 

In order to maximize efficiency, 
many of the most often used machine code 
subroutines (including the FFT program) 
ar·e p I aced in read on 1 y memory (ROM). 
Three ROM sockets <ROM BANK 1-3) are 
incorporated in the hardvJare. A single 4 
Kilobyte ROM is installed in the present 
ver·sion, thus allowing future expansion 
for additional signal processing 
functions. 

2.2 THE SOFTWARE: Written in BASIC, the 
control program can be easily modified 
< or a new ver·s ion writ ten from scratch) 
to accomp 1 i sh spec i a 1 i zed tasks. For 
instance, establishing whether or not an 
electric piano conforms to an accepted 
standard curve might require a sequence 
of steps from the original control 
program. Maximizing the use of software 
plays a major role in the control of 
system costs; this is one feature that 
makes the IQS an economical package. 

two basic modes of 
the ACQUISITION 

There are 
control program, 
and the ANALYSIS MODE. Al 1 of 

the 
MODE 

the 
commands ar·e invoked by a single key
stroke, such as A= AMPLIFICATION, V = 
tJOLUME, P = PLOT etc. Pressing a single 
Key such as 'S' would bring up the 
'sampling rate menu' onto the screen. 
There are eight different choices of 
sampling rates available; these are 
shown in figure 2 . When the samr 1 i ng 
rate is selected, the ANTI-ALIAS filter 
and test pulse signal width are set. All 
of the major commands are shown in 
figure 3. 

3 DATA ACQUISITI(l,,1: 
Upon 'booting up' (loading the 

control program into the computer) the 
IQS software, some of the variables are 
i n a ' def au 1 t ·' sett i n g; i . e • , they w i 1 1 
be set to predetermined values unless 
you elect to change them. These are the 
(A)mplification of input, (C)hange 
number of averages, < S) amp 1 e rate, and 
(V)olume of test signal commands. 

Any analog signal may be analyzed 
regardless of its waveshape <sine, co
sine, square, etc.). It may be voice, 
low frequency vibration, the brain's 
alpha waves, musical instruments, or any 
an a 1 og s i gn a 1 • 

Pressing the space bar w i 11 in i -
tiate a test pulse and then acquire one 
sampling of 4,096 points. While data is 
being sampled, the levels and time posi-



tioning of the analog input are dis

played as a waveform on the monitor, 
similar to an oscilloscope display. The 
'return Key• can be pressed at this time 
to display the first 256 points of time 
data on the monitor. At this point you 
may save the waveform to disc, or pro
ceed with data processing. 

4 DATA ANALYSIS & MANIPULATICJ',I: 
If c,ne desires to use some signal 

conditioning, rather than only using the 
'raw' input data, DC offset can be 
removed from the signal. It can also be 
digitally filtered, resampled to improve 
the low frequency resolution, the spec
trum may be smoothed out, the signal may 
be windowed (weighted), etc. 

At any point during a measurement 
session, any waveform or graphics dis
play may be stored to disc for future 
use. Similarly, any waveform or display 
may be sent to a graphics printer or 
plotter. With a waveform in memory or 
one retrieved from disc files, FFT's can 
now be computed. There are four differ
ent lengths of FFTs: 128, 256, 512 or 
1,024 points. The time length will be 
dependent upon the selected sampling 
rate and how many points in the FFT. 
Once an FFT has been computed and the 
power spectrum di sp 1 ayed, the phase 
response and group delay may also be 
computed and displayed. 

All FFT analysis, since it is a 
mathematical process, is performed in 
1 inear frequency scales. The addition of 
a movable cursor allows for an exact 
readout of both frequency and level. The 
advantage of using 1 inear frequency 
scales is that one can easily determine 
the bandwidths of notches or peaKs in 
the spectrum. Since we all respond 
logarithmically to linear physical 
changes of external stimuli, viewing 
spectra 1 information in the frequency 
domain in log scales is essential. 
Therefore, di sp 1 ay i ng spectra 1 i nforma
t ion in log frequency scales is accom
plished through a built-in graphics 
subroutine which can be executed in a 
matter of seconds with the (L)og 
command. 

Music and natural sounds have more 
than just steady state conditions. 
Primarily, they a.re attacK, steady 
state, and decay, and they are charac
terized by pitch, duration, articula
tion, loudness, timbre, etc. A very 
useful feature of microproccessed FFT 
spectrum analysis is that any part of 
the captured waveform can be analyzed, 
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i.e. the initial attacK/transient, the 

steady state, and the decay tail or any 
combination of these. 

Data may be presented as a funda
mental frequency and its harmonics, and 
may also show how all of these compon
ents taKe place in time. This frequency 
domain information is a direct recipro
cal of a time domain waveform. Through 
FFT anal>'sis we can view sampled sounds 
'jumping' from one domain to the other, 
gathering information that can be used 
for investigative purposes, fine tuning 
of instrument construction, or building 
up 'wave shape tables' for digital 
synthesis of natural sounds. All of 
these features become invaluable tools 
for 'before' and 'after' pictures, 
various comparisons between stored-on
disc information and device(s) under 
test, etc. 

5 APPLI CATI CJ',IS: 
Before commencement of any analy

sis, the device(s) being tested should 
be clearly understood in terms of how 
they operate and interact with their 
environment. Now that the basics of the 
FFT analyzer have been presented, some 
practical applications shall be consid
ered. 

The FFT and its companion, the 
inverse FFT, find extensive use in the 
production of electronic music. Using 
the IQS IQSynth WavepaK I software, one 
is able to perform waveform sampling, 
storage, sythesis, and comprehensive 
editing of sampled and created sounds. 

With a reference microphone 
connected to the analyzer, a sample of a 
musical instrument waveform may be digi
tally recorded. The wave sample can 
then be played bacK through the 401-1 or 
polyphonically through any synthesizer 
using a 256 by 256 waveform table. If 
it is desirable to alter the harmonic 
structure, one can view the waveform in 
the frequency domain, and edit the over
tone structure Cup to the 128th 
harmonic, both odd and even). Perform
ing the inverse FFT of the spectrum will 
yield a new time domain waveform, which 
may be played bacK or archivally stored 
for use in future musical performances, 
etc. 

As with the above process, through 
the editing functions, one may start 
with a blanK frequency screen and plot 
his/her own fundamental/harmonic spec
trum structure, then perform the inverse 
FFT 'creating' a new waveform. 



Conversely, the amplitude and time 

values of any waveform may be modified. 

To display energy information as a 
function of frequency and time, the 
traditional 'waterfall' display is used. 
The 401-1 does this with a Spectral 
Decay contour program. Figures 4 and 5 
are examples of spectral decay contours 
taken from the waveform data acquired 
from a loudspeaker's response to the 
pulse 'played back' through the 401-1 
analyzer. The major differences between 
the two displays are a result of the 
'windowing' (weighting) used in figure 
5. Figure 4 used a "rectangular" window 
(flat or unity weighting>, and the FFT's 
in figure 5 were computed with a cosine 
function window. As can be seen, figure 
5 is much easier to analyze, i.e. pick 
out resonances and so on. 

When an FFT is computed, it is 
looking at a 'window' of the time domain 
data, that is, a 'slice' of the contin
uous 'periodic' waveform. The FFT joins 
the beginning and end of this slice of 
time, forming an assumed periodic func
tion. Tapering the ends of this slice of 
time by various 'windowing' functions 
can thus reduce errors that would 
normally be introduced by joining ends 
that are continuous (since, after 
windowing, both the beginning and end 
would now have zero energy). Further, 
selecting various windowing functions 
al 1 ows control over the trade off 
between frequency and time resolution. 

Once the time domain data is 
gathered, these or other programs may be 
run to display the information in many 
different views, giving us much more 
insight than was previously possible. 

A new program, TimeSpectrum r. 
allows us to view frequency/time changes 
of physical systems in a unique and 
unprecedented way. The TimeSpectrum dis
play eliminates the distortions normally 
encountered when isometrically display
ing a three dimensional plot in a two 
di mens i ona 1 graphics medium. 
TimeSpectrum does this by showing the 
energy amplitude with a greyscale inten
sity; the more energy, the darker the 
display point becomes. The frequency and 
time scales are now shown in the x and y 
axis without distortion, and 'clumps' of 
frequency defined 'energy packets', dis
placed in time now form a crystal clear 
picture. 

yzed 
Figure 6 is the loudspeaker 

in figures 4 and 5, the 
anal

darker 
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areas of the display correspond to the 

peaks in amplitude of the spectral decay 
plot. Comparing the identical data in 
these two plots, one can easily see the 
build-up, steady-state and decay charac
teristics of the d.u.t. (device under 
test) all in one plot. This observation 
can be made without having to resort to 
the 'front' and 'rear' view of the more 
conventional 'waterfall' plot. 

Figure 7 is a 'voiceprint' plot; 
three discrete 'energy-packets' can 
easily be seen displaced in time as a 
function of frequency. It is also inter
esting to observe 1n figure 7 the 
'repetitiveness' of these 'energy
packets'. 

Figure 8 and 9 are plots of the 
same note played identically on two 
different pianos. The strong 'ridge' in 
figure 9 is the actual note being 
played, showing a piano with a much 
better 'voicing'. This application of 
Time Spectrum demonstrates the enormous 
amount of information attainable for 
analysis of musical instruments. 

6 Sl.tt1ARY: 
The IQS 401-1 FFT Spectrum Analyzer 

hardware plug-in card for the Apple][ 
computer, with its associated software 
was described. The FFT process was 
explained, as well as a brief backround 
of acoustical analysis. Several exam-
ples of analytical and digital 
sampling/manipulation applications of 
analog signal(s) were presented. The 
system was shown to be useful to acous
ticians, sound engineers, musicians, 
musical instrument designers, and/or 
builders. 

7 CCNCLUSICN: 
Once the basic techniques of FFT 

analysis are mastered, the applications 
are endless. In this paper, we have 
touched upon only basic techniques. 
Based on early practice, the application 
of computer technology has led us to a 
whole new view of electro-acoustic 
analysis. The current state of the art 
has given us 'cameras' to take 
'pictures' of electro-acoustical 
phenomena more efficiently, accurately, 
and affordably than older methods. 
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IQS 401 QUICK REFERENCE GUIDI! ........................................................ 
ACQUISmON MODI! 

CONTROL OPERATION 

SPACE = SAMPLE data (4096 points) 

E 

B 

A 

C 

D 
p 

s 
V 

= ERASE screen 

= BLANKllfG or waveform (toggles) 

= AMPLIFICATION 

= CHANGE t or averages - in powen or 2 

= DELAY be!ore sampling ( 1 = 0.6 msec) 

= PLOT screen to printer w/Grappler 

= SAMPLE RATE 

= VOLUME or test signal 

=INITIATE-collect 6: average data (2048 points) 

ANALYSIS MODE 

CONTROL OPERATION 

RETURN = READY/DISPLAY FIRST 256 points or time data 

1 = 128 point FFT 

2 = 2 56 point FFT 

3 

4 

SPACE 

D 

B 

Q 

= 512 point FFT 

= 1024 point FFT 

= RETURN to ACQUISmON MODE 

= DIFFERENCE - current less stored spectrum 

= PHASE and then GROUP DELAY 

= CONVOLVE - current with stored spectrum 

= SPECTRUM DECAY Pf.OT Crom current waveform 

OP11ONS: 

<Creq. scale> 1 = LOG scale 

2 = LINEAR scale 

<size or FFT> 1 = 256 point 

2 = 512 point 

<I or spectra> 32 

50 

<delta points> 1 -80 

<vert. reduct> 3 - 4 ror 32 spectra 

5 - 7 !or 50 spectra 

<start point> 0- 2048 

IQS 401 QUICK REFERENCE GUIDI! 
......................................................................................... 

ANALYSIS MODI!, Cont'd 

DATA MANIPULATION 

H = SHIFT data left 

o = OUT DC - removes DC from time data 

R 

s 
T 

u 
w 
y 

X 
y 

ON, 

= RESAMPLE 

= SKIP 256 points in time data 

= TRUNCATE time data 

= NEWSTART- select new start in data 

=WINDOW-cos wgt to rim 256 points 

= DIGIT AL FILTER - moving avg. smooth 

= EXCHANGE spectrum in temp. storage 

= DIGITAL FILTER - moving avg. smooth 

= SMOOTH spectrum 

DISPLAY MANIPULATION 

L = LOG display 

p = PLOT screen to printer w /Grappler 

RIGHT => = VIEW right half or 1024 point FFT 

LEFT <= = VIEW left halt or l 024 point FFT 

DISC STORAGE AND RETRIEVAL 

ACQUISmON MODE: 

G 
N 

= GRAPHICS SA VE 
= FILE RETRIEVE 6: RETURN TO AN AL YSIS 

ANALYSIS MODE: 

G = GRAPHICS SAVE 
K = WAVEFORM SAVE 

TO EXIT PROGRAM - you must be in Analysis Mode, then 
press Control Key and E simultaneously. 

Rev. 9/82 
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SPECTRAL DECAY OF FULL RANGE LOUDSPEAKER USING 

RECTANGULAR WINDOW 

FIGURE 4. 

SPECTRAL DECAY OF FULL RANGE LOUSPEAKER USING 

COSINE WINDOW 

kllohertz 

FIGURE 5. 
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Data Compression of Computer Music 

Michael Keith 
D46 Abbington Drive 

Hightstown, NJ 08520 

Introduction 

This paper will discuss the application of data compressi~n 
techniques to the storage and manipulation of digital music 
data in a computer. The goal of this endeavor is to take 
music files from an existing microcomputer music system 
(e.g., ALF, MMI, Mountain Computer) and compress them 
into smaller files with the following properties: 

(1) Compressed files are significantly smaller than the ori
ginal (on the order of three times smaller is desirable), and 

(2) The compressed files can be decompressed very quickly 
(a few tenths of a second is desirable). This allows programs 
to play compressed music files with essentially no apparent 
delay to the user. 

Unfortunately, these are conflicting goals; in general, to 
achieve greater compression requires a more complicated 
algorithm which yields a slower decompression program. 
We will show, however, that it is possible to achieve signifi
cant compression, by presenting an algorithm with a 
compression factor of 3.3 (for ALF-format music) that also 
satisfies property (2). 

First Steps 

The initial motivation for this research was the monumental 
work by W. F. McGee of Ontario, who entered all 371 four
part chorales of J. S. Bach into the ALF music system on the 
Apple II (using the ALF music editor program). These pieces 
were entered in an efficient way (using subroutines for 
repeats, etc.), but still require 5 Apple diskettes to store all 
the music. 

The immediate challenge which presented itself was to try 
and fit all 371 chorales on a single Apple diskette. Although 
this might seem to require a compression factor of about 5, 
in fact less is required, because there is some overhead 
storage space used up by each separate file on an Apple 
diskette. After compression, we can store, say, 10 chorales 
per file (rather than one per file) and save a lot of this over
head. We will see shortly an estimate of the compression 
needed to accomplish this task. 

The basis of all data compression algorithms is to exploit the 
statistics of the data. For example, in compression of 
digitally-encoded pictures (bit-maps), adjacent pixels are 
often identical in value. Therefore, run-length encoding, 
which encodes runs of identical pixels by storing the value 
and number of identical pixels, can be used to compress 
data possessing this type of statistics. 

CH2087-5/84/0000/0098$01 .oo o 1984 IEEE 
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In order to exploit the statistics, we first have to obtain the 
statistics, by analysis of the data. In Figure 1 we give a par
tial listing of one of the Bach chorales (number 14), printed 
by a program that "disassembles" ALF songs. Hex values 
are shown in the left column, and the meaning of each code 
is shown in the right column. The first byte of a song 
denotes the number of voices. The next 2•(number of 
voices) bytes are pointers to the start of the data for each 
voice. Following this are 3-byte groups encoding the actual 
music data. At the end of the file is one byte giving the sug
gested playing speed, and finally 160 bytes (four 40-
character lines) encoding the title of the song. 

As a basis for computing compression factors, we need to 
know the total number of bytes in all 371 chorales. Analysis 
of the chorales produced the following information: 

Lengths of the Chorales 

Largest 
Smallest 
Average 
Total 

3794 bytes (Number 205) 
683 bytes (Number 130) 
1146 bytes 
425K 

Note that the capacity of an Apple JI diskette is 560 sectors 
= 140K bytes. Thus we need a compression factor of about 3 
to fit all the chorales on one diskette. Actually, since some 
file-storage overhead is unavoidable, a compression of about 
3.3 is required. This will be our design goal. 

Now let us begin compressing. Referring to Figure l, the 
first thing we realize is that the last 161 bytes (suggested 
speed and title) are not used when playing_ a song (only when 
editing). Since we are only concerned with preserving the 
information necessary to play the music, we can throw these 
161 bytes away. 

We also observe that there are two fundmentally different 
types of data triples: those encoding notes and rests, and 
those encoding commands (such as TEMPO, TIME, CALL, 
etc.) The commands can always be distinguished from 
notes because their first byte is always Cl through FF hex. 
In addition, we see that the statistics of the commands are 
significantly different from the statistics of the notes. So we 
decide that our encoding will have two "modes" - one for 
encoding commands and one for encoding notes, with some 
as yet unspecified means of switching modes. We will call 
these two modes "byte mode" and "bit mode", since it turns 
out that commands are most conveniently encoded in bytes 
and notes are best encoded as a bit stream. 



FILE CHORALE 14 

04 
35 01 EO 01 94 02 51 03 

FE FE FE RESERVED 
FE FE FE RESERVED 
FE FE FE RESERVED 
FC 81 00 KEY 
SC FO 00 NOTE: G -3 TIME: 4 
SC FO 00 NOTE: G -3 TIME: 4 
SA FO 00 NOTE: F#-3 TIME: 4 
56 FO 00 NOTE: E -3 TIME: 4 
52 FO 00 NOTE: D -3 TIME: 4 
SC FO 00 NOTE: G -3 TIME: 4 
60 FO 00 NOTE: A -4 TIME: 4 
64 FO 00 NOTE: B -4 TIME: 4 
60 FO 00 NOTE: A -4 TIME: 4 
64 78 00 NOTE: B -4 TIME: 2 
66 3C 00 NOTE: C -4 TIME: 1 
6A 3C 00 NOTE: D -4 TIME: 1 
66 FO 00 NOTE: C -4 TIME: 4 
64 FO 00 NOTE: B -4 TIME: 4 
60 78 00 NOTE: A -4 TIHE: 2 
64 78 00 NOTE: B -4 TIME: 2 
66 FO 00 NOTE: C -4 TIME: 4 
64 FO 00 NOTE: B -4 TIME: 4 
60 EO 01 NOTE: A -4 TIME: 8 
SC DO 02 NOTE: G -3 TIME: 12 
CA OA 00 RETURN 

---- (3 more similar subroutines) ----
CB 22 04 CHANNEL 
FC 81 00 KEY 
FD 04 04 TIME 
FB FO 00 QUARTER 
Cl 14 00 GAP 
C2 00 FE TRANSPOSE 
C3 00 20 ATTACK 
C4 19 00 DECAY 
cs DB D6 VOLUME 
C6 00 00 SUSTAIN 
C7 DC 05 RELEASE 
co FO 00 NOTE: <REST> TIME: 4 
co FO 00 NOTE: <REST> TIME: 4 
co FO 00 NOTE: <REST> TIME: 4 

Figure 1: A "disassembled" listing af the ALF music data far 
one of the Bach chorales (number 14). 

For reference, the average size of 1146 bytes per chorale 
can be analyzed further as follows: 

Category Average No. Bytes 

Notes 748 
Commands 237 
Speed + Tille 161 

Total 1146 

Having disposed of the 161 title bytes, we will now discuss 
compression of each of the other two categories. 

Compression of Commands (Byte Mode) 

In byte mode, we notice the following three things that yield 
compression: 

99 

,-J OA 00 CALL 
C9 OA 00 CALL 
SC FO 00 NOTE: G -3 TIME: 4 
60 FO 00 NOTE: A -4 TIHE: 4 
64 FO 00 NOTE! B -4 TIME: 4 
SC FO 00 NOTE: 8 -3 TIHE: 4 
SC FO 00 NOTE: G -3 TIME: 4 
60 FO 00 NOTE: A -4 TIHE: 4 
64 FO 00 NOTE: B -4 TIME: 4 
SC FO 00 NOTE: G -3 TIHE: 4 
56 FO 00 NOTE: E -3 TIHE: 4 
60 68 01 NOTE! A -4 TIME: 6 
SC 78 00 NOTE: G -3 TIME: 2 
5A FO 00 NOTE: F#-3 TIHE: 4 
SC 78 00 NOTE: G -3 TIME: 2 
SA 78 00 NOTE: F#-3 TIHE: 2 
56 EO 01 NOTE: E -3 TIME: 8 
52 FO 00 NOTE! D -3 TIHE: 4 
52 FO 00 NOTE: D -3 TIME: 4 
SC FO 00 NOTE: G -3 TIHE: 4 
SA FO 00 NOTE: F#-3 TIME: 4 
56 FO 00 NOTE:, E -3 TIME: 4 
52 FO 00 NOTE: D -3 TIME: 4 
SC FO 00 NOTE: G -3 TIME: 4 
60 FO 00 NOTE: A -4 TIME: 4 
64 FO 00 NOTE: B -4 TIME: 4 
60 FO 00 NOTE: A -4 TIME: 4 
6A 68 01 NOTE: D -4 TIME: 6 
66 78 00 NOTE: C -4 TIME: 2 
64 FO 00 NOTE: B -4 TIHE: 4 
60 78 00 NOTE: A -4 TIME: 2 
64 78 00 NOTE: B -4 TIME: 2 
66 FO 00 NOTE: C -4 TIME: 4 
64 FO 00 NOTE: B -4 TIME: 4 
60 EO 01 NOTE: A -4 TIME: 8 
SC DO 02 NOTE: G -3 TIME: 12 
co FO 00 NOTE: <REST> TIME: 4 
co FO 00 NOTE: <REST> TIME: 4 
co FO 00 NOTE: <REST> TIME: 4 
co FO 00 NOTE: <REST> TIME: 4 
co FO 00 NOTE: <REST> TIME: 4 
CB 00 00 STOP 

------ (3 more similar parts> ------
FF 00 00 END 

FF SUGGESTED SPEED 

CHORALE 14 
0 HERRE GOTT, DEIN GOETTLICH WORT 
JS BACH 
31 AUG 1983 

(1) Triples containing three FE's (of which there are many) 
can be encoded by a single byte. These FE's are reserved 
bytes which I believe are used by the ALF real-time software 
as variable holders. 

(2) Quarter, Time and Key commands (FB, FC, and FD hex) 
are not needed when playing a song (only when editing). So 
we can encode each of these by one byte which will be 
decompressed into a 3-byte NOP instruction. The NOP's are 
necessary to keep the length of the decompressed song the 
same as the original, which is essential since CALLs use rela
tive addresses to point to subroutines. 

(3) The 21-byte sequences beginning with a Cl are always 
the same. We can encode these 21 bytes by a single byte 
which will be decompressed into these fixed 21 bytes. This 
sequence appears once for each part, and so yields a signifi
cant savings. 

All other bytes in byte mode will be transferred directly 
(with no compression). 



To be more specific, we use the following byte values to 
encode these compression sequences: 

Byte Value Interpretation 

0 21-byte Cl sequence 
1 FE FEFE 
2 Switch to bit mode 
3 End of data marker 
4 FC FC FC (NOP, replaces FB, FC, FD commands) 

On the average, the combination of deleting the last 161 
bytes plus the byte mode compression saves about 300 
bytes per song. In other words, the approximately 400 
bytes in the original are reduced to about 100. 

Compression of Notes (Bit Mode) 

Since the amount of command and title information is 
essentially a constant (and significantly smaller than the 
amount of note information) the compression of the actual 
notes and rests of the music is clearly the most crucial in 
obtaining good overall size reduction. In ALF music, any tri
plet with a first byte of CO or less represents a note. The 
first byte of each triplet represents the pitch (actually, only 
the high-order 7 bits are significant) and the second two 
bytes represent duration (from 1 to 64K units of time). 

This can be improved immediately by realizing that there 
are never more than 16 different durations of notes in a sin
gle chorale. We could thus encode note durations by storing 
a table of the 16 (or less) durations used in the piece, and 
then encoding the duration of each note by storing a pointer 
into the duration table. This would require only 4 bits per 
note. In combination with the 7 pitch bits, this gives a total 
of 11 bits, as compared to 24 bits (3 bytes) in the original 
ALF data. This of course means that the compressed data in 
bit mode will be a bit stream which will not be aligned with 
byte boundaries. Note also that even though byte mode 
compressed data is always composed of bytes, it may also 
not be aligned on byte boundariei=:, due to the fact that bit 
and byte mode are freely mixed. In general, only at the 
beginning of the compressed file are things aligned on byte 
boundaries. 

The combination of all the compressions so far yields an 
average compressed length of 442 bytes, for a compression 
factor of 2.6. Although this compression is substantial, it is 
still not enough to fit all the chorales on one diskette. We 
are forced to look for an even better scheme. 

Looking at the data of Figure 1 again, we notice the following 
fact: most of the notes in the chorale are close to the 
preceding note (usually differing by only a few half steps). If 
we arrange our duration table properly, it also seems likely 
that the duration pointer for each note will also be close to 
the one for the preceding note. For example, after a quar
ter note, an eighth note, half note, or another quarter note 
is more likely than a thirty-second note. This leads us to 
examine the statistics of the first-differences of the notes; 
that is, the difference between each note and its predeces
sor. 
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F(gure ~: Distribution of the first differences of the dura
twn po1,nters for the notes in a subset of the Bach chorales. 
Note the predominance of the values 0, + 1, and-1. 
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Figure 3: Distribution of the first differences of pitch. 

Figures 2 and 3 show the distributions of the first differ
ences for both the pitch and duration of the notes in the 
Bach chorales. These statistics were compiled from a sub
set of the 371, but we can safely extrapolate the results. 
The duration table used for this analysis was composed by 
the following rule: take all durations not equal to a six
teenth, eighth, quarter, half, or whole note, sort them, and 
then tack the aforementioned five durations on the end 
This has the advantage of keeping the common (non-dotted) 
durations adjacent. 



These graphs confirm our susp1c1on that the first differ
ences are not evenly distributed, being weighted in favor of 
the smaller absolute values. Such a distribution can be effi
ciently encoded by a variable-length code. Such a code uses 
shorter codes (fewer bits) for the common values and longer 
codes for the rarer values, with the codes chosen so that no 
code has a bit pattern equal to the high-order bits of a 
longer code. This is necessary for decoding to be possible. 

Since the duration values of 0, +1, and -1 are very common, 
we will encode these with the two-bit codes 00, 01, and 11. 
Note that these are precisely the two's-complement values 
(to two bits) for these numbers. Larger duration values will 
be encoded by the code lOddddd, where ddddd is the two's
complement value for the duration value. We call this a 
"2+5" code, since it uses two bit groups for short codes and 
2+5 bit groups for long codes. Note that, although it is not 
apparent from the Figure 2 (since it reflects only a subset of 
the 371 chorales), there are some very rare occurrences of 
differences greater than B in absolute value. This is why a 
2+5 code must be used rather than a 2+4. 

For pitches, two bits is not sufficient to handle the common 
cases, so we will use 3 bits. Larger values will be encoded as 
lOOpppp (values up to 4 bits), and even larger values will be 
encoded as 1001000ppppppp. Thus for pitches we have a 
"3+4+7" code. 

Each note will be encoded duration first, then pitch. A few 
special cases need to be handled. A duration value of -B will 
switch to byte mode (and no pitch information will follow). A 
pitch value of 7 will. denote a rest. 

Putting this all together, when we compress all the chorales 
we get an average size of 344 bytes, for a compression fac
tor of 3.33. We have actually implemented this algorithm 
exactly as described, and have indeed' succeeded in fitting 
all 371 chorales of J.S. Bach on a single diskette (albeit just 
barely - we had to remove DOS from the diskette in order to 
make them fit). 

No. of Exceptional Durations 
Duration 1 

Duration K 
(whole, half, etc. are implicitly 
a part of the duration table) 

Pitch of first note 
Duration pointer for first note 

No. of Voices 
Pointer to voice 1 (2 bytes) 

Pointer to voice N 

<MUSIC DATA> 
(See Text for Description) 

Figure 4: Format of a com.pacted 
datafile 
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Summary 

The format of the entire compressed music file is shown in 
Figure 4. Note that, since the encoding works with the first 
differences of the note pitches and durations, we have to 
store the pitch and duration of the first note, in order to get 
the decoding algorithm started. The data is encoded using 
the two-mode bit and byte compression scheme described 
above, with the 2-4/3-4-7 code for notes. 

The decoding algorithm is summarized in Figure 5. This 
algorithm has been implemented in 6502 assembly 
language, and does indeed satisfy our speed requirements; 
decompression never takes more than a few tenths of a 
second. 

duration table = exceptional durations + I 1,2,4,8, 16! 
copy #voices and voice pointers to output 

last note = pitch of first note 
jast dur = duration pointer of first note 
mode= byte 

ft] if (mode= byte) 

! 

byte = next 8 bits from input 

if (byte= 0) 
output 21-byte Cl sequence 

if {byte= 1) 
output FE FE FE 

if (byte= 2) 
mode= bit 

if (byte= 3) 
quit t• end of data • / 

if (byte= 4) 
output FC FC FC (= nap) 

if (byte· > 192) 
copy it and next 2 bytes to output 

else ;• mode must be bit •; 
I 

! 

dur = next 2 bits from input 
if (dur = -2) 

dur = next 5 bits 
if (dur = -16) 
I 

I 

mode= byte 
goto [t] 

note = next 3 bits 
if (note = -4) 

note = next 4 bits 
if (note= 7) 

note= 192 /• ALF value for rest•; 
if (note = -8) 

note = next 7 bits 
if (note <> 192) 
I 

I 

note= note•2 + last note 
last note = note 

dur = dur + last dur 
last dur = dur 

output "note" and 60•duration table[dur] 

goto [ t] /• repeat until end of data • / 

Figure 6: The decompression algorithm, 
This algorithm is best implemented in assembly 
langua,ve d.ue to the s:peecl. requirements and. the 
extensive bit manipulation. 



Possible Extensions 

The compression factor of 3.33 achieved thus far is still not 
the best possible. In fact, the variable-length code used 
above, which was chosen mainly for decoding simplicity, is 
only one of a large number of possible encoding schemes. 
The question of which one of a multitude of variable-length 
codes is optimal was answered long ago [ 1]. Such a code is 
called a Huffman code, after the discoverer of the algo
rithm for its construction. 

Given the statistics in Figures 2 & 3, we computed a Huff
man code for encoding pitch and duration first-differences. 
Although we have not implemented it, we calculate that this 
code produces an average compressed chorale length of 304 
bytes, for a compression factor of 3.77 and a total size of 
113K. Each note requires only 5.26 bits of compressed data. 

Even though these results were presented for a specific 
music source format (ALF), the general techniques should 
be applicable for any system. They should also work for 
other types of music besides the Bach chorales, although 
the compression factors will vary depending on the degree 
of "well-behavedness" in the music. 
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Yet further refinements are possible. Encoding of the 
second-differences, at least for pitch, might yield further 
compression, due to the commonness of scales in music, for 
which the second differences are small. 

Finally, note that all these are "dumb" compression 
schemes. A "smart" compressor would recognize repeated 
phrases, correlation between the voices, and other high
level concepts which could dramatically increase compres
sion still further. These possibilities are left for the mavens 
of artificial intelligence. 
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Abstract 

This paper presents an illustrated 
discussion of the key considerations surrounding 
the issue of "Built-in User Friendliness" with 
respect to computer music systems. The central 
theme will focus on the use of pointing device 
input and color gra1>hics on a microcomputer to 
control the composition and performance of music. 
A comparitive study will be made of past, present 
and future trends that contribute to the overall 
awareness of the music community with respect to 
technological approaches to this issue. 

Scope 

For the sake of clarity and space, this paper 
will focus on performance control. Once we 
develop an awareness of the required system, we 
can begin to create a metaphor, using computer 
graphics that will simplify our interaction with 
the system. 

Here come the "toys" 

With the advent of highly available integrated 
computer graphics and built-in music synthesis 
systems on personal computers, the computer arts 
hobbyist can now explore modes of abstraction 
heretofore unaccessable. Inexpensive touch 
tablets such as the "Koala-Pad" and "Chalkboard" 
have made it quite affordable and simple to add 
pointin9 input capability to graphic based 
applications. 

A typical home computer that has graphic and 
sound capability can be purchased for less than 
$1000.00 in most cases. This includes from at 
least a 256Xl92 to 640X200 pixel graphic 
resolution with up to 16 colors at once. This 
was not possible when I started fooling with 
computers. By going with any one of a half 
dozen popular models, the average user is able to 
purchase inexpensive add-ons such as memory, 
interface cards and music synthesizers. Software 
of many different catagories can also be aquired 
for very nominal prices. 

Mass Discovery 

The effect of readily available low cost tools 
such as these has had a profound evolutionary 
effect on the proliferation of software and 
hardware. Many more individuals are staying up 
late and writing programs or building boards that 
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make music and art. We have accumulated a lot of 
knowledge in recent years to feed the movement at 
large. 

User-Friendliation 

Since there is more humanity involved in 
developing user-interfaces there is bound to be 
more user-friendly software awareness in the air. 
I would not imply that this software will be 
user-friendly by nature, but there is a good 
chance that more of it wi1l be found. 

Nice programs come about by programmer awareness 
of the way in which people do things most 
naturally. Machines have been, by and large., 
quite user hostile. This is due to severa, 
factors, some bein~ economic ,others physical 
constraints and Just plain ignorance. The 
"average user" concept applies pretty much across 
the board. What is desired is for a computer or 
even a car for that matter, to anticipate in some 
way, the operations that can be automated and 
present the remaining variables in a form that is 
comfortable to humans. This task requires some 
study of the particular problem being solved by 
the computer and the group of users that will 
interact with the system. 

Some basic archtypes 

Let's consider some of the devices within the 
context of this paperi first in a general realm 
and then in the musica, realm and try to examine 
their relationship to the user. 

Knobs, Levers, Buttons and Switches 

These objects have been with synthesizers since 
the beginning, around 1950. Most electronic 
composers felt that these were representative of 
a fairly humanized control schema and were 
willing to work with them. There were of 
course,the mavericks who felt that there was 
defi ni tl y a better way to control many things at 
once. There was an implied accessability in 
being able to reach out and change one parameter 
out of a panel of a hundred. Many schemes have 
been devised since the early days which attempt 
to simplify the task of controlling many 
variables in a performance session. 

A knob, for instance, connects to a rotary 
control which normally provides 300 degrees of 



rotation. This rotation is translated into 
continuous control signal and applied as a 
varying parameter to some kind of music or sound 
context. If there are 4 channels of sound and 
there is one rotary control for each, then to mix 
four music signal's loudness using these 
controls, al 1 one must do is rotate the 
respective knob for each channel whose loudness 
needs to be changed. This action is very 
straight forward when the correct legend in 
printed on or near the knob in question. 

Switches have similar demographics. If a switch 
is designated to effect an action and it's 
function is cl early marked, then again the user 
must just select the switch and press it. A good 
switch is one which has some kind of status 
indicator associated with it's current state. 
There are switch schemes in use that use a 
momentary switch, one that is spri ng-1 oaded and 
only makes contact as long as it is held down, to 
cycle through several states, even though the 
switch only has two states itself. With these , 
there is definitly a need for a status indicator. 

Indicators 

Simple indicators are used throughout all of 
society. Warning li!{hts, beepers, buzzers and so 
on. They prove the1r effectiveness when they 
either succeed or fail to inform us in time to 
take the appropriate action. A whistling teapot 
tells us that the water is boi 1 i ng for our tea. 
An alarm clock naggs us to wake up. Floor 
indicators in an elevator show us which floor we 
are zooming past and generally rings when we come 
to the floor that was selected. 

A good example of a volume indicator is when the 
pumping gas into an automobile. The driver may 
be running the engine while the passenger (in a 
self-service station) pumps the gas. If the 
amount of gas desired is not the same a full 
tank, then the person pumping usually watches the 
dollar amount on the rolling "This Sale" display 
on the pump. At the same time the driver may be 
watching how much (or little) gas he or she is 
receiving. If it's the driver's money, then it 
usually won't do him much good to try to estimate 
the dollar amount based on the tank full 
indicator. It would be best in this case to 
simply say "it's at 3/4 full, that's enough." 
There are many ways in which to indicate things, 
some prefer a volume indication with no more than 
1/4 full resolution. Others require graduations 
on a finer scale, such as a numeric indicator 
along with a volumic one. This is where the 
situation requires a human factor analysis for 
the particular task. 

Graphic Metaphores 

The number of variables of interest in a 
situation such as ours urges the use of efficient 
demographics. It may be possible for the 
military to train soldiers to memorize the 
function and position of a hundred controls or a 
nuclear reactor operator for that matter. For 
the musician or composer, these things tend to 
compete for his or her creative time and 
energies. 

Using computer graphic techniques, it is possible 
to create a set of "Icons" and 'glyphs', which 
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are just environment-specific symbols which 
represent various functions and controls. These 
Icons may be optimally designed to take full 
advantage of the standard nomenclature used by 
the synthesis community. They may al so be re
configurable to suit the individual needs of a 
particular composer. 

A good example of well desi9ned metaphores is 
that which can be found 1n the Macintosh 
computer, by Apple. The "MacPaint/MacDraw" 
pro9rams make use of an icon set which represents 
act1ons and devices commonly used by art1sts and 
paste-up persons. For example, there is a little 
spray-pa1nt can icon that represents air-brush 
technique. For the non-artist ,first time user 
of the package, this wi 11 not be obvious but it 
will foster some immediate curiosity and 
inevitable experimentation. After one try, it 
will become obvious to the user what this symbol 
means. For .the experienced artist, this should 
represent something that they are intimately 
familiar with, if only bt one level of 
abstraction removed. There 1 s al so an eraser 
symbol which when selected, causes the images 
that are swept over it by mouse movements, to be 
erased. A Tasso icon 1s used to effect a "cut 
and paste" operation on sections of the image. 

Again, these symbols may not make a lot of sense 
to everyone, but with minimal familiarization 
they become as recognizable as a hammer or 
screwdriver in a tool box. 

Based on this approach, it is apparent that we 
can make the most efficient use of iconographic 
representation if we consider the issue of 
symbolic familiarity. 

In the context of computer synthesis applications 
, we may be creating a new dialect for symbolic 
representation. This doesn't mean that we should 
abandon familiar metaphores in the design of the 
new ones. It will make it much easier to gain 
acceptance by both the synthesis community and 
new devotees. 

Pointing 

One metaphore that has gained wide acceptance by 
computer users is the notion of "pointing". This 
comes natura1 to anyone who has been asked to 
select a teddy bear at a carnival, after knocking 
over 3 cupie dolls with a baseball. 

The notion is simple. There are several items on 
a list in front of you. You are asked to select 
some. You must indicate which ones you have 
selected. You may not speak the choices. You 
have a pointer symbol that is shaped like an 
arrow which you may move with your hand. By 
moving this arrow to the position of the items of 
choice you may then select items by pressing a 
"Yes, tlli s one please" button. 

There are several implimentations of this 
metaphore currently in use. 

The Joystick 

The joy_st_;ck is u~ed extensively in video games 
to pos1t1on guns1~hts. They usuallr contain 
buttons to "Fi re at the enemy sh1 ps. The 
joystick however, is not the best.for picking 
things on a graphic screen. It is made up of a 2 
or 3 inch handle connected to 2 variable 
resistor controls. When it is moved, it produces 
a horizontal and vertical signal which can be 
related to X and Y movements. 



Digitizing Pads 

Di gi ti zing pads come in a few different shapes 
and sizes. There is the older more common "Bit 
Pad" which uses a pen-1 ike stylus connected by a 
wire to the main surface and related electronics. 
This pen is used just like a pen; it is drawn 
over the surface or just placed at specific 
locations on the surface to effect pointing 
operations. There is usually a spring loaded 
switch in the pen body and tip that allows "Yes" 
functions to be accomplished by just pressing the 
pen down a bit harder than usual. An alternate 
pointin~ instrument that 9oes with the bit-pad is 
a "Puck' device. This is shaped like a round 
puck that fits between the thumb and forefi n~er, 
and is moved around on the surface by sliding. 
There is a plastic protrusion which contains a 
cross-hair as a reference for accurate placement 
of the pointing apex. 

Touch Pads 

Another type of di giti zing pad is a "Touch-Pad" • 
There are several of these available, but they 
all work pretty much the same way. The user may 
simulate the action of the digitizer pad by using 
only a finger or a special wooden stylus which is 
not connected to anything. It helps to use the 
stylus if a greater resolution of choice is 
desired. The finger works well for most music 
synthesis applications. The touch pad surface is 
made to represent the working area of the screen. 
By placing the finger in different areas of the 
pad, a pair of coordinates are generated just 
like a joystick, but they are represented by a 2-
D flat device. There are ususally a cou~le of 
buttons on the side of these uni ts to facilitate 
"yes" functions. 

Touch Screens 

There is a device called a "Touch Screen" which 
allows the user to use a bare finger to point 
right at something on the video screen. This 
uses special electric field effects to determine 
the coordinates of the finger on the glass of the 
screen. A set of squares or circles are first 
drawn by the software. Then labels are written 
inside the shapes. These become the choice 
symbols that ypu point to. Instead of moving 
some kind of pointing icon on the screen to the 
button of interest, the finger against the 
drawing of the box or circle causes the computer 
program to know which area has been touched, 
therefore lighting up the "button" image on the 
screen. This is the quickest way to point to 
something on a computer. Unfortunately, this is 
rather expensive and turns out to be low 
resolution in most cases. 

Mice 

The last pointing device I should mention is the 
"Mouse". This is the pointer that is used with 
the Macintosh computer. It is a puck-like device 
that has a ball mounted on it's underside. The 
mouse is rolled on a table or any surface that is 
dry and free of debris. As the mouse is moved on 
the table, a similar movement takes place on the 
computer screen with the graphic pointing icon. 
The mouse contains mechanical and electronic 
devices within it's puck to generate do.ta 
corresponding to 4 directions of movement; 
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up,down,left and right. With this information 
coming to the computer as the puck is moved on 
the work surface , a "heading up and to the left" 
or "down to the right" kind of thing is derived 
from the mouse. 

The author prefers a touch pad of at least enough 
resolution to cover the full screen points. It 
is also very nice to add pressure sensitive 
devices beneath the pad in order to get a "Yes" 
from pushing down real hard on the surface. 

Graphic Considerations 

I will now discuss some of the computer dependant 
considerations we must explore when implimenting 
a graphic based human interface for music. 

The first thing that comes to mind when 
considering a particular graphic environment is 
that of display resolution. This is a measure of 
how many dots may be contro 11 ed by the computer 
display interface. These dots are usually 
referred to as "Pixels" , meaning picture 
elements. This parameter is a function of 
hardware, specifically memory. Of related 
importance is the number of simultaneous 
displayable colors. Again, this is a function 
of memory. 

In order to represent musical symbols 
comfortable, that is with adequate resolution to 
discern between similar symbols, we need at least 
512X200 pixels. It is nice to have at least 8 
different simultaneous displayable colors to 
choose from. 

Black and white with some 9rey scale control can 
be used as wel 1. The Macintosh screen is very 
good in this respect, as it has 512X342, which is 
better than 512X200. 

A second issue is display speed. This is almost 
as important as the former attributes. We all 
would like to have fairly speedy computer 
displays and computers for that matter. In the 
case of our music application, we may at times, 
require the display to scroll or update some 
graphic information while it is in the midst of a 
sxnthesis operation. We definitly don't want the 
display operations to slow up the main processor 
when it is sending information to the synthi! 

An acceptable display speed should be based on 
the requirements of the interactive portion of 
the software. For example; if there are a number 
of controls represented on the display and you go 
to position the pointing icon over one of these, 
the icon should move smoothly in conjunction with 
the pointing device movement. Certain actions 
such as screen clear, line and circle draws etc. 
should be reasonably fast, no more than a half 
second at most. A good measure of display speed 
is how fast it takes to redraw the entire screen 
with geometric symbols being generated in 
software. 

Graphic Software 

I prefer to write graphic programs in a high
level language sucn as Pascal or 'C'. I use 
basic onl.}' to experiment with ideas, not to 
produce efficient, well-structured frograms. 
Assembler is used to write the low leve routines 
that are extremely time sensitive. I should 



point out that most video games are written 
entirely in assembler for the simple reason that 
they have to be hand optimized for memory usage 
and speed. Some of the fanciest utilities are 
imb~dded in these assembler written games, which 
cant be done with a higher level language. The 
amount of movement on the screen is very crucial 
in games, an area where a substantial amount of 
graphic expertise is required. 

Many personal computers contain Rom subroutines 
for performing primitive graphic functions. 
These routines can be accessed from th~ basic 
interpreter or from some compiled languages. 

Language Constraints 

As was mentioned just above, graphic operations 
have to be coded as efficiently as possible in 
order to avoid uncomfortable delars in the update 
of the screen. The most time critical areas are 
those which take place with respect to an input 
action. A good example in our application is 
that of envelope function display. Refer to 
figure 1. 

When the line drawing of the figure is being 
changed, there shouldn't be a noticeable delay in 
the time between drawing segments. The value of 
the envelope segment being worked on has to be 
shown in the little window as well. This may 
turn out to be a function of the most primitive 
operation in the computer roms, such as the line 
routine. Most personal computer manufacturers 
impliment this in such a fashion as to keep it in 
a standard form that will connect other programs 
to it the same way each time. Most of the time 
this is not the most compact and fast way to 
accomplish it. If we want to optimize this line 
drawing function for instance, we could write our 
own in assembler or 'C', Pascal etc. Doing it in 
Basic will most likely use the built in system 
routine that we just spoke of. For those of you 
that wish to impliment their own line and circle 
drawin9 algorithms, along with a host of other 
pri mi ti ves for graphics, see the reference 
Foley Van Dam, [1982] Chapter 11. for an 
excel fent tu tori al on interactive computer 
graphics. 

In most cases, there are function libraries that 
are written for popular compilers that include 
efficient algorithms of this sort. The advantage 
of writing them yourself is that they can be 
optimized to suit your application. 

Structured Programming 

Another issue that comes heavily into play is 
that of interactive development. This becomes 
obvious when you attempt to write software for a 
graphic application and the time in between 
gettin9 a changed piece of code going and the 
last piece of running code becomes quite long. 
Here is where interpreted Basic beomes tempting. 
This is fine for just playing around and testing 
algorithms, but when it comes to finished 
programs, Basic falls on it's face in most 
cases. The high level structured languages such 
as 'C' or Pascal, Fortran etc. provide advanced 
and 1>owerful data structures to sl)eci fy and 
organize your tasks in a clear way. If one takes 
the time to learn one of these languages. code 
eventually starts looking like the orfginal 
algorithm and flowcharts become uneccessary. 
Programs become extremely readable, easy to fix 
and find bugs in and they become very 
Transportable. 
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This last item is of great importance in 
computers in music and arts. After all, there 
aren't a lot of companies supporting these kind 
of efforts and most computer music and art 
software is being developed by individuals! So, 
wouldn't it be nice if these efforts could be 
pooled? As I stated earlier in this paper, we 
got this far from the grass-roots movement 
anyhow. Program portabi 1 i ty is the way that we 
can share our work with other enthusiasts. 

The Syste~ Approach 

When I speak of systems with respect to computer 
music, I naturally accept the fact that we need 
an adequate environment in which to work. 
First, the computer must have moderately quick 
disk drives. I cannot be satisfied with serial 
(9600 bps) drives, such as on the Commodore 64 or 
Atari. These machines are great for music 
experimentation but due to many hardware 
constraints, they remain in the semi-serious 
real m for me. 

A decent system should have more than 64k of 
memory. The reason is that there has to be some 
way_to ~llow.most, if not all of the program to 
reside in main memory at once. In addition to 
the program, there has to be room for some data, 
such as notes and graphic screens to be 
displayed at different times. Some micros have 
the provision for storing a whole floppy disk 
worth of data in memory, in order to simulate a 
disk. This permits extrememly quick file 
input/output and allows the program to be very 
large, without experiencing the delay of loading 
from disk. (overlays). 

As I pointed out before, program speed is 
important to music development. The most crucial 
aspect of working with a computer to develop 
music is to be able to hear and see the changes 
that the user makes, as soon as possible after 
they are entered into the computer. This closes 
the loop between conceiving the piece and hearing 
it, which leads inevitably to changing it again, 
and so on. This phenomenon applies to computer 
graphics just as importantly. 

The Operating System 

The operating system is also important. We would 
like it if there were features built in to the 
0/S that enabled our programs to execute with 
ease, rather than having to create strange code 
that takes the p 1 ace of the normal operating 
system features. An example of this is the 
ability to call the system with a function number 
and request it to perform some kind of input or 
output operation, without us having to write it 
ourselves. If we want to hang a Bit-Pad or a 
mouse on the computer, we don't want to hack up 
an assembly routine just to address the 
individual serial port. It would be much cleaner 
and easier if there were built-in ,device 
i ndependant system calls or standard device 
drivers that handled the low-level I/0. This 
would allow the transporting and adapting of our 
programs without having to worry about the 
primitive details. 

Other 0/S considerations are, of course 
standardization. At the moment, Appl e-II's have 
the easiest, most portable I/0 configuration 
around. All you have to do is stick a serial 
card in a certain slot, such as slot #1, then you 
can refer to it by typing "PR#l" and forget it 
forever! At the moment, IBM-PC's have the most 



well structured and documented O/S in the micro 
world. Cheap cards can be purchased which pop 
right in and perform some function. The binding 
to the O/S is very straight foward. A P.erson can 
write their own device driver or high-level 
program without worrying if it will work on 
someone elses machine. There is plenty of 
information around to assist the do-it-your
selfer. The Macintosh has some catching up to do 
before this can be said about it. 

One last consideration of the system, is that of 
availability. If one is to take a serious 
di re ct ion with computer music development, then 
it would be nice if this were a poular enough 
computer that there were plenty of cheap software 
and hardware availble for it. There are only a 
handfull of companies that are developing o~ 
offering music systems or cards. Most of tliese 
are only able to focus on the personal computers 
that have sold well. This isn't bad, though. 
The high volume of sales drives the music system 
r>rices down, making it easier for you to spring 
for that extra add-on above the cost of the 
computer. 

Think ha rd and do some i nves ti ga ti on before you 
decide on the P.C. of your choice. 

Music Application 

After discussing some key issues with regard to 
our subject, we can now take a close look at 
using computer graphics to represent performance 
knowledge. 

It should be pointed out that the system being 
described refers to a hypothetical software and 
hardware arrangement. The concepts appl'/ to 
analog and digital synthesizers interface via 
the Musical Instrument Digital Interface {MIDI) 
and built-in digital synthesizers, which are 
available for some of the popular personal 
computers. 

In order to adopt a methodology which is suited 
to several situations {other than performance) we 
must consider what modes of commonality each of 
these will share. The best place to begin is at 
the topmost level of the "hypothetical computer 
music system". Refer to figure 2. 

As you can glean from the figure ,we have a few 
function levels that may want to effect or 
communicate with each other. 

The "Score" level can have many meanings. Willi am 
Buxton from the University of Toronto Computer 
Science Research Group, who has been responsible 
for many developments in the area of the human 
interface, has stated simply that "A score is a 
score is a score ..... ". What is being said here 
is that in musical performance, all of the 
parameters concern, ng the composer that 
contribute to the final sound output can be 
organized into some kind of score file. Scores 
that have many items in it, such as the waveform 
sJ)ecs, envelopes, performance parameters such as 
vibrato, glissandi and the like and the music 
notation itself are not uncommon in some computer 
music pieces. If every parameter can be written 
with respect to it's occurance in time during the 
playing of the piece, then why not place it all 
in the score when composing the final phase of 
the work? 
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The way in which I have chosen to relate the 
different functions at the editing or top level 
is with a separate operation for each. So, the 
Score editor handles music notation entry and 
modification, the voicer handles sound analysis 
and specification, with preview and the player 
handles performance. This is not to say that 
data won't be relayed between the three 
functions. 

The commonality of the three top-level functions 
is seen in two ways; 
First, the editors may be invoked at any time in 
another editors 1 i fe. You may be editing a score 
and you desire to edit a voice, all that is 
required is to invoke the voicer and edit voices 
while the score editor remains in it's last 
state, semi-visible on the screen, to be returned 
to at a later ti me. 
Second some variables parameters that are 
derived from one editor may be fed to another to 
provide some kind of function. Obviously, the 
score editor may be limited in the type of data 
it can provide to the other editors. Conversely, 
using the voicer one may create an ascending 
staircase function that can be plugged into a 
compostion alogorithm which generates an 
ascending series of notes based on a rule which 
determines the intervallic spacing. Also, the 
play editor, which relates more to the real-time 
aspect of performance, would be more than happy 
to associate such a starcase with some live 
parameter that effectively sweeps pitch. A live 
control from the play editor could be used to 
"perform" a function into the voicer or an 
enveloP.e can be developed with the voicer that is 
shown in the score following the onset of a note. 

With this approach, we can flexibly associate 
parameters between functi~ns without having a 
total merging of the three editors. In this way 
we retain a separate but powerful heirarchy which 
has been found to be effective for newcomers to 
computer music. 

An approach to defining the interconnection 
scheme for the various edit functions and their 
parameters may be derived in the following way; 

- Segment the system as was done in the 
generic block diagram 
(or to your preference) 

- Define the list of parameters that wi 11 
be associated with each segment and their 
individual limits, uses etc. 

- Propose a relation strategy for these 
parameters by introducing them to each 
other, i e; Live Pitch, meet Envelope 
function {will that work or not?) Timbre 
Control, meet Note Score {'llfah). 

Once the interconnect scheme has been outlined, 
we develop scaling and ranging black-boxes that 
can be used to massage the variables when they 
are going to be used accross editors. This may be 
needed when, for instance, the values coming from 
one generator are too large or quick for another 
funcion input. This is essentially a simple form 
of si9nal processing, not unlike the metaphore of 
patching analog synthesizers. 



Windowing 

The term "Window" should be familiar to anyone 
who has seen the Macintosh. It uses a system of 
"pull-down" windol'!s or screen se9ment_s that 
contain separate obJects of information, i~ text 
or graphic form, _that can represent a funct, on. or 
job that is running at the moment while the ~ob 
that is covered by the new window is st, 11 
continuing underneath. This may not seem 
straightforward at first, but consider the next 
example as pertaining to our music application. 

Suppose we have score editor and it's purpose is 
to allow us to write a musical passage with 
conventional music notation. See figure 3. 

What if we have developed a certain amount of the 
score and while still in the score editor, we 
now desire to hear an instrument in order to make 
up our minds about the next score entry. It 
would be like fine-tuning the work in progress, 
as wego along. Wouldn't it be nice if we could 
just pull down a totally different editor menu 
for making instruments, while still being able to 
see and effect what was going on in the score 
editor? This sounds pretty high tech, doesn't 
it? I should point out that this type of 
function, known as "Window Management" is 
becoming quite _commonplacE;, It makes a ~orld of 
difference for the user interface portion of a 
system. 

Figure 4 illustrates pull-down multiple windows. 
The commonality I spoke about should begin to 
surface from a using standpoint. Clearly, there 
are several combinations of routings for the 
different system functions when developing or 
performing some music. This shows itself in the 
score where the envelope, which is normally an 
amplitude vs. time function is being changed by 
the envelope editor. Although the old envelope 
is not shown here, it represents the shape of the 
envelope in the second ba~ of the scor~ •. T~e way 
that this would be used is by the def,ni tion of 
the envelope in the envelope editor, the tagging 
of the finished one and the placement of it into 
the score. 

Windows are not entirely necessary. If they are 
available in the computer you are working with, 
then use them. A very useful system can get 
along without them as well. Many of the digital 

syntheizers that use 9raphics, adopt a "Page
Turning" concept. This is done by setting up 
several individual screens where the editing work 
will take place and allowing the user to request 
a new page or return to an old one at will. Once 
the page is turned, the new page becomes the 
scene of focus. The old page may be returned to 
with the previous work left intact. 
One other thing that is bothersome is the ti me 

that often ~nsues between pa9e turning. This 
method fails to leave something on the screen 
while the next editor is being overlaid1 such as 
in windowing, so the interest is hela and it 
doesn't seem like a long Compile or something. 

The Recording Studio Metaphor 

Let us examine a recordin9 studio situation that 
we would like to computerize. In this discussion 
we wi 11 combine the synthesis , composition and 
record/p 1 aybac k functions together into one 
system. We will try to define the areas which 
lend themselves to graphic modeling and then 
devise a philosophy for codifiyi ng them. 
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In our simple home recording studio we have these 
devices; 

8 channel computer interfaced digital synthi 
o timbre control 
o note pitch 
o amplitude control 

Personal computer 
o Black and white window graphics 
o Floppy disks 
o 128k memory 
o touch pad 

Figure 5, the system diagram shows the various 
components. 

The next block diagram, figure 6, shows software 
already created. 

Using this configuration ,what wil 1 we want to 
accomplish in our recording studio? 

The Tape Recorder 

First, there has to be a "Tape Recorder". This 
can be a software function that allows us to 
record the work that we create, into memory and 
then floppy disk. There is a fast forward and 
rewind that allows random access to certain 
positions on the tape. We would like to record 
different types of information next to each other 
on separate tracks. These are parallel areas on 
the tape that contain sound or control 
information that is recorded or played-back 
together in time. On a real tape recorder, you 
can edit the sound on the tape by "Splicing" 
pieces of tape containing the sound portion that 
r,ou wish to join with another. You can also 
'Punch-in" which is just recording at a precise 
ti me and position on the tape and "Punch-out" or 
stopping at the exact moment that the time window 
ends. These functions are simply file 
operations. 

The Mixer 

Next, we would 1 ike to have some sort of mixer. 
This device normally allows the musician/producer 
to add together several sound tracks coming from 
tape, live instruments or voice into a multi
channel output such as stereo or quad. The mixer 
is primarily used to set the individual amplitude 
levels of instruments. In this way, ,you can 
"Mix" the 1 evel s down into a composite using your 
taste for combining them. 

The Synthesizer 

As stated above, the synthi has a certain amount 
of controllable parameters such as pitch, timbre 
and amplitude. Each of these have several sub
parameters that are used to perform or compose 
with. These sub-parameters are derived by 
supplying time, frequency and amplitude varying 
functions to the var, able sections. Some of the 
sub-parameters are; 

- Vibrato depth 
- Vibrato SP.eed 
- Timbre X (+/- 2048} 
- Timbre Y (+/- 2048} 
- Timbre Z (+/- 2048} 
- Ampl itud€£nvelopeBreakpoint 

( rate, value} 
- Portamento speed 



- Glissando speed 
- Glissando interval 

These parameters exist for each channel of the 8 
voice synthesizer. 

The heuristic device 

Earlier in this paper we discussed the psychology 
of symbolic fam1l1arity. This is very important 
when devising a methodology for iconographic 
design. In our recording studio metaphor, there 
has to be a general understanding of the devices 
,controls and movements involved in making music 
this way. 
Most of what is known about recording and 

synthesizing has been aquired by professionals 
who make music for a living. There are many 
individuals who also design instruments and 
recording equipment who have to be aware of the 
professional heuristics that come into play when 
a non-technical person interacts with a machine. 
Some of the components of the modern studio 
require quite a verbose manual that is normally 
not that simple to get through. 

Is "Less" beautiful? 

The current wave of inexpensive electronic 
instruments are making use of low panel real
estate, or in other words al most no front-panel 
controls. Many manufacturers are providing just 
1 or 2 controls and a stacked selector /mode 
switch scheme. This requires that the musician 
keep a good copy of the operational aspects of 
the system in their head. Most of these 
instruments have one very small (2 - 16 digit) 
display, one or two slider controls and many 
cheap membrane-type switches, like the ones on 
new microwave ovens. some include a printed 
road-map of the patch possibilities of the synth, 
in order to simulate a menu-driven system. This 
is not as bad as it sounds. This scheme allows 
manufacturers to make instruments at a much lower 
cost then before. They can eliminate much of the 
expensive and un-reliable hardware that is 
associated with knobs,buttons, and faders etc. 
This keeps the cost down to where the average 
person can afford one. These instruments are 
usable but are more prone to error. 

Do it like the 'Pro's' ------
If the system is going to be easy to learn 
modify and work with, then it has to take into 
consideration how a musical piece is made. How 
do we know this before we have a system to try it 
on? As I said earlier, much of the producing 
knowledge already exists. If we adhere to some 
of the time-honored traditions of the 
professional recording business, we will have an 
easier time building in this performance 
knowledge. 

The following is a short list of operations for 
the creation of a musical piece; 

1 - Write musical phrases (score) 
2 - Make a simple instrument (voicer) 
3 - Play the phrase with the simple instrument 

(play) 
4 - Revise the phrases 
5 - Make more instruments 
6 - Try multi-part playing 
7 - Revise the instruments (add effects) 
8 - Mix /Play the levels of the different 

instruments/parts 
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9 - Record on multi-track (in the computer) 
10 - Edit tracks , Punch-in/out 
11 - Do final mix down 

Using the basic operations as a guide, we can 
study the things that require built-in knowledge. 

A detailed discussion of the score editor is 
beyond the scope of this paper, therefore we will 
confine ourselves to voicer and player. Many 
good examples of score editing have been 
developed in recent years. There is a fine paper 
by Mercuri ,R [1981] and Buxton,W [1979] cmj{3,4) 
The evolution of the SSSp score editing tools] 

Voicer Smarts 

To incorporate some knowledge about vo1c1ng a 
synthesizer into our "Voicer" software we have to 
consider what important functions are necessary. 
The voicer screen shown in figure ?,contains only 
a small portion of what can be implinrented. Our 
voice making editor should allow us to create 
arbitrary functions consisting of line segments. 
It should also allow us to graft together 
different types of waveforms such as the top 4 
waveforms in the figure • Not only would we l 1 ke 
to paste and cut, we would also like to 
manipulate them once they are on the screen. How 
about a bending function? What would we do with 
it? Suppose you have an envelope function such 
as the 5th function down on the left. Amplitude 
is represented in the vertical {Y) axis and time 
in the horizontal (X). (see figure 8) 

If the function was actually a pipecleaner and we 
grabbed it at the middle of the top line as in 
the next figure then bent it down towards the 
bottom, it would turn out looking like figure 9. 

The "Bend" function is a rubber-banding line 
routine that knows how to draw a triangle using 
the new coordinate that you point as the apex 
and redraws the two sides everytime you move the 
apex a little. This saves the step of having to 
erase and redraw the lines by hand. This example 
is a very simple one, but represents the kind of 
things that can be acne using built-in graphic 
functions. 

Response Curve Editing 

Another kind of operation that provides a very 
useful function is that of response curve 
editing. This makes it possible to create a 
function that wi 11 be used as the response for a 
control input. For each value that is read from 
a joystick or fader control, the response curve 
is used to treat the value according to the shape 
of the curve. 

Using the Voicer editor, you can draw a response 
curve and patch it to the joystick in the Play 
editor. When you move the joystick, the response 
curve that is patched in will be used as a 
"Filter", in other words, Joystick movements in 
----> l X l ----> transformed values out. 
This is essentially what a filter does. This can 
be done with a simple table look-up operation. 
The weight of the joystick value is used as an 
address for the response curve, which is stored 
in the table, the values in the response curve 
table are then read out in place of the 
joysticks. 



An example of this is an inversion function. If 
a line that goes from max to min value is put 
into the table starting at the lowest location 
~oing to the highest, then when a low value of 
Joystick is used to look up the response curve, 
then a high value will be read out, and so on. 
(See figure 10) 

Teaching the System about You 

Most computer programs are not set up to learn 
from it's users. P-rogrammers, on the other hand 
, have been teaching computers how to do things 
their way. There is an obvious distinction here. 
On the one hand, programmers build-in algorithms 
into their programs that usually perform a set of 
operations according to a set of input data 
usually provided by tlle user. On the other hand 
an artificially intelligent, or "Expert System" 
program is set up to remember inputted knowledge 
which comes from the user and later make 
deductions or inferences based on this set of 
rules, when queried in more abstract ways than 
usual. 
In the music application, why not program the 
computer to store and compress performance 
expertise as we gain it? 

This is, of course, not as involved as some of 
the advanced efforts going on in A.I. (Artificial 
Intelligence). We are only trying to sample 
real-time performance input and modification 
sequences as we perform in the Play editor. 

The MIMIC function 

If all the parameters on the screen are variable 
when you go to perform with the system, at the 
play level ,then why not store the progressing 
movements of the faders, or the adding of a new 
voice during the performance? Any of this can be 
considered live once it has been set to some 
timing. If you speed up the tempo the whole 
stored performance should speed up, inlcuding 
the fader movements etc. 

Implimenting MIMIC is just a matter of using an 
internal clock to synchronize and time tag the 
events of interest. At the ti ck of each clock, 
all the desired parameters are sampled from the 
system and a history of their movements are taken 
for a finite amount of time. This can get very 
bulky , data wise, if it' is done for too long. 
A way to reduce the parameter storage is to 
simply store the deltas, or changes. 

Many sequencers store keyboard and velocity 
information which is played in by the musician. 
Very few try to capture performance parameters as 
in MIMIC. 

Music objects and PLAY 

Many diverse textures, sequences, timbres and 
ryhthms can be derived from a modern digital 
music synthesizer. With the addition of a real
ti me interactive graphics computer and some of 
the components that we discussed above, a whole 
world of new possibilities open up. 

It is quite an experience to be able to 
manipulate an enormous patch panel of synthi in's 
and out's on a computer screen, each one having 
some kind of immediate effect on the sound. The 
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great part, is that all of the best patches can 
be stored, transferred and manipulated by the 
computer. 
When we work with highly detailed systems after a 
while, we tend to organize things into macro
things. These macros are made up of combinations 
of the smaller items which we find work well 
together. There are of course, nearly endless 
combinations of smaller things yielding more 
macros. 

Say we want to work with single small functions 
such as the ones in figure 11. 

When this thing is done we may want to call it 
"Warble" for instance and save it as an "object". 
We could just take the LFO and VCO combination 
and call it "Warbl osc" or something. These two 
sets of low-level functions are objects 
themselves, but may be contained in larger 
objects as well. 

Other objects may be related to performance 
methods. We can devise a particular play 
sequence made up of inputs and their associated 
response curves, routings and interconnect 
conditioning. 

Icons revisited 

In dealing with object oriented structures, we 
will have to design the ideal set of icons to 
represent these objects. In order to get a 
sufficient amount of iconographic data on the 
screen, there has to be a compact philosophy 
adopted. 

How do we compress graphic information 
sufficiently to contain it on the screen? At the 
same ti me we would like to remember what these 
symbols mean without having to look them up each 
time. 
First, I suggest a smaller window onto the larger 
world. This is illustrated by figure 12. 

With such a system, you may slide left or right, 
up or down l>y moving into the 
north/east/south/west box on the lower right hand 
portion of the screen. 

Second, the idea of families of symbols. When a 
set of icons which represent various 
manifestaions of the same family of objects take 
on similar 9raphic attributes the_y become easier 
to group, visually and contextually. This is the 
key to icon design in a crowded situation. 

Symbols do it 

Figure 13 is a symbol breakdown showing the 
different attributes that distinguish one member 
of the family from another. Al so in the figure 
is the different family types. The figure 
relates to the PLAYER and VOICER screens. 

The symbols shown in the last figure are ta~ged 
with a s.Pecific function on the "Voicer' or 
"P layer screens. In this way, the object 
oriented editor can connect or corral these 
together and ca 11 them a "Macro" object, give it 
a new name or s_ymbol and store it on disk. They 
now seem more like a set of building blocks with 
pictures on the faces. 

Figure 14 shows a typical arrangement of objects 
and macro-objects in a performance situation. 



Conclusions 

This might appear to be a "patch editor" of 
sorts, but is truly an "Object - Oriented" one at 
best. By defining the inputs, outputs and limits 
of these objects, they ma)' be treated as 
subroutines from the computer's standpoint and 
physical blocks from the user's. 

Developing an object oriented editor which allows 
graphic icons to be "patched" to~ether is not a 
simple task. I have found that using some of the 
methodoligies mentioned herein simplifies the 
tedium of oesigning the data structures. It also 
helps to study the important functions in terms 
of their real-world analog application. 
A very good discussion of this subject may be 
found in Buxton,W, et al [1982] and Kowalski, 
M.J. and Glassner, A [ 1982 ]. 

Once these objects are associated with functions, 
they may be connected visually on the screen and 
their effect can be experienced at once. 

It is hopeful that synthesizer technology will 
keep up with the rapid growth of software 
knowledge which is increasing with leaps and 
bounds. 
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Abstract 
A new approach has been developed for teaching 

programming to musicians. The approach uses personal 
computers with music synthesis capabilities, and students 
write programs in order to realize musical compositions. 
Our curriculum emphasizes abstraction in programming 
by the early introduction of high-level concepts and the 
late introduction of programming language details. We 
also emphasize abstraction by relating programming 
concepts to musical concepts which are already familiar to 
our students. We have successfully used this curriculum 
to teach Pascal to children and we are presently using it in 
a university-level course for composers. 

We have developed a new methodology, designed 
especially to teach programming to music students. 
Students are challenged to produce artistic works through 
programming skill, using personal computers with music 
production capabilities. A key feature of our curriculum 
is that it allows students to use their existing musical 
knowledge as a basis for understanding computer 
programming. We have used this approach successfully 
to teach Pascal to children ranging in age from 9 to 16 
years, and we are now using the curriculum as part of a 
college-level computer music course. 

This approach is unique in several ways: First, it is 
designed specifically for artists. Programming is viewed 

as a means of creative expression rather than an abstract 
skill whose utility may be difficult to justify to an artist 

CH2087-5/84/0000/0114$01 .00 C 1984 IEEE 
114 

Secondly, our approach is an inherently multi-media one. 
We have found that "listening" to a program's execution 
while reading the program is helpful in learning and 
debugging. Finally, we build upon existing musical 
knowledge. Musicians are familiar with the concepts of 

sequence, repetition, conditional selection, and 
procedural abstraction from the domain of music. We 
make use of analogy to teach the corresponding 

programming structures. 

In Section 1, we present the origin and goals of this 
project. Then, in Section 2, we describe some earlier 
work and experience that guided our curriculum design. 
In particular, we wanted to teach what we call the 
abstractionist methodology. Section 3 then describes our 
specific curriculum design for teaching programming to 
musicians. Our experience with this curriculum is 
discussed in Section 4, and we present our conclusions in 
Section 5. 

1. Background 
We began with the goal of designing the curriculum for 

a "Computer Arts Summer Program." The program was 
to be held at the American Center in Paris, and was 
aimed at 12- to 16-year-olds. We planned to include 
computer music and computer programming instruction 
and to provide every student with a personal computer in 
the style of many "computer camps" held in the United 
States. It was also decided to integrate the music 
instruction as much as possible with computer 
programming. 

We considered two approaches to the use of computers 
for music. First, we could present fixed, menu-oriented 

programs for drawing, composing, and computer-aided 

instruction. Rather than writing their own programs, 



students would manipulate parameters in existing 
programs. Alternatively, we could write interfaces to 
graphics and sound synthesis devices so that students 
could create music by writing their own computer 

programs. We decided to concentrate on the latter 
approach: that is, teaching students how to program in 

order to produce music. 

2. Previous Work 
We know of no work that addresses the needs of 

teaching programming to the musician in particular. 
However, there is a wealth of literature concerning 
programming methodology and pedagogy in general. Of 
particular interest are papers by Perlis1, Dijkstra 2, and 
Hoare3, which discuss the importance of various forms of 
abstraction to programming. We call the general 

approach advocated by these authors the abs1ractionist 

methodology. Because of its importance to our 
curriculum for teaching musicians, we describe it here in 
some detail. 

2.1. Abstractionist Methodology 
We recognize three principal levels of programming 

abstraction: the control structure level, the procedure 
level, and the data structure level. 

Abstract Control Structures. The most familiar level is 
that of control structures4. This is essentially the 
structured programming movement of the 1960s, with 
do-while, if·then·else, etc. In contrast to the goto, which 
may be used to create arbitrary flow of control, control 

structures should have single points of entry and exit, and 
they should indicate the programmer's intention, for 
example, to iterate a sequence of statements. 

Procedural Abstraction. The second level of abstraction 
is abstraction at the procedural level. The idea is that 
problems are too complex to be thought about all at once, 
so we think about them hierarchically. To illustrate, we 
will borrow from a textbook5. Consider the task of 
grocery shopping. This high-level task can be divided 

into smaller tasks (subtasks) in many ways. Let's say we 
decide to decompose it into two subtasks: generating a 

shopping list and buying all the items on the list. 

We continue now with the subtask of generating a 

shopping list. Likewise, it may be decomposed in a 
variety of ways. Assume our solution is first to obtain a 
pencil and paper, followed by examining the kitchen 

cupboards for some idea of what is needed, and finally, to 

consult the spouse for a contribution to the list. 
Generating the shopping list could be done in other ways. 
For example, one might simply delegate the task to one's 
spouse, cook, maid, etc. 

With our shopping list firmly in hand, we can consider 
the subtask of generating the shopping list completed. We 
now turn our attention to the other m~jor subtask, buying 

the items on the list. This, of course, could also be done in 
a variety of ways. Let's say we wish to do it in the 
following manner: go to the grocery store; collect the 
items on the list; pay the cashier; and, finally, return 
home with the groceries. 

This leaves out many details of the acquisition phase. 
For example, we named a subtask collect items on list, 

however, we have said nothing about how this is to be 
accomplished. How are we going to search the store for 
the items on the list? Are we going to use a shopping cart, 

/ (_•_hop fo_r gro_ceries____,) ~ 

( generate shopping 1 ist ) buy items on shopping list 

/ ~ --'--- I 
get pencil 
and paper 

examine 

cupboards 

consult 

spouse 
go to 
store 

collect 
items 

Figure 2· l: Figure Showing The Tree Structure Of 
Problem Decomposition 
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or perhaps just a shopping basket? We named another 
subtask of paying the cashier. This might be done with 
cash. It might also be done with a personal check, or with 

manufacturers' coupons, a charge card or some 
combination of these methods. 

We see that this technique generates a hierarchical 
solution to the overall task. Although we've expanded 

only two levels, it gives enough of the idea for you to see 

how it is done. In programming, tasks are similarly 

divided into components which are then written 
separately. 

Data Abstraction. Data abstraction is the business of 
thinking of a problem as a set of objects and the 
operations that are performed on those objects. Consider 
a payroll system. The problem is to maintain information 
on the employees of a company. The information that is 
kept on each employee includes such items as name, rate 
of pay, hours worked, whether or not the employee is 
participating in the company's group insurance plan. We 
can think of this information as an index card of 
information. Because the company has a number of 
employees, the index cards are arranged alphabetically 

into a shoe-box of index cards. Thus the abstract 
structure for the payroll problem is a shoe-box of index 
cards. 

The second aspect of data abstraction concerns the 

operations on the structures. There must be a way to 
thumb through the cards, searching for a particular one. 

There must be way to copy information from a card and a 

way to change the information that is on a card. A card 

must be added when a new employee is hired. A card 

must be removed when an employee is terminated. 

In programming. the box of index cards would be 
represented by a data-structure. It is desirable, in order to 

reduce program complexity, to confine the details of this 
data-structure to only a small part of the overall program. 
This is accomplished by writing procedures for each of 
the desired operations. If an operation is complex, it 

might be implemented by a package of procedures. 
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We find these three levels of abstraction to be at the 
core of good programming practice. They facilitate 
design of software that is at once verifiable, 
implementable, debuggable, and extendible. They dove
tail neatly with the ideas of information hiding and strong 
typing. They represent current thought in software 
engineering. 

2.2. Abstractionist Pedagogy 

Recently, a few educators have begun to adopt a 
pedagogical style that is designed specifically to teach the 
abstractionist methodology. This style does not have a 

name in computer science, but we will call it the 
abstractionist pedagogy. Among the people with whom 

we are familiar, Bob Floyd is credited with the idea, 
which has since been applied in several textbooks6• 7, 5, s. 

Among the key features of the abstractionist pedagogy 
are the early introduction of high-level concepts and the 
late introduction of programming language details. This 
encourages a hierarchical approach to problems, 
beginning with the • highest level. Programming 

instruction begins with the introduction of a handful of 
pre-written procedures. The student writes his first 
program simply by calling these procedures sequentially. 
Next, the student is given a technique for writing new 
procedures, built from sequences of the primitive 

procedures mentioned above. Control structures are then 
introduced, and finally, a full programming language is 

presented to the student. 

Standing head and shoulders above the rest in 
successfully executing this pedagogy is Richard Pattis. In 

the marvelous little book, Karel the Robot: A. Gentle 
Introduction to Programming, students learn to 
manipulate a robot, Karel, using primitive procedures 

such as Move and TurnLefi. The robot is simulated on a 
standard CRT. Tasks are designed for the student, such 
as programming Karel to step over a hurdle or to escape a 
maze. As the student learns more powerful techniques of 
programming, successively more general and elegant 
programs that control the robot are written. 

We believe that this task domain, one that is visual and 
tactile, is a good one for introducing programming 
methods. Unlike the domain of numeric calculations (the 
unfortunate standard fodder for beginning programmers) 



the Robot world introduces no intellectual barriers to the 
student. It provides an environment that is at once 
intuitive and rich with analogies that can be exploited for 
introducing and fixing the rudiments of sound 
programming methodology. The book and the approach 
are now being adopted in a number of high schools in the 
U.S. and abroad, in part due to the positive 
recommendations of the College Board's Advanced 
Placement Computer Science Development Committee9, 
10 

2.3. Assumptions and Prejudice 
We designed our curriculum for musicians with several 

assumptions in mind: 

• The first is that the abstractionist 
methodology is sound and should be taught 
to beginning programmers. 

• The second assumption is that there is a best 
way to teach this methodology. The 
abstractionist pedagogy has been used 
successfully at Carnegie-Mellon and 
elsewhere in programming courses. 

• The third assumption is that musicians can 
learn the programming methodology. It is 
sometimes held that the mathematically
oriented students (engineering and science) 
are able to learn programming methodology, 
while artists are either unable or much less 
able to do so. It is clear, however, that some 
musicians are excellent programmers. Some 
are respected computer scientists. We 
decided that the best approach was to assume 
that for the purposes of programming, 
mus1c1ans as beginning programming 
students are no different from any other 
group of beginners. 

• The fourth assumption, as suggested in our 
description of the course, is that the best way 
to introduce the concepts of programming 
methodology is to tie these concepts closely to 
a knowledge base that is familiar. In 
introducing a new concept, a successful 
teaching method is often to explain it by its 
analogy to some more familiar concept. In 
our course, we apply this to teaching 
programming abstraction, explaining 
programming structures to students by 
analogy to similar hierarchical organizations 
in music, with which they are familiar. 
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Thus far, we have introduced a number of important 
ideas. We have specified a programming methodology as 

the correct one to teach. We have talked about how to 
teach that methodology in terms of subject matter, texts, 
and software. How this all manifests itself in terms of 

teaching programming to musicians is the subject of the 
next section. 

3. The Abstractionist Approach in a 
Musical Setting 

When we began to design our programming course for 
musicians, we looked for musical analogues to the 
concepts we wanted to teach: sequential execution, 
procedural abstraction, and control structure abstraction. 
We were quite pleased to find musically meaningful 
analogies for all of these concepts. Below, we describe 
how each concept was presented to our 
musician/programmers. 

For the introduction of procedural and control 
abstraction, we wanted to keep programs as simple as 
possible, avoiding issues such as parameters, 
input/output, and synthesizer interfaces. Taking Karel 
the Robot8 as a model, we defined a set of parameterless 
procedures to play the notes of an octave scale and to 

produce silence1. A few more procedures were added to 

produce sound effects, and an include file mechanism was 
used to hide the definitions of all of these procedures. 

The use of personal computers made it possible for each 
student to have a machine that could edit, compile, and 
execute programs using these procedures. Each machine 
could also synthesize appropriate sounds. 

3.1. Sequence/Melody 
llle first programming lesson consists of a simple 

melody and an explanation of how to translate the 
melody into a program. For example, the following 
melody: 

1Toe procedures are PlayDo, PlayRe, PlayMl PlayFa. PlaySol 
PlayLa. PlaySl PlayDo2 (an octave higher than PlayDo), and Rest. 
The names of these procedures were chosen to avoid a clash between 
the Pascal reserved word "do" and the solfcge syllabic "Do". 



Melody 

-$4 #J d J I J J J & II 
would be translated to: 

program Melody; 
{include definition file here} 
begin 

end. 

PlaySol; 
PlayLa; 
PlaySi; 
PlayLa; 
PlaySol; 
PlayLa; 
PlaySol; 
Rest 

Students are encouraged to compose their own melodies 
and to program the computer to play them. 

3.2. Procedures/Phrases 
For the next lesson, an example is chosen that includes 

several occurrences of a musical phrase. The example is 
translated into Pascal, and it is observed that the program 
contains a duplicated sub-sequence of commands. 
Students are shown how to build a named procedure 
from the sub-sequence. For example, the following 
melody: 

could be rendered as follows, using a procedure to 

implement measures 1 and 3: 

program Lesson2; 
{include definition file here} 

procedure DoSiLa; 
begin 

end; 

PlayDo2; 
PlaySi; 
PlayLa 

begin 
DoSiLa; 
PlaySi; 
Rest; 
Rest; 
DoSiLa; 
PlaySol 

end. 
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3.3. Loops/Repetition 
After programming a composition using procedures, we 

tum to basic control constructs. The loop is the first 
construct considered; its musical analogue is the repeat. 

At this point, we consider only the for loop. The next 
example illustrates the use of the for loop to program a 
musical repeat: 

Arpeggio i 3 times 

program Arpeggio; 
var i: integer; 
{include definition file here} 
begin 

for i : = 1 to 3 do 
begin {repeated measure} 

PlayDo; 
PlayMi; 
PlaySol; 
PlayMi 

end; 
PlayDo {the last note} 

end. 

For this lesson, Pascal requires a declaration for the 
loop control variable. Since variables have not yet been 
introduced, we avoid the issue by describing the 
declaration as a "magic incantation" to be explained later. 
A loop construct that implicitly declares its control 
variable11 would be preferable for teaching purposes. 

Perceptive students will realize that a musical repeat 
can be implemented by programming the repeated music 
as a procedure and calling it several times. An interesting 
work to discuss at this point is Vexations, by Erik Satie, 
which consists of a short musical statement to be repeated 
840 times! 

3.4. Conditionals/First and Second Endings 
The next lesson concerns conditional execution. The 

analogue in music is the first-and-second ending notation. 

Consider the following example: 



program Conditional; 
var i: integer; 
{include definition file here} 
begin 

end. 

for i : = 1 to 2 do 
begin 

PlayDo2; 
PlaySi; 
PlayLa; 
PlaySol; 

end 

if i = 1 then 
begin {first ending} 

PlayFa; 
PlaySol; 
PlayLa; 

end 
else 

PlaySi 

begin {second ending} 
PlayDo2 

end 

Students should be encouraged to experiment with 
conditionals in non-traditional musical structures. For 
example, conditionals could be used to introduce 
variations at several points in a repeated note sequence. 

3.5. Parameters 
Until now, no procedures have been parameterized. 

This simplifies the presentation of control constructs and 
procedures, but imposes rather severe limitations on the 
variety of sounds that can be programmed. In the next 
several lessons, students are taught how to call 
parameterized procedures and how to declare them. By 
this time in the course, students recognize the need for 
more subtle control over sound, and welcome the 
introduction of parameters. 

Predefined procedures called Note and Rest are used to 

introduce parameters. The Note procedure takes 
arguments for frequency, amplitude, and duration; for 
example Note(440, 100, 50). The Rest procedure has one 
argument, duration; for example Rest(90). 
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Students are then taught how to define their own 
parameterized procedures. At this point, they have the 
programming skills necessary to create interesting pieces, 

Advanced students will want more direct access to the 
sound generation hardware than that provided by the 
Note procedure. In our case, we use a fairly sophisticated 
synthesizer interface capable of independent time-varying 
frequency, amplitude, and waveform control over 16 
oscillators. The synthesizer interface illustrates data 
abstraction. Procedures are used to manipulate some 
underlying structure (the synthesizer) in order to hide 
irrelevant details of the structure. Students are 
encouraged to develop their own data abstractions at the 
next higher level in order to obtain a control interface 
that is appropriate for their composition. For example, a 
procedure named Gliss could be written in terms of 
primitive frequency controls in order to implement a 
musical glissando. 

4. Results and Discussion 
We taught a 15-day course, where students had a total 

of 4 hours per day for instruction and access to 
computers. Although the course was intended for 12- to 
16-year-olds, the actual range was 9 to 16 years. All of the 
students were able to develop programs that used 
procedural abstraction, loops, and conditionals. For 
example, one student, who had no previous computing 
experience, wrote an 83-line program to perform a piece 
with the structure ABA (see the appendix). The A section 
was implemented as a procedure with an internal 
structure of the form abaca. This was accomplished using 
a for loop to iterate 3 times, with a conditional to insert b 
after the first iteration, and c after the second iteration. 
This program used a variation of the Note procedure to 

give control over the rate of attack ,and decay of each 
note. 

4.1. Music as a Concrete Programming Task 
As expected, students understood the programming 

tasks immediately since they came from familiar 
intellectual territory. This allowed students to 
concentrate on the solutions to the problems rather than 
trying to understand the problems themselves. 



4.2. "Listening" to Program Behavior 
As with the domain of Karel the Robot, which can be 

simulated on a CRT, we found music to be attractive for 
programming because it was possible to follow program 
behavior quite closely. This was true in part because 
program behavior was slowed to a musical pace. Also, 
one could hear the result of each program step; 
consequently, one did not often need to deduce a 
program's behavior from its final output Rather, the 
entire program execution was transparent, and problems 
could be isolated without a painful debugging process. 

In addition, we found that the music domain has 
specific advantages over Karel. First, music is an ideal 
medium for transmitting large amounts of information 
about program behavior to our musicians. It is also 
possible to read a program listing visually while 
simultaneously following program execution aurally. 
This was valuable in helping students to learn the 
association between program statements and their actions. 

4.3. Motivational Factors 
Our students discovered that making music with 

computers is also fun and exciting. As students 
completed their assignments, they would perform their 
pieces for the class, often receiving applause and 
compliments. Students were highly motivated to finish 
their assignments! 

4.4. Extension to Other Domains 
Based on our experience, we feel that other domains 

could serve as an excellent basis for the abstractionist 
pedagogical style. The style is appropriate for various 
types of music synthesizers2 , but it might also be 
considered for the new, low-cost speech-synthesis devices. 
Another interesting domain is that of computer graphics. 
The "turtle graphics" interface is an example of an 
appropriate set of primitives12. In another application, 
Harry Holland at Carnegie-Mellon University is using 
our approach to teach Pascal to artists. His students use a 
color graphics display and program in terms of primitives 
like Box, Circle, and Line. Architectural drawing is 
another possible domain. Finally, a mechanical robot is 
being constructed at Carnegie-Mellon University, based 
on Karel, to make the programming task more exciting. 

2For this reason, we do not describe our lowest level synthesizer 
interface in greater detail here. 
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At Carnegie-Mellon University, the programming 
pedagogy is reinforced not only by the Pattis text and the 
Miller and Miller text, but also by software that was 
written with an eye to the abstractionist methodology. 
GNOME software is built so that procedural and control 
abstraction are the natural form of program construction. 
Details of syntax and some details of semantics (e.g. the 
order of procedure declaration) are issues for the 
programming environment, not for the programmer.13 

We are currently using the abstractionist pedagogy .as 
part of a computer-music course for college students. In 
this course, however, we introduce parameterized 
procedures at the beginning so that students have more 
music-making capabilities from the start 

5. Conclusions 
We have presented our view of the proper pedagogical 

style for teaching the abstractionist methodology. The 
approach has been used successfully at Carnegie-Mellon 
University and elsewhere .. 

It was gratifying to discover that the approach can be 
adapted quite well to the musical domain and that 
musicians can indeed learn to program with the 
abstractionist methodology. In fact, music has specific 
advantages, including familiarity with the domain, 
program behavior that is audible, and a strong motivation 
to "compose" programs. 

It is interesting to compare our experience teaching 
grade-school level students to that of teaching university 
students. Our goal with the grade-school students was 
primarily to teach programming, while in the university 
course, programming skills are primarily a means of 
realizing a composition. One conclusion is that there are 
limits as to how far one can integrate the teaching of 
music and programming. For example, the programming 
tasks described in this paper have little musical value to a 
university-level course in computer music, but the 
programming concepts are an important foundation for 
more sophisticated tasks. The problem is that a "toy" 
domain like Karel the Robot is ideal for teaching 
programming, but toy music domains are not attractive to 
serious musicians. We believe part of this problem can be 
solved by a better choice of synthesizer interface, and we 
intend to experiment further in future courses. 



The number of musician/programmers is small, but the 
field of music has already felt their impact It will be 
interesting to watch what musicians do with programming 
skills as they become more widespread. 
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Appendix 

Listing of a Student Program 

program Param; 
var 
{note: this is the interface include file:} 
(*$ID2:INTER.DEF*) 

procedure Note(Pitch, Attack, Decay, 
Amplitude: integer); 

const Voice = 0; 
begin 

WaitVoice(Voice); 
FDelay(Pitch, 0, Voice); 
ARamp(Attack, Amplitude, Voice); 
ARamp(Decay, 0, Voice) 

end; 

procedure Bizarre; 
var C: integer; 
begin 

for C : = 1 to 3 do 
begin 

Note(700, 100, 100, 100); 
Note(750, 97, 97, 97); 
Note(800, 94, 94, 94); 
Note(850, 91, 91, 91); 
Note(900, 88, 88, 88); 
Note(950, 85, 85, 91); 
Note(lO00, 100, 100, 90); 
Note(l250, 90, 90, 100); 
Note(l500, 100, 110, 100); 
Note(2000, 90, 89, 79); 

if C = 1 then 
begin 

end 

Note(850, 75, 77, 75); 
Note(825, 78, 77, 78); 
Note(800, 76, 79, 78); 
Note( 4000, 70, 120, 110); 
Note(4700, 120, 70, 110); 
Note(800, 89, 70, 75); 
Note(730, 95, 84, 77); 
Note(888, 100, 110, 95); 
Note(2540, 127, 71, 120); 
Note(l 700, 120, 120, 90); 
Note(990, 110, 127, 75); 
Note(4000, 90, 89, 97); 
Note(4500, 85, 90, 100); 
Note(4700, 90, 110, 100); 
Note(5000, 100, 75, 89); 
Note(500, 120, 75, 100); 
Note(700, 90, 90, 100); 
Note(l000, 85, 90, 86); 
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end 
end; 

begin 
Muslni; 
Bizarre; 

else if C = 2 then 
begin 

end 

Note(5000, 100, 100, 90); 
Note(9000, 127, 127, 90); 
Note(8500, 127, 127, 90); 
Note(8000, 127, 127, 90); 
Note(7 500, 127, 127, 90); 
Note(7000, 127, 127, 90); 
Note(2700, 95, 90, 100); 
Note(2000, 90, 99, 110); 
Note(900, 85, 90, 90); 
Note(700, 85, 80, 95); 

Note(350, 65, 65, 70); 
Note(325, 65, 65, 74); 
Note(300, 65, 65, 77); 
Note(375, 127, 127, 90); 
Note(400, 120, 120, 95); 
Note(385, 100, 100, 85); 
Note(300, 95, 95, 85); 
Note(250, 90, 87, 94); 
Note(215, 70, 78, 66); 
Note(207, 50, 56, 90); 
Note(200, 80, 76, 88); 
Note(l89, 79, 87, 85); 
Note(206, 80, 75, 76); 
Note(200, 76, 47, 69); 
Bizarre; 
ARamp(0, 0, 0) 

end. 
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Abstract-

Microcomputer learning outside of trad
itional classrooms and traditional 
student grouns is essential in the 
growth of a technology based culture 
such as we are experiencing today. Com
puters reek of intimidation to the 
average lay person. Somehow this must 

"What are these boxes, that masriuerade as 
tynewriters and contain cloned brain cells 
of deceased geniuses? Why are they running 
my bank, brainwashing my kids, beating me 
at chess •••• " This is a question often heard 
(in so many words) from the braver members 
of that vast majority of humankind who see 
the computer as an alien life force posi
tioning itself for takeover of the planet. 
Wow do we assuage this fear, appease the 
hostility, onen the mind, even better, open 
the hearts of those who feel the enemy is us. 

We took a simple anproach. Use the com
puter for that which separates us from the 
from the other animals (and possibly the 
alien life forces), art. Use the computer 
to write poems, draw pictures, play songs 
and maybe it will become a friend instead 
of the enemy. The Computer Learning Center 
of Cleveland did just that. Armed with 20 
microcomputers (Apnle IIe, Ibm PC, Commodore 
64, Trs-80 Mor.el III, Atari 800), assorted 
peripherals, an energEl:ic director, and a 
staff of artists, musicians and writers, we 
set out to bridge the gap. 

The physic.al constraints were next to 
idyllic. A computer for every student. 
One teacher for not more than 6 students so 
as to approach individual attention. An 
easily understandable set of books, Thinking, 
Learning, Creating, as a core curriculum in 
BASIC. An array of reference books for LOGO, 
graphics, sprites, music and word processing. 

Classes were one and a half hours each 
week for 6 weeks. Each student was master 
of his destiny. The teacher and student de
cided where to begin, depending upon the 
student's background, ana where to head, 
according to the student's interests. The 
approach of the TLC books was straightfor
ward, DO THIS and see what hannens, THIS IS 
WHY it happened, CAJ\! YOU MAKE IT DC THIS? 
This apnroach fostered creativity in asking 
the student to take a learned concept and 
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be altered, and forceful means are not 
necessary. The Computer Learning Center 
of Cleveland addressed this audience, 
drawing students ages 6 to 66 to indiv
idualized learning situations using the 
arts as the teaching medium. 

use it, e.g. make the computer print a poem 
you have composed. Because of the individ
ual anproach, it was hard to get lost; you 
could go into reverse, back up, and try 
again. If the student was familiar with 
material, they could move on readily. 

We had a f'ew rules. It behooved us 
to discourage canned software in favor of 
self-creation, though paint programs and 
Music systems had their place. We outright 
outlawed games unless keyed in by the stu~c 
dent or obviously created by the student. 
We also discouraged chewing on disks, kick
ing computers and asking the teacher ques
tions about intricate assembly language 
routines. We did encour~ge any and all 
semi-nlausible ideas. A group of students 
worked on translating the board game Clue 
into the computer. Page flipping on the 
Apple was used to make dogs bark and King 
Tut wink. Sound was used for the barks as 
well as the theme from Star Wars.The fol
lowing "student profiles• highlight some 
of the.work done. (I will refrain from ed
ucational analasis - the reader is free 
on his own there) 

Jamie (age 7) had only one small pro
blem, containing his enthusiasm. When he 
had the turtle in Atari LOGO make a SQUI
HEL (an endlessly varying geometric spir
al), he would have to applaud. But when 
he then had it change colors, he had to let 
out a "Oh, wow, neato" so people would 
come and look. 

Jamey (age 15) had a favorite respon
se to any question, "I guess so". He 
started by plotting a hot air balloon (in 
Ba.sic) on an Apple. But balloons are sup
posed to fly. We simplified the balloon to 
lines (vectors) which we translated to 
hexidecimal numbers (even if he did not 
fully understand them). We entered the 
hex codes in a shape table and wrote a 
nrogram in Basic that had the balloon lift 



off the ground and fly around (using draw 
and undraw of the sh~pe table). The balloon 
looked pretty dumb on a blank screen so 
Jamey used Micropainter to draw the Alps 
for the background. Unfortunatel1 the 
Apple resolution prevented a passenger in 
the balloon so it was good that the B'asic 
program was steering. 

Kim (age 15) was one of those students 
that try as you might to confound them, they 
keep coming back for more. By her 7th ses
sion she had taken things into her own hands. 
She took a basic plot routi.ne written by 
one of the teachers for the IBM PC and dev
eloped it into a drawing program which enabl
ed one to plot lines, circles, fill areas, 
select colors, erase areas, save pictures 
and catalogue a disk. We showed Kim and her 
work off Proudly to all visiting dignitaries. 

Some of the best students were the par
ent/child duos where traditional roles be
came blurred. Parent and child became a 
worthy team, taking turns asking the right 
kinds of questions and taking their respect
ive guesses. Each brought a different per
spective to the learning that complimented 
each other. 

We pitted sutdents against each other 
in battles of wit. We set 2 brothers to 
work designing a quiz program to see who 
could come up with the silliest answers. 
We challenged 2 schoolmates to translate a 
magazine program for their respective mach-
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ines. We had tales of ghosts and Reagan 
coming from the word processor. Yes, we had 
fun, but not at the expense of those who 
chose more conventional modes of learning. 
The environment was created specifically 
to accomodate the range of learning styles. 

Enough of anecdotes. Summary please. 
There is a cavernous gap between those of 
us who pioneer technology and write papers 
and those of us who do not understand why 
the computer keeps getting their bills 
wrong. Our plan was to cross that gap. It 
worked. Kids came back for more (volun
tarily) and adults left unafraid of alien 
beings. It makes good sense that learning 
takes place when the mode of leaMing is 
personal and human. 

So, why you may ask, is this paper 
written in the past tense? The learners 
who came, for the most part conquered. But 
how do we reach those huddled masses who 
are if;Tloring the enemy COMPUTER and hoping 
it will go away? How do we convince them 
it is safe to give it a try? These questi0ns 
we couldn't answer as easily. All the mar
keting analysts in the land of OZ didn't 
seem to have the answer. The school is 
merging with another center which teaches 
business software using a similar indiv
idual approach. The original concept, 
teaching microcomputer use with art as a 
medium is very powerful. Now, how do-we 
make it stay? 



USING COMPUTERS TO WRITE AND TO TEACH 
WRITING 

Donna Mansfield 

Much has been written about the use 
of computers in art and music, 
somewhat less attention has been 
directed to the use of computers in 
professional writing and the training 
of writers. Books on "computers and 
writing" tend to be about using a word 
processor, or describe how a writer 
can adapt to using a computer. This 
paper will be about using computers 
to write and teach writing, but it will 
not be a tutorial on word processing. 
Rather, it will be an attempt to make 
some sense of the effect computers 
have on an individual's writing style 
and ultimately, on the product itself. 

Some writers resist computers 
because they see them as the ultimate 
Twentieth Century e1pression of 
gimcracky and believe that this 
"souless" machine will interfere with 
the magic of their art. Others have 
taken to computers with the fervor of 
the zealous convert; paper is no longer 
a word in their vocabulary, hardcopy 
is the term of choice. 

Within this eiaggerated and e1treme 
range are writers who use computers 
regularly to write. For them, the 
computer is a tool which helps them 
to compose and construct documents. 
Neither hated, nor loved, the 
computer is merely an electronic 
pencil 

CH2087-5/84/0000/0125$01 .00 © 1984 IEEE 
125 

Writers in this group use the 
computer in different ways. Some 
cannot compose at the computer and 
continue to write their outlines and 
first drafts in longhand. For them, the 
computer is an electronic typewriter, 
but yet something more, because they 
can revise and polish a draft into a 
document without needing to retype 
each version. 

Others use the computer for 
everything. They type the outline on 
the computer, keep notes on it and 
compose the first draft right at the 
keyboard. 

This reflects the different styles that 
writers bring to their business. The 
computer facilitates a variety of 
styles, The writer can do little at the 
keyboard, or everything at the 
keyboard. 

The ultimate question, of course, is 
bow this tool arr ects the final product, 
and there seems to be no definitive 
answer to that. At this point there 
seems to be a ''wish list" of what a 
computer could do for a writer or 
student of writing. This list includes 
some of the most repeated current 
"wishes": 

-ensure that the writer produces 
grammatically correct sentences 

-organize documents better 
-check style 
-write more ·naturally' 



We will examine each of these to try 
to determine both how a computer 
does this and how this affects the 
writer and the product. 

Chectiaa the writer's aram.m.ar 
and spelliq 

There are a number of programs that 
check for basic grammatical problems 
such as subject-predicate agreement, 
spelling, punctuation and transistional 
phrasing. These are certainly a 
convenience for the student or the 
writer who has mechanical problems, 
but they will not cause a frog to write 
like a prince. (Imagine running a 
program like that on Fiooegao 's 
/l'akeor C/ockFork Orange/. 

However, there are some students and 
would-be writers who believe that 
mechanical problems with the 
language prohibit them from putting 
anything on paper. This group would 
be greatly encouraged by the 
presence of a non-judgemental critic. 
The computer will help them become 
aware of the particular problems they 
have with the language so that they 
can work on resolvng these 
difficulties. 

Many professional writers use spelling 
and grammar checkers as a 
proofreading aid, but this has little 
effect on the ultimate product. 

We can probably conclude that 
programs like this are an aid to the 
uncertain and reluctant writer and a 
convenience for the professional. 
They will enable the writer to at least 
produce mechanically correct writing 
and perhaps, to pinpoint the areas in 
which he has difficulties with the 
language. 

Or1anir;i111 a Docum.eat Better 

One of the biggest problems racing a 
writer is how to organize his 
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document. Individual sentences and 
paragraphs, as well as the entire 
document must be well-organized for 
the final product to be successful. 

One traditional method for organizing 
a paper has been to write important 
quotes and points on index cards and 
arrange and re-arrange them until a 
coherent, logically argued point of 
view is expressed. While this method 
has some value, the writer is only 
arranging subsets of prose, not entire 
passages, this system is, in effect, a 
relatively sophisticated outlining 
procedure. The final document still 
may or may not be well organized. 

The computer shines at this point in 
the writing process because the it 
enables the writer to see several 
different ways in which the material 
can be organized. The computer 
facilitates experimentation and also 
allows the writer to evaluate the 
different structures as he sees them in 
print. Seeing differently organized 
versions is obviously, quite different 
(and better) than guessing what the 
final document will look like. 

The computer has real potential for 
resolving and refining the 
organizational problems of writers 
and students. And because this is one 
of the most important aspects of 
writing, the computer here has some 
very real benefit for the writer. 

Yritia1 ·Naturally· 

Starting a project is for most writers 
and students the most difficult part of 
the writing process. Bven professional 
writers report that it is frightening to 
took down at a blank piece of paper 
knowing that within some deadline he 
is supposed to produce a polished, 
organized and clever document. 



For students of writing, choosing a 
topic is itself a slippery process. 
"Choose a narrow enough topic to 
write about", the teacher says. This 
presupposes that the student bas been 
able to think of anything at all, and is 
probably despairing at the thought of 
writing anything longer than two 
paragraphs. 

Pre-writing prograas 

Some educators have designed 
computer programs to help students 
choose and refine a topic. These are 
frequently called "Pre-writing" 
programs. Most often they are 
designed as dialogues. The student 
answers general questions about bis 
interests and then the dialogue 
concentrates on one interest hoping 
that the "discussion" will jog some 
likely paper topic in the student's 
mind. Once he has settled on a 
general topic, the dialogue with the 
computer helps him refine the topic 
down to some manageable level. 

Programs like this get the student 
over the often insurmountable hump 
of choosing a good topic. The dialogue 
with the computer, it is hoped, will 
crystallize random thoughts into a 
likely topic. 

Presently though, the dialogue in 
many of these programs is so general 
that it is hard to see how much help 
they can really be. The student can 
type whatever nonsense he chooses 
into the machine and the computer 
will still respond "Thank you, Johnny. 
What interesting projects you have 
chosen!" Perhaps, it is just that these 
programs are at a very early stage of 
development. With a little 
refinement, programs like this can be 
a real aid to the beginning writer. 
And as for its effect on the final 
product, well, there can be no final 
product without a beginning. 
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Compose proaram.s 

There are some writing theorists who 
believe that some people are so 
blocked by the initial process of 
writing that they can't begin at all. 
"Compose" programs have emerged as 
a solution to that problem. 

In this sort of program, the student 
sits down at the computer and just 
types out the first 100 words that 
come into his head without worrying 
about grammar, punctuation or 
correct word choice. Out of this 
"spilling your guts" is supposed to 
come a topic and the first step toward 
beginning a project. 

While this is an interesting idea, there 
are two obvious, immediate problems. 
The first is that typing for some 
people unfamiliar with keyboards of 
any sort is often as frustrating as 
beginning to write. 

I taught a "Technical Writing" class 
composed of mainly engineering 
students. The class was part of a 
research project to measure the effect 
of using computers on the students· 
feeling towards writing. The 
investigator allowed the students a 
choice of using the computer or not. 
The investigator's hypothesis was that 
the students' writing would improve 
because they would prefer writing 
with computers (to not using 
computers). In fact, only two (out of 
25 ) students used the computer; the 
rest did assignments in longhand. I 
believe that this was because the 
students found it very difficult and 
unpleasant to type. One could 
conclude that the "spilling your guts" 
method of writing was a good 
beginning technique for writers, but 
that it can be done just as well using a 
pencil and paper as a computer. In 
this case, working with an audience 
who found it foreign and unpleasant 
to type, using a computer may inhibit 



and frustrate students more than it 
frees them to write. It seems likely, 
that once this group is e1perienced 
and comfortable at a keyboard, 
programs like this may greatly ease a 
writer into his project. 

The other problem with this method is 
that some people cannot "spill their 
guts" on paper. Their natural style is 
to polish and write precisely, but then, 
one might say that these people do 
not need the help of a ""compose"" 
program to begin. 

Conclusion 

It may seem taken in toto, that the 
computer has a limited effect on the 
writer and his final product, but I 
believe, in fact, that the computer is a 
great tool for the writer because of 
the fle1ibility it allows. A writer does 
not have to change his style to use a 
computer, but rather can use the 
computer to enhance his already 
established style. If a writer 
composes quickly, right at the 
keyboard, he can use the grammar 
and spelling checkers to correct the 
mechanical part of his first draft. If 
he is worried about the organization, 
he can cut and paste sections in a 
variety of different ways until he 
finds the one that does the job best. 

For some of us, the best part of using 
a computer is the speed and ease with 
which you can revise and polish. You 
simply do not have to begin at the 
beginning everytime you want to 
change something, you just change 
that part and the rest of the document 
stays the same. 

Educators are still finding their way 
with computers. Many of the 
educational programs that are being 
put on a computer today were 
theorectically outdated five years ago, 
but some people seem to feel they will 
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have new life if they are put on a 
computer (or people will not recognize 
the same, deadly drills in a new 
format). 

I believe that much of the future 
success in using computers to write or 
to teach writing will come with the 
realization that the writer can use the 
computer the way he wants it. 
Spelling programs are nice, grammar 
programs are nice, but what is 
wonderful is that you can develop and 
refine your style using a computer. 
You do not have to adapt to someone 
else's style. And there lies much of 
the difficulty in writing anyway 
. Some teachers believe there is a 
right way to write (their's) and a 
wrong way to write (your's). I am 
not talking about grammar and 
spelling, a writer must have these 
internalized to succeed in his field. 
But I am talking about how you 
begin a project, whether to outline or 
not, whether to polish all the way 
through or only at the end. You can 
do whatever is best for you when 
you write with a computer, you can 
do this with a pencil , too, but you 
can do it so much faster and easier 

with a computer. Fle1ibility, I 
believe is the computer· greatest aid 
to a writer. 
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Abstract 

An evaluation of a state- of- the- art 
graduate program in computer graphics/ 
animation in the Department of Art 
Education, The Ohio State University by a 
par·ticipating faculty member/ computer 
artist. Observations are made concerning 
computer· graphics/ animation gr·aduate 
programs in general and two courses in the 
OSU program specifically. Discussion is 
intended to illuminate aspects of providing 
computer graphics/ animation instruction at 
the post- secondary level. 

I n tr- odu c t i on 

I was privileged to attend the first 
two courses of a three course sequence in 
computer- graphics/ animation offered by the 
Department of Art Education, The Ohio State 
University. These courses are the heart of 
a graduate program in computer- gr·aphics/ 
animation. To add a historical 
perspective: The program is the fruit of 
much labor by Dr. Charles Csuri, long time 
computer artist and arts educator-. Dr-. 
Csuri has spent over twenty years in 
academics working to make the Ohio State 
program one of the finest programs of its 
kind in the world. He is also a partner in 
Cranston Csuri Productions, a major 
commercial computer graphics/ animation 
venture. 

The academic home of the animation 
'group' faculty is the Department of Art 
Education but the computer graphics 
facility, called The Computer Graphics 
Reseach Group <CGRG), falls under- the 
office of the Dean of the College of the 
Arts. Graduates of the program receive MA 
or Ph.D degrees in Art Education. Computer
Science and Engineering students are 
affiliated with the program through their 
research efforts with the CGRG and may 
receive graduate degrees in Computer- and 
Information Science <CIS). The program is 
unique because both student types utilize 
the facility and are constantly inter-acting 
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with each other-. The program is jointly 
administered by Dr. Csuri and Dr. Thomas 
Linehan. Dr-. Linehan is a professor of Art 
Education and the associate director- of the 
CGRG. As a testament to the demand and 
reputation of this program, last year there 
were over- 400 applicants to the Art 
Education graduate program in computer 
graphics/ animation, 12 wer·e admitted. 

This article represents some of my 
thoughts based on my experiences as an 
observer and participant in the program. 
Last academic year, 1983-84, I petitioned 
for and was granted a joint (no salary) 
appointment in the Department of Art 
Education at Ohio State. Although I have a 
full-time appointment in the Department of 
Engineering Graphics at OSU, I have, for a 
number- of years, been an active computer 
artist (Kolomyjec 1976, 1981, Peterson 
1983). Receiving the appointment in Art 
Education has allowed me unique 
participation in the program. It has 
allowed me to make the transition in 
computer art fr-om two dimensional 1o-tatic 
imagery to three dimensional computer 
graphics/ animation. I am indeed grateful 
to my colleagues and friends Drs. Csur-i and 
Linehan. 

Gener-al Observations 

Before I make specific observations 
about computer graphics/ animation courses, 
I would like to make several general 
observations about the subject matter- and 
the University. My first observation is 
that computer graphics/ aroimation has its 
own identity. It is a force that must be 
recognized and reckoned with. Over· the 
years it has grown as a synthesis from many 
traditional programs at the University. 
Computer graphics/ animation no longer 
belongs exclusively to the sciences or- to 
the arts, although those within it must 
take care not to forget where its roots 
1 ie. 



Fifteen years ago you had to be an 
engineer or scientist to gain access to the 
medium. Today the medium can be found 
outside of the technical milieu. More and 
more computers are found in education and 
art colleges. Granted, most of computing 
in these areas is of the microcomputer 
variety, nevertheless, I find this very 
significant. In fact, using the CGRG as an 
example, computer graphics/ animation is 
the envy of students of engineering, 
computer science and the arts. In many 
ways, I feel this gr·aduate program 
represents the next level of computer 
aesthetic instruction at the post-secondary 
level. 

Two, ther·e are very few programs in 
computer graphics/ animation to be found in 
higher education. I doubt that nationwide 
there are no more than five bonafide 
programs (I know of three, and one is in 
Canada). I would define a bonafide program 
to be one that offers either an 
undergraduate or graduate degree in 
computer· graphics/ animation. As a 
consequence, very little courseware exists. 
Curriculum concerns such as educational 
goals and objectives, and content of 
instruction are still evolving. Of course, 
this tends to frustrate University and 
program administrators, which in turn slows 
down program development. 

Any institution, college or department 
that is interested in providing instruction 
of computer graphics/ animation will 
ultimately have to deal with four major 
issues: One, the immense cost of the 
medium, i.e., hardware, software etc., and 
the issue of where it belongs in the 
framework of the institution. Second, when 
these primary issues have been resolved and 
programs are being put together, curricular 
concerns ar·e a new frontier. Just look at 
discipline areas, the ingredients of a 
successful program, that are encompassed by 
computer graphics/ animation: funding and 
administration, computer science, various 
forms of engineering, aesthetics, 
conventional animation, film, video. 
Putting together an academic program is a 
nightmare of vested interests, 
territoriality, and new thought in direct 
confrontation with old ideals. 

Three, there is a need for qualified 
teachers. There are very few faculty who 
have the skills, the experience and the 
academic credentials to meet traditional 
University requirements. Very few 
individuals can be found (or even 
identified) who embody the synthesis of 
science, technology and art who are 
qualified to teach computer graphics/ 
animation and have the qual ificatior,s to be 
given graduate school appointments. Very 
few qualified individuals are willing to 
tolerate the hassles of University reward 
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systems, much less ignore the big money to 
be made in this area outside academe. As a 
consequence, I fear· very few quality 
academic programs in computer· graphics/ 
animation will be forthcoming from higher· 
education for a number of years. 

Lastly, there is a wel 1-known need for· 
standardization in computer gr·aphics and 
teaching systems ought to be built to 
conform to these general standards. The 
personal computer can help a lot by 
providing basic competencies in computer· 
graphics. But, no or,e is in agreement 
about what type of hardware is better or 
what operating system is prefer,able. At 
the next level, computer graphics/ 
animation media requirements go beyond 
personal computers. The present trend 
would seem to be: 32-bit processors, 
megabytes of storage, Unix operating 
systems, vector and raster- display 
algorithms, mu 1 ti pl e bit frame buffer·s and 
some kind of image r-ecor·di ng device, such 
as a 16mm camera system with animation 
motor-. Never· for·get that any 
state-of-the-art computer- graphics/ 
animation system wi 11 r·equir·e support fr·om 
systems pr·ogrammers and maintenance 
con tr-acts. 

The Courses 

At the 1983 Symposium on Small 
Computer·s in the Arts a paper was given 
that presented information explaining the 
hardware configuration, software and the 
outline of a course to be given to a 
beginning computer animation class around 
the Digi ta! 11/23 microcomputer system 
(Schweppe, 1983). Twelve enter·ing graduate 
students and myself comprised the class. 
Below is a summary of the syllabi of the 
f i r·st two computer graphics/ animation 
courses. It will serve to illuminate 
discussion in the remainder- of the article. 
The length of each course was ten weeks. 

The First Course. 

The content of the first course 
consisted of: Introduction to Cranston 
Center- and the computer facilites. Initial 
discussion of the hardware, operating 
system and the text editor. Data 
construction and the use of data generation 
software. Introduction to 'scn_assmblr,' 
vector- and raster- scene description 
software. Concepts related to three 
dimensional primitives and their use. 
Introduction to storyboards and animation 
principles. Introduction to the 'C' 
programming language. Use of 'C' to 
produce 'scene files' for the scene 
description software. Topics related to 
pr·ogr-ammi ng animation. 



The Second Course, 

The content in the second course 
consisted of: Readings in conventional 
animation techniques. Intermediate and 
advanced tutorials in the text editor and 
the 'C' pr·ogrammi ng 1 anguage. Readings 
involving three dimensional computer 
graphics. Discussion of timing in 
animation. Production of more elaborate 
storyboards. Progr·amming penci 1 tests of 
motion in vector. Hand-building complex 
data. Wr· it i ng and producing 'comp! ete' 
computer animated sequences. Oral 
presentations of assigned reading in a 
variety of areas related to computer 
graph i cs/ an i mat i on . 

Specific Observations 

Let it be l{nown that I am c I ear· 1 y 
biased, the two term experience I had was 
truly wonderful and personally 
self-actualizing. I do not wish to be 
critical of the Computer Gr·aphics/ 
Animation Program in the Department of Art 
Education at The Ohio State University. 
Rather, I prefer to speak is a friendly 
witness. Furthermore, I make these 
specific observations in light of the 
general observations stated earlier, 

Observations related to the courses, 

To say that the first course was 
intensive and fast paced is a slight 
understatement. The first task was to 
1 earn the i di osyncrasi,• of the computer 
system that was used in the cour·se, a PDP 
11/23. Initial Ty, this meant learning the 
Unix(TM) operating system and a text editor 
called 'ed.' Later, we were introduced to 
some C program uti 1 i ty softwar·e, fol I owed 
by an introduction to the syntax of the 
progr·amming language C. Since most 
individuals met the two pr·ogramming cour·se 
prer~quisites, as a whole, it went fairly 

·we! I. · ttel p from C progr·ammi ng ex per· ts was 
generally available. 

Since three dimensional computer· 
graphics is the br·and of computer gr·aphics/ 
animation taught at OSU (as opposed to two 
dimensional paint system animation taught 
elsewhere), the data building assignment is 
essential. It is my observation that most 
artists can •see" in three dimensional 
space but very few know how to use the 
formal graphical language of engineering 
graphics. I think some individuals would 
have benefited from a review of 
orthographic projection, all would have 
benefited from a presentation of the 
fundamentals of des.cr-iptive geometr-y and 
exer-cises in solving pr-oblems in three 
space. 
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The fir-st course was not without 
technical problems, but this is to be 
expected in any developing cour-se (or
progr·am). Using state-of-the-art softwar-e 
is both a blessing and a curse, Data 
generation softwar-e is a great idea. It is 
intended to eliminate the dr-udger-y of 
hand-building data. However, since the 
data generation software we wer-e asked to 
use was under development it contained some 
bugs. Complete segments would not work and 
when data was produced, it would not work 
in conjunction with other- software. Most 
individual~ enjoyed using the softwar-e but 
became fr-ustrated when it did not perform 
pr-oper-ly. In all fairness to the program, 
it is better to wor-k with exper-imental 
tools than not to have any tools at all. 

On the other· hand, we used some gr·eat, 
r-eliable, software, software that was well 
suppor-ted and maintained. Further-more, 
systems pr-ogr-ammers were able to improve 
and enhance software based on our
suggestions. A pr-ogram called scn_assmblr
is particular·ly notewor·thy. It was used to 
gener-ate single fr-ames of three dimensional 
vector- and raster imagery. (See Schweppe, 
1983 for a description of scn_assmblr.) 
Scene descriptions wer-e initially generated 
in a "local mode" by the keyboar-d input of 
a few commands, A beginning exercise of 
gener-ating several scene descriptions in 
this manner was an excellent way to become 
familiar with the syntax and capabilities 
of scn_assmbl r. 

Scn_assmblr· is a wonder-ful piece of 
software and it wor-ked ver-y well. No 
individual student had any major problem 
with using it, However, the power- of the 
scn_assmblr pr-ogr-am (and the under·lying 
power of Unix) lies in its ability to 
execute scene files. Scene files wer-e the 
output of C programs wr-itten to generate a 
ser-ies of commands for· scn_assmblr-. (Scene 
files were essentially "pr-intf" statements 
of scn_assmblr commands.) Under the contr·ol 
of a scene file, scn_assmblr could be 
programmed to gener·ate an image and signal 
the animation motor of a 16mm camera. 
Thus; by providing these instr-uctions 
repeatedly in our scene files we were able 
to create our animations. 

Once the mechanics of animation wer-e 
understood, the process called animation 
had to be addressed. This in itself is an 
ar-t. Storyboarding is the procedure we 
used to visually describe the intentions of 
our- animations. By providing essential 
keyframes, as in a comic str-ip, we planned 
our ten second sequences. 

Ten seconds is not a long time, at 
twenty-four fr-ames per- second it amounts to 
240 fr-ames of animation. Depending upon 
the complexity of the scene a single frame 
can take sever a 1 minutes to "render." In 



our first animations we were limited to the 
use of two "objects." Frames were rendered 
in less than a minute of time. Thus a 
typical 10 second animation would take 
abc,ut 4 hours to film. However, most of us 
quickly discovered the notion of 
'trade-off' in our second animations. In 
my own case, after I was able to get my C 
pr·ogram to run, it was taking over 8 
minutes per frame to render a scene. Since 
the end of the term was approaching, we 
were 1 imi ted to seven hour·s of fi Im time 
per persor,, my prob! em was to somehow cut a 
32 hour animation down to 7 hours. This 
was a typical situation and here's how most 
of us adjusted. First, you redesign your 
three dimensional data (objects) to consist 
of the fewest number of faces (polygons) 
possible. Also, if you are only going to 
see the object from one direction you 
remove its back side (like the trick of 
using a building facade in Hollywood 
movies). The fewer polygons involved, the 
faster the display algorithm can render a 
scene. Next, you have to double or triple 
c 1 i ck ( record multi pl es) of a single scene. 
Usir,g a combination of these techniques I 
was able to cut my filming time down to a 
little over 7 hour·s. 

In the first course you have to learn 
a lot to do a 1 ittle. Much of it is 
discovery learning, that is learning by 
doing. Also, information must be shared 
between individuals, it is impossible for 
the instructor· to anticipate every 
situation and prepare each individual 
student for it. However, good i nstr·uc ti on 
is the key to the overall success of the 
course. By an organized presentation of 
essential materials (concepts and 
principles) and supportive material 
(reference articles and manuals) the 
motivated students can be successful. 

It was my opinion that the second 
course was a little disappointing in that 
it was not as well organized as the first. 
This comment is not to be misconstrued as 
negative, merely an observation. I prefer 
to call it constructive cr·iticism. After· a 
very well taught and thoughtful 
pr· esen tat i on of mat er· i a 1 i n the f i rs t 
course, the second course fell apart at 
times. For a variety of reasons, it took 
the first couple of weeks to rekindle 
overall motivation. 

The second course began by 
superficially trying to reinforce concepts 
learned in the first course. This attempt 
should have been better organized. There 
seemed to be a big gap between terms. I 
feel some attempt should have beer, made to 
exploit discoveries made the previous term. 
A discussion or· review of each individual 
animation from both an aesthetic as well as 
technical point of view would have been 
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appropriate. I think programming 
techniques themselves could have been 
discussed. This could have been a valuable 
experience, and it was lost. 

In the second term a single animation 
assignment was made. Each individual was 
given free-reign (all things to be 
considered) to produce a complete animatic,n 
of unspecified length. Each student was to 
conceive, storyboard, program pencil tests 
in vector, provide a sound track for and 
f i 1 m i n r· aster h i s/h er- an i mat i on . I have 
mixed feelings about this, on one hand it's 
wonderful to have all this creative 
latitude, on the other hand, people 
(especially creative people) tend to bite 
off a bit more than they can chew. In the 
final analysis, this approach worked well 
for some and it was deadly for others, 
namely those students whose programming 
ability got in the way of their creative 
undertal(ings. 

Other aspects of the second course are 
notewor·thy. Assigned r·eadings were an 
important component. If nothing else, you 
begin to appreciate the range, breadth and 
diver·si ty of the know I edge areas that 
computer gr·aphics/ animation encompasses. 
Equally important were the class 
discussions of those readings. Readings 
wer·e assigned fr·om far·-r·angi ng areas; from 
tr-a.di tional animation (wr·i ting by Thomas, 
Johnston and Halas) to articles about other 
computer· animation software ( MUTAN, Gr amps, 
ASAS etc). Also, the pr·oject involving the 
design and constr·uction of a complex object 
was a useful and practical experience for 
many. 

Observations not related to the courses. 

If you want a quality graduate 'arts' 
program then individuals selected to 
participate in the progr·am must have 
documented aesthetic skills. A careful 
scrutiny of portfolios, as well as a 
demonstrated ability to perform well in at 
least two prer·equisite computer programming 
classes forms the minimum standard of 
acceptance. Good pr·ograms are made up of 
good people. At OSU, it would be fair to 
say that selection criteria is heavily 
weighted (as it should be) in favor of the 
individual who has demonstrated an 
aesthetic sensibility. Much credit should 
be given to the directors of the progr·am 
for this emphasis. The virtue of this 
phi 1 osophy was vi sua 11 y evident in the 
quality of each student's work at the end 
of each quarter·. 

On the issue of an undergraduate 
program. At Ohio State, the present 
thinking about an undergraduate program in 
computer aesthetics is that it is an 
important but secondary concern. There is 



a general concensus of thought that the 
primary effort should be to develop a sound 
gr·aduate pr·ogr·am. Once in pl ace the 
graduate pr·ogram can play a major role in 
the development of the under·gr·aduate 
pr ogr· am . I fee 1 that th i s i s a 1 og i ca 1 1 y 
sound approach, especially when you think 
about the resources, particularly of the 
human variety, that would be readily 
available to the undergraduate program. 
Mor·eover, it wou 1 d pr·ovi de the possi bi 1 i ty 
as an income source for· graduate students, 
and pr·ovide a training gr·ound for· future 
pr·ofessor·s of computer aesthetics. 

Other observations: When twelve 
people are, at times, forced to use one 
system due to any number of disastrous 
situations, they'd better be able to get 
along. This means. that the pr·ogram 
administr·ator must go out of his/her own 
way to facilitate a friendly working 
envir·onment and maximize avenues of 
communication. This c,f cour·se goes for· 
persons delivering instruction and systems 
people. Also, due to the variety of the 
skills and backgrounds of the people 
affiliated with the program, it is to be 
expected that people need to find a common 
language. Artists should not be isolated 
from computer pr·ogrammers or systems people 
and vice versa. Interaction should be 
encouraged. 

Some final comments about har·dwar·e and 
f i 1 m unique to computer· graphics/ 
animation. Whether· the system is a stand 
alone workstation or· a multi-user· system 
with s.everal ter·minals, a comfor·table 
number per workstation/ terminal is 5 or 6, 
ten or· mor·e is toe, many. Individuals can 
and should maintain their own files on a 
regular basis. Hard disk cartridges, 
floppies or tape should be purchased and 
used by the students tc, back up their· own 
files. Not all terminals need to be 
graphics terminals. Entering, editing and 
executing practice programs to learn 
language syntax can be done on less 
expensive alphanumeric terminals, if 
possible on a system with non-gr·aphics 
per·ipheral s. 

Filming can tie up a s:,,stem for· days, 
make sur~ the bulk of a class or group's 
progr·amming is completed befor·e filming. 
Timesharing systems can and do crash vJhi 1 e 
someone is filming. This can often be 
avoided by not doing program development 
and editing on the same machine/ system 
while it is being used for filming. 
Filming r·equir·es camer·as with animation 
motors which can be software activated. 
Film requires sources for purchase of 
materials and processing, as wel 1 as 
editing and projection equipment. 
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Summar·y 

Computer· gr·aph i cs/ animation has 
emerged as a discipline area and rightly 
deserves its own identity. Pr·esently, 
there are but a few educational programs to 
be found. In general, the major obstacles 
that must be over·come by any group, college 
or· institution ir,ter·ested in pr·oviding a 
computer· gr·aph i cs/ ami nation program are: 
cost, curriculum, finding capable faculty, 
and an overall lack of computer graphics 
standards in terms of both har·dwar·e and 
sof twar·e. 

The courses under development at The 
Ohio State University are unique and serve 
as a model to others interested in 
developing computer graphics/ animation 
pr·ograms. Their gr·adua te cour·ses i r, 
computer graphics/ animation are intensive. 
Course content initially focuses on the use 
of hardware and software. Strong arguments 
can be made for taking a three dimensional 
approach but perhaps a stronger emphasis on 
three dimensional concepts ought to be 
inc 1 uded. As competencies ar·e acquired 
more traditional instr·uction in programming 
techniques and animation principles is 
necessary. Quality instruction and 
motivated students are essential to the 
success of the program. 

Computer graphics/ animation 
instruction based on a microprocessor is 
time consuming and requires inventiveness 
on the students' par·t. Perhaps smaller· 
assignments with more constraints would 
have been better· in the cour·ses to optimize 
overall use of the equipment and to provide 
a more positive <successful) experience for 
all students. A bibliography supported by 
a library and a good sized quantity of 
reference and resource material is an 
essen ti a 1 i ngr·edi en t to the program. 

In any developing program there will 
be problems with the use of new tools but 
the benefit far outweighs the consequences 
of not having any tools. Having a parallel 
research effort nearby makes all the 
difference! Scn_assmblr is an excellent 
piece of software for doing computer 
gr·aphics/ animation. Unix<TM> and the C 
programming language provide a workable 
environment. Good organization and 
technical support are essential to the 
success of the program. 

Due mainly to the issues of funding 
and institutional politics there will 
probably never be more than a few academic 
center·s for the instruction of computer 
graphics/ animation in the United States. 
Deve 1 opmen t of pr· ogr· ams w i 1 1 be ham per ed by 
the lack of qualified faculty more so than 
by a lack of equipment. Although 



associated hardware requirements go beyond 
what is presently available in personal 
computers, this probably will be less of a 
pr·oblem with new developments in har·dwar·e 
in the near future. 

The graduate program in computer 
graphics/ animation in the Depar·tment of 
Art Education at The Ohio State University 
is an important focal point of 
post-secondary instructional activity. In 
c.ompu ter aesthetics education it represents 
t.he next level. The OSU graduate program 
in computer graphics/ animation has been in 
place but a couple of years. It is a 
progr·am that strives to keep current with 
an evolving technology. Thus, the 
curriculum has to be flexible and 
state-of-the-art. It is growing, but not 
without growing pains. Yet, I have watched 
it evolve into a better program every year. 
I find the program fascinating and I am 
grateful to be associated with such a fine 
group. 
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